2013年全国各地中考数学试卷分类汇编:综合性问题
2013年全国各地中考数学试卷分类汇编总汇免费打包 (40)

-为整数,ab≠0);(4)am÷an=amn(m,n为整数,a≠0).
【易错警示】易把同底数幂的乘法和幂的乘方相混淆,如x4·x4=x8和(x4)4=x16,即(am)n和am·an混淆.
2.(2013江苏苏州,2,3分)计算-2x2+3x2的结果为( ).
A.-5x2 B.5x2 C.-x2 D.x2
【解析】A项错误,根据同底数幂的乘法,可得a5;B项错误,根据同底数幂的除法,可得结果为a10;C项错误,根据幂的乘方,可得结果为a9; D正确,根据积的乘方可得结
?? D.??a?336
整式与因式分解
一、选择题
1.(2013湖北黄冈,4,3分)下列计算正确的是( )
A.x4?x4?x16 B.a
C.ab???a3224?a9 3?????ab?232??ab4 D.a6?a4?1 ????
【答案】D.
【方法指导】本题是等式性质的灵活运用,关键是将已知的等式变形,得出所求的代数式.
【易错警示】等式变形的方法不正确而出错.
4.(2013江苏扬州,2,3分)下列运算中,结果是a6( ).
A.a2?a3 B.a12?a2 C.a
【答】计算-2x2+3x2=(-2+3)x2=x2,所以应选D.
【方法指导】所含字母相同且相同字母的指数也相同的项叫做同类项.合并同类项时,系数相加减,相同的字母及其指数不变.
【易错警示】本题主要考查同类项的概念,以及合并同类项.对同类项的概念把握不准,合并同类项的方法不对而出错.
【解析】A选项中应为x4·x4=x4+4=x8;B选项中应为(a3)2·a4=a6·a4=a6+4=a10;C选项
--2中应为(ab2)3÷(-ab)2=a3b6÷a2b2=a32b62=ab4;D选项中(a6)÷(a4)3=a12÷a12=1.所以
2013年全国各地中考数学试卷分类汇编:开放性问题

开放性问题一.选择题二.填空题1.(2013•徐州,13,3分)请写出一个是中心对称图形的几何图形的名称:.考点:中心对称图形.专题:开放型.分析:常见的中心对称图形有:平行四边形、正方形、圆、菱形,写出一个即可.解答:平行四边形是中心对称图形.故答案可为:平行四边形.点评:本题考查了中心对称图形的知识,同学们需要记忆一些常见的中心对称图形.2.(2013上海市,15,4分)如图3,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是____________.(只需写一个,不添加辅助线)3.(2013四川巴中,14,3分)如图,已知点B、C、F、E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是CA=FD.(只需写出一个)边长,且S △ABC =3,请写出一个..符合题意的一元二次方程 . 【答案】x 2-5x +6=0【解析】先确定两条符合条件的边长,再以它为根求作一元二次方程. 【方法指导】本题是道结论开放的题(答案不唯一),已知直角三角形的面积为3(直角边长未定),要写一个两根为直角边长的一元二次方程,我们尽量写边长为整数的情况(即保证方程的根为整数),如直角边长分别为2、3的直角三角形的面积就是3,以2、3为根的一元二次方程为2560x x -+=;也可以以1、6为直角边长,得方程为2760x x -+=.5.(2013山东菏泽,12,3分)我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”. “面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”) .已知等边三角形的边长为2,则它的“面径”长可以是______(写出1个即可).(写出1个即可).【解析】1)根据“三线合一”等可知,面径为底边上的高h ,31222=-=h ;(2)与一边平行的线段(如图),设DE=x ,因为△ADE 与四边形 DBCE 面积要相等,根据三角形相似性质,有2122=)(x.解得综上所述,所以符合题意的面径只有这两种数量关系.【方法指导】根据规定内容的定义,思考要把边长为2的等边三角形分成面积相等的两部分的直线存在有两种情形:(1)高(中线、角平分线)所在线;(2)与一边平行的线.要把一个三角形面积进行两等份,这样的直线有无数条,都过这个三角形三边中线的交点(重心).经过计算无数条中等边三角形“面径”长只有上述两种情形.三.解答题1.(2013山西,25,13分)(本题13分)数学活动——求重叠部分的面积。
2013数学中考试题汇编答案与解析

2013中考全国100份试卷分类汇编答案与解析——圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.54答案:D .考点:垂径定理与勾股定理.点评:连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决.2、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为A. 95B. 245C. 185D. 52答案:C解析:由勾股定理得AB =5,则sinA =45,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453CE =,所以,CE =125,AE =95,所以,AD =1853、(2013河南省)如图,CD 是☉O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是【】(A )AG BG = (B )AB ∥EF(C )AD ∥BC (D )ABC ADC ∠=∠【解析】由垂径定理可知:(A )一定正确。
由题可知:EF CD ⊥,又因为AB CD ⊥,所以AB ∥EF ,即(B )一定正确。
因为ABC ADC ∠∠和所对的弧是劣弧AC ,根据同弧所对的圆周角相等可知(D )一定正确。
【答案】C4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )Bcm B cm cm或cm D cm或cm==3cm==4==25、(2013•广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()cm BcmAB=4cmAB=4cmx=故半径为6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()求出==4m7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()BABABOB==8、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O 的半径为()==59、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5 C 6 D. 810、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()B、,正确,故本选项错误;11、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()OB===12、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.7分析:过点O作OD⊥AB于点D,由垂径定理可求出BD的长,在Rt△BOD中,利用勾股定理即可得出OD的长.解:如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=3,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD===.故选C.点评:本题考查的是垂径定理,根据题意画出图形,利用勾股定理求出OD的长是解答此题的关键13、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm考点:垂径定理的应用;勾股定理.分析:过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.解答:解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14、(2013•内江)在平面直角坐标系中,以原点O为圆心的圆过点A(13,0),直线y=kx ﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24.15、(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2cm.==cmcm16、(2013•株洲)如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是48度.17、(2013•黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.CD=2x=∴所在圆的半径为:故答案为:.18、(2013•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为2.OC=1AB=2AD=2=2=2.19、(2013年广州市)如图7,在平面直角坐标系中,点O为坐标原点,点P在第一象限,Θ与x轴交于O,A两点,点A的坐标为(6,0),PΘ的半径为P13,则点P的坐标为____________.分析:过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键20、(2013年深圳市)如图5所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。
(全国120套)2013年中考数学试卷分类汇编 代数综合

代数综合1、(2013•某某)下列函数中,当x>0时,y随x的增大而增大的是()2、(2013•某某)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1.0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;(2)过点P作x轴的垂线,交AC于点N,先运用待定系数法求出直线AC的解析式,设P点坐标为(x,x2+2x﹣3),根据AC的解析式表示出点N的坐标,再根据S△PAC=S△PAN+S△P就可以表示出△PAC的面积,运用顶点式就可以求出结论;(3)分三种情况进行讨论:①以A为直角顶点;②以D为直角顶点;③以M为直角顶点;设点M的坐标为(0,t),根据勾股定理列出方程,求出t的值即可.解答:解:(1)由于抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),可设抛物线的解析式为:y=a(x+3)(x﹣1),将C点坐标(0,﹣3)代入,得:a(0+3)(0﹣1)=5,解得 a=1,则y=(x+3)(x﹣1)=x2+2x﹣3,所以抛物线的解析式为:y=x2+2x﹣3;(2)过点P作x轴的垂线,交AC于点N.设直线AC的解析式为y=kx+m,由题意,得,解得,∴直线AC的解析式为:y=﹣x﹣3.设P点坐标为(x,x2+2x﹣3),则点N的坐标为(x,﹣x﹣3),∴PN=PE﹣NE=﹣(x2+2x﹣3)+(﹣x﹣3)=﹣x2﹣3x.∵S△PAC=S△PAN+S△P,∴S=PN•OA=×3(﹣x2﹣3x)=﹣(x+)2+,∴当x=﹣时,S有最大值,此时点P的坐标为(﹣,﹣);(3)在y轴上是否存在点M,能够使得△ADE是直角三角形.理由如下:∵y=x2+2x﹣3=y=(x+1)2﹣4,∴顶点D的坐标为(﹣1,﹣4),∵A(﹣3,0),∴AD2=(﹣1+3)2+(﹣4﹣0)2=20.设点M的坐标为(0,t),分三种情况进行讨论:①当A为直角顶点时,如图3①,由勾股定理,得AM2+AD2=DM2,即(0+3)2+(t﹣0)2+20=(0+1)2+(t+4)2,解得t=,所以点M的坐标为(0,);②当D为直角顶点时,如图3②,由勾股定理,得DM2+AD2=AM2,即(0+1)2+(t+4)2+20=(0+3)2+(t﹣0)2,解得t=﹣,所以点M的坐标为(0,﹣);③当M为直角顶点时,如图3③,由勾股定理,得AM2+DM2=AD2,即(0+3)2+(t﹣0)2+(0+1)2+(t+4)2=20,解得t=﹣1或﹣3,所以点M的坐标为(0,﹣1)或(0,﹣3);综上可知,在y轴上存在点M,能够使得△ADE是直角三角形,此时点M的坐标为(0,)或(0,﹣)或(0,﹣1)或(0,﹣3).点评:本题考查的是二次函数综合题,涉及到用待定系数法求一次函数、二次函数的解析式,三角形的面积,二次函数的顶点式的运用,勾股定理等知识,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.3、(2013达州压轴题)如图,在直角体系中,直线AB交x轴于点A(5,0),交y轴于点B,AO是⊙M的直径,其半圆交AB于点C,且AC=3。
全国名校2013年中考数学模拟试卷分类汇编44 动态综合问题

动态综合型问题一、选择题1、(2013·曲阜市实验中学中考模拟)如图,弧AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周, P 为弧AD 上任意一点,若AC=5,则四边形ACBP 周长的最大值是( )A . 15B . 20C .15+.15+答案:C2、(2013年深圳育才二中一摸)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线DC ED BE --运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是cm /秒.设P 、Q 同时出发秒时,△BPQ 的面积为y cm 2.已知y 与的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①5==BE AD ;②53cos =∠ABE ;③当50≤<t 时,252t y =;④当429=t 秒时,△ABE ∽△QBP ;其中正确的结论是( ).A .①②③ B.②③ C. ①③④ D.②④ 答案:C3、 (2013年河北三摸)如图,在正方形ABCD 中,AB =3㎝.动点M 自A 点出发沿AB 方向以每秒1㎝的速度运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3㎝的速度运动,到达B 点时运动同时停止.设△AMN 的面积为y (㎝2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间函数关系的是答案:B 二、解答题CAB D MN1、(2013吉林镇赉县一模)如图,在梯形ABCD 中,BC ∥AD ,∠A +∠D =90°,tanA =2,过点B 作BH ⊥AD 于H ,BC =BH =2,动点F 从点D 出发,以每秒1个单位的速度沿DH 运动到点H 停止,在运动过程中,过点F 作EF ⊥AD 交折线D C B 于点E ,将纸片沿直线EF 折叠,点C 、D 的对应点分别是点C 1、D 1,设运动时间是x 秒(x >0). (1)当点E 和点C 重合时,求运动时间x 的值; (2)当x 为何值时,△BCD 1是等腰三角形;(3)在整个运动过程中,设△FED 1或四边形EFD 1C 1与梯形ABCD 重叠部分的面积为S ,求S 与x 的函数关系式.答案:2、(2013江苏东台实中)已知Rt △ABC ,∠ACB =90°,AC =BC =4,点O 是AB 中点,点P 、Q 分别从点A 、C 出发,沿AC 、CB 以每秒1个单位的速度运动,到达点C 、B 后停止。
2013中考数学试题分类汇编 第一章 有理数

2013年全国各地中考数学解析汇编第一章有理数1.1 正数和负数1.(2013浙江丽水3分,1题)如果零上2℃记作+2℃,那么零下3℃记作( )A.-3℃B.-2℃C.+3℃D.+2℃【解析】根据相反意义的量可知,零上2℃记作―+2℃‖,则零下3℃记作―-3℃‖,故选A.【答案】A【点评】本题考查相反意义的量.2.(2013山东德州中考,9,4,)-1, 0, 0.2,71 , 3 中正数一共有 个. 【解析】由题意知2, 17,3是正数,共有三个. 【答案】3.【点评】有理数的分类方法有2种:①正有理数、0、负有理数;②整数和分数.3.(2013安徽,1,4分)下面的数中,与-3的和为0的是 ( )A.3B.-3C.31D.31- 【解析】根据有理数的运算法则,可以把选项中的数字和-3相加,进行筛选只有选项A 符合,也可以利用相反数的性质,根据互为相反数的两数和为0,必选-3的相反数3.【答案】A .【点评】本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础.4.(2013山东泰安,1,3分)下列各数比-3小的数是( )A. 0B. 1C.-4D.-1【解析】根据正数大于0,0大于负数,两个负数绝对值大的反而小可得,比-3小的数是-4.【答案】C【点评】本题考查了实数大小的比较.要掌握实数大小的比较:正数大于0,负数小于0,正数大于负数;数轴上表示的两个数,右边的比左边的大.5.(2013浙江省衢州,1,3分)下列四个数中,最小的数是( )A.2B.-2C.0D. 21- 【解析】根据有理数比较大小的法则进行判断,有-2<12-<0<2. 【答案】B【点评】本题考查了有理数大小的比较,①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.6.(2013重庆,1,4分)在一3,一1,0,2这四个数中,最小的数是( )A .一3B .一1 C.0 D.2【解析】正数大于0,负数小于0,两个负数绝对值大的反而小。
2013年全国各地中考数学试卷分类汇编:多边形与平行四边形

多边形与平行四边形一、选择题 1.(2013江苏扬州,6,3分)一个多边形的每个内角均为108°,则这个多边形是( ). A .七边形 B . 六边形 C .五边形 D .四边形 【答案】C . 【解析】根据多边形的内角和公式可知,这个n 边形满足:(n -2)×180=108n .解得n =5.所以应选C .【方法指导】多边形的内角和公式:(n -2)×180°.每个内角相等的多边形是正多边形. 【易错警示】记不住多边形的内角和公式而出错. 2.(2013重庆市(A ),9,4分)如图,在平行四边形ABCD 中,点E 在AD 上,连接CE 并延长与BA 的延长线交于点F ,若AE =2ED ,CD =3cm ,则AF 的长为( )A .5cmB .6cmC .7 cmD . 8cm 【答案】B .【解析】由平行四边形ABCD ,得AF ∥CD ,所以∠F =∠ECD ,∠F AE =∠D ,则有△AFE ∽△DEC ,从而得到错误!未找到引用源。
=错误!未找到引用源。
=2,即3AF=2,解得AF =6.故答案选B .【方法指导】本题考查平行四边形的性质,相似三角形.本题图形中蕴涵两个相似三角形基本图:1.“X ”型,即△AFE ∽△DEC .2.“A ”型,即△F AE ∽△FBC .2. (2013湖南益阳,6,4分)如图2,在平行四边形ABCD 中,下列结论中错误..的是( ) A .∠1=∠2B .∠BAD =∠BCDC .AB =CD D . AC ⊥BD【答案】:D【解析】根据平行四边形的性质可知D 是错误的。
【方法指导】根据平行四边形性质可知:平行四边形的对边相等,平行四边形的对角相等,平行四边形的对角线互相平分。
3.(2013广东湛江,5,4分)已知一个多边形的内角和是540°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形 【答案】B.【解析】根据题意有错误!未找到引用源。
最全2013年全国中考数学试卷汇总

2013年福建省泉州市晋江市中考数学试卷一、选择题(每小题3分,共21分.每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.)1.-2013的绝对值是( )A.2013 B.-2013C.D.2.如图,已知直线a∥b,直线c与a、b分别交点于A、B,∠1=50°,则∠2=( )A.40°B.50°C.100°D.130°3.计算:2x3•x2等于( )A.2 B.x5C.2x5D.2x64.已知关于x的方程2x-a-5=0的解是x=-2,则a的值为( )A.1 B.-1 C.9 D.-95.若反比例函数的图象上有两点P1(2,y1)和P2(3,y2),那么( )A.y1<y2<0 B.y1>y2>0 C.y2<y1<0 D.y2>y1>06.如图,是由一个长方体和一个圆锥体组成的立体图形,其正视图是( )A.B.C.D.7.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是( )A.45°B.60°C.90°D.120°二、填空题(每小题4分,共40分.在答题卡上相应题目的答题区域内作答.)8.化简:-(-2)=________.9.因式分解:4-a2=________.10.从2013年起,泉州市财政每年将安排50000000元用于建设“美丽乡村”.将数据50000000用科学记数法表示为________.11.计算:.12.不等式组的解集是________.13.某班派5名同学参加数学竞赛,他们的成绩(单位:分)分别为:80,92,125,60,97.则这5名同学成绩的中位数是________分.14.正六边形的每个内角的度数是________度.15.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,则∠B=________°.16.若a+b=5,ab=6,则a-b=________.17.如图,在Rt△ABC中,∠C=90°,∠A=30°,.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.(1)当点D运动到线段AC 中点时,DE=________;(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=________或________时,⊙C与直线AB相切.三、解答题(共89分,在答题卡上相应题目的答题区域内作答)18.计算:.19.先化简,再求值:(x+3)2-x(x-5),其中.20.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.21.一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、-2、-3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片.(1)求小芳抽到负数的概率;(2)若小明再从剩余的三张卡片中随机抽取一张,请你用树状图或列表法,求小明和小芳两人均抽到负数的概率.22.如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.23.为了创建书香校园,切实引导学生多读书、乐读书、会读书、读好书,某校开展“好书伴我成长”的读书活动,为了解全校学生读书情况,随机调查了50名学生读书的册数,并将全部调查结果绘制成两幅不完整的统计图表.册数人数1 22 133 a4 b5 1请根据图表提供的信息,解答下列问题:(1)表中的a=________,b=________,请你把条形统计图补充完整;(2)若该校共有2000名学生,请你根据样本数据,估计该校学生在本次活动中读书不少于3册的人数.24.为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从2013年4月起,居民生活用水按阶梯式计算水价,水价计算方式如图所示,每吨水需另加污水处理费0.80元.已知小张家2013年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(温馨提示:水费=水价+污水处理费)(1)m、n的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%.若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?25.将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为________,点E的坐标为________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.(3)如图,若点E的纵坐标为-1,抛物线(a≠0且a为常数)的顶点落在△ADE 的内部,求a的取值范围.26.如图,在平面直角坐标系xOy中,一动直线l从y轴出发,以每秒1个单位长度的速度沿x轴向右平移,直线l与直线y=x相交于点P,以OP为半径的⊙P与x轴正半轴交于点A,与y轴正半轴交于点B.设直线l的运动时间为t秒.(1)填空:当t=1时,⊙P的半径为________,OA=________,OB =________;(2)若点C是坐标平面内一点,且以点O、P、C、B为顶点的四边形为平行四边形.①请你直接写出所有符合条件的点C的坐标;(用含t的代数式表示)②当点C在直线y=x上方时,过A、B、C三点的⊙Q与y轴的另一个交点为点D,连接DC、DA,试判断△DAC的形状,并说明理由.27.计算:2a2+3a2=________.28.已知∠1与∠2互余,∠1=55°,则∠2=________°.2013年甘肃省白银市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内.)1.3的相反数是( )A.3 B.-3C.D.2.下列运算中,结果正确的是( )A.4a-a=3a B.a10÷a2=a5C.a2+a3=a5D.a3•a4=a123.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是()A.B.C.D.4.如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是( )A.B.C.D.5.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A.15°B.20°C.25°D.30°6.一元二次方程x2+x-2=0根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.分式方程的解是( )A.x=-2 B.x=1 C.x=2 D.x=38.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为( )A.48(1-x)2=36 B.48(1+x)2=36C.36(1-x)2=48 D.36(1+x)2=489.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a-b<0;②abc<0;③a+b+c<0;④a-b+c>0;⑤4a+2b+c>0,错误的个数有( )A.1个B.2个C.3个D.4个10.如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分,把答案写在题中的横线上.)11.分解因式:x2-9=________.12.不等式2x+9≥3(x+2)的正整数解是________.13.等腰三角形的周长为16,其一边长为6,则另两边为________.14.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为________米.15.如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为________.(答案不唯一,只需填一个)16.若代数式的值为零,则x=________.17.已知⊙O1与⊙O2的半径分别是方程x2-4x+3=0的两根,且O1O2=t+2,若这两个圆相切,则t=________.18.现定义运算“★”,对于任意实数a、b,都有a★b=a2-3a+b,如:3★5=32-3×3+5,若x★2=6,则实数x的值是________.三、解答题(一)(本大题共5小题,共38分,解答时,应写出必要的文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合性问题一.选择题1.(2013湖北省鄂州市,5,3分)下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中解:①若代数式③若反比例函数二.填空题1.(2013·潍坊,18,3分)如图,直角三角形ABC 中,︒=∠90ACB ,10=AB , 6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点记为1A ;AD 的中点E 的对应点记为1E .若11FA E ∆∽BF E 1∆,则AD =__________.答案:3.2解:∵∠ACB =90°,AB =10,BC =6,∴AC = AB 2-BC 2 = 102-62 =8,设AD =2x , ∵点E 为AD 的中点,将△ADF 沿DF 折叠,点A 对应点记为A 1,点E 的对应点为E 1, ∴AE =DE =DE 1=A 1E 1=x ,∵DF ⊥AB ,∠ACB =90°,∠A =∠A ,∴△ABC ∽△AFD ,∴AD :AC =DF :BC , 即2x :8 =DF :6 ,解得DF =1.5x ,在Rt △DE 1F 中,E 1F 2= DF 2+DE 12 = 3.25 x 2 ,又∵BE 1=AB -AE 1=10-3x ,△E 1FA 1∽△E 1BF ,∴E 1F :A 1E 1 =BE 1 :E 1F ,∴E 1F 2=A 1E 1•BE 1,过A 作'AB PP ⊥,则sin 45322AB OA =︒=⨯=∴阴影部分''PAA P 的面积为'12S PP AB =⨯== 【答案】123.(2013山东德州,17,4分)如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE =CF ②∠AEB =750③BE+DF =EF ④S 正方形ABCD =2+3,其中正确的序号是 。
(把你认为正确的都填上)【答案】①②④.【解析】∵在正方形ABCD 与等边三角形AEF 中,∴AB=BC=CD=DA ,AE=EF=AF ,∴△ABE ≌△ADF ,∴DF=BE ,有DC -DF=BC -BE ,即 CE =CF ,①正确;∵CE=CF ,∠C=90°,∴∠FEC=45°,而∠AEF=60°,∴∠AEB =180°-60°-45°=75°,②正确;根据分析BE+DF ≠EF ,③不正确;在等腰直角三角形CEF 中,CE=CF=EF ·sin45°=2.在Rt △ADF 中,设AD=x ,则DF=x -2,根据勾股定理可得,22222=-+)(x x ,解得,x 1=262+, 2622-=x (舍去). 所以正方形ABCD 面积为22262)(+=x =2+3,④正确. 【方法指导】本题考查正方形与等边三角形.本题涉及正方形、等边三角形相关知识,同时应用勾股定理、全等三角形等解题.具有一定的综合性.解题的关键是对所给命题运用相关知识逐一验证.4.(2013四川成都,23,4分)若关于t 的不等式组0,214t a t -⎧⎨+⎩≥≤恰有三个整数解,则关于x 的一次函数y =1x -a 的图象与反比例函数y =32a +的图象的公共点的个数为______.【答案】0或1.【解析】解不等式组得a ≤t ≤32.∵原不等式组恰有三个整数解,即-1,0,1,∴-2<a≤-1.一次函数y =1x -a 的图象与反比例函数y =32a +的图象的交点坐标即是方程组1,432y x a a y x ⎧=-⎪⎨+⎪=⎩的解.消去方程组中的y 得,1x -a =32a +.即x 2-4ax -4(3a +2)=0.其判别式△=(-4a )2+16(3a +2)=16(a 2+3a +2)=16(a +1)(a +2).当-2<a ≤-1时,(a +1)(a +2)≤0,即△≤0.∴两个图象的公共点的个数为0或1.【方法指导】此题有一定的综合性,解答时涉及的知识点有:不等式组的解及解不等式组、函数的图象、一元二次方程根的判别式等.三.解答题1.((2013贵州毕节,27,16分)如图,抛物线y=ax 2+b 与x 轴交于点A 、B ,且A 点的坐标为(1,0),与y 轴交于点C (0,1). (1)求抛物线的解析式,并求出点B 坐标;(2)过点B 作BD ∥CA 交抛物线于点D ,连接BC 、CA 、AD ,求四边形ABCD 的周长;(结果保留根号)(3)在x 轴上方的抛物线上是否存在点P ,过点P 作PE 垂直于x 轴,垂足为点E ,使以B 、P 、E 为顶点的三角形与△CBD 相似?若存在请求出P 点的坐标;若不存在,请说明理由.,解得:BD=AD=;AC+BC+BD+AD=+=,即,∴,即,∴2.(2013·聊城,25,?分)已知△ABC中,边BC的长与BC边上的高的和为20.(1)写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;(2)当BC多长时,△ABC的面积最大?最大面积是多少?(3)当△ABC面积最大时,是否存在其周长最小的情形?如果存在,请说出理由,并求出其最小周长;如果不存在,请给予说明.考点:二次函数综合题.分析:(1)先表示出BC边上的高,再根据三角形的面积公式就可以表示出表示y与x之间的函数关系式,当y=48时代入解析式就可以求出其值;(2)将(1)的解析式转化为顶点式就可以求出最大值.(3)由(2)可知△ABC的面积最大时,BC=10,BC边上的高也为10过点A作直线L 平行于BC,作点B关于直线L的对称点B′,连接B′C交直线L于点A′,再连接A′B,AB′,根据轴对称的性质及三角形的周长公式就可以求出周长的最小值.解答:解:(1)由题意,得y==-x2+10x,当y=48时,-x2+10x=48,解得:x1=12,x2=8,∴面积为48时BC的长为12或8;(2)∵y=-x2+10x,∴y=-(x-10)2+50,∴当x=10时,y最大=50;(3)△ABC面积最大时,△ABC的周长存在最小的情形.理由如下:由(2)可知△ABC 的面积最大时,BC=10,BC边上的高也为10,过点A作直线L平行于BC,作点B关于直线L的对称点B′,连接B′C交直线L于点A′,再连接A′B,AB′则由对称性得:A′B′=A′B,AB′=AB,∴A′B+A′C=A′B′+A′C=B′C,当点A不在线段B′C上时,则由三角形三边关系可得:△ABC的周长=AB+AC+BC=AB′+AC+BC>B′C+BC,当点A在线段B′C上时,即点A与A′重合,这时△ABC的周长=AB+AC+BC=A′B′+A′C+BC=B′C+BC,因此当点A与A′重合时,△ABC的周长最小;这时由作法可知:BB′=20,∴B′C==10,∴△ABC的周长=10+10,因此当△ABC面积最大时,存在其周长最小的情形,最小周长为10+10.点评:本题是一道二次函数的综合试题,考查了二次函数的解析式的运用,一元二次方程的解法和顶点式的运用,轴对称的性质的运用,在解答第三问时灵活运用轴对称的性质是关键.3.(2013·济宁,22,?分)如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B.(1)求证:线段AB为⊙P的直径;(2)求△AOB的面积;(3)如图2,Q是反比例函数y=(x>0)图象上异于点P的另一点,以Q为圆心,QO 为半径画圆与坐标轴分别交于点C、D.求证:DO•OC=BO•OA.考点:反比例函数综合题.分析:(1)∠AOB=90°,由圆周角定理的推论,可以证明AB是⊙P的直径;(2)将△AOB的面积用含点P坐标的表达式表示出来,容易计算出结果;(3)对于反比例函数上另外一点Q,⊙Q与坐标轴所形成的△COD的面积,依然不变,与△AOB的面积相等.解答:(1)证明:∵∠AOB=90°,且∠AOB是⊙P中弦AB所对的圆周角,∴AB是⊙P的直径.(2)解:设点P坐标为(m,n)(m>0,n>0),∵点P是反比例函数y=(x>0)图象上一点,∴mn=12.如答图,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则OM=m,ON=n.由垂径定理可知,点M为OA中点,点N为OB中点,∴OA=2OM=2m,OB=2ON=2n,∴S△AOB=BO•OA=×2n×2m=2mn=2×12=24.(3)证明:若点Q为反比例函数y=(x>0)图象上异于点P的另一点,参照(2),同理可得:S△COD=DO•CO=24,则有:S △COD =S △AOB =24,即BO •OA =DO •CO , ∴DO •OC =BO •OA .点评:本题考查了反比例函数的图象与性质、圆周角定理、垂径定理等知识,难度不大.试题的核心是考查反比例函数系数的几何意义.对本题而言,若反比例函数系数为k ,则可以证明⊙P 在坐标轴上所截的两条线段的乘积等于4k ;对于另外一点Q 所形成的⊙Q ,此结论依然成立.4.(2013·潍坊,22,11分)如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至'''D F CE ,旋转角为α.(1)当点'D 恰好落在EF 边上时,求旋转角α的值;(2)如图2,G 为BC 的中点,且0°<α<90°,求证:D E GD ''=;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,'DCD ∆与'CBD ∆能否全等?若能,直接写出旋转角α的值;若不能,说明理由.答案:(1) ∵DC//EF ,∴∠DCD ′=∠CD ′E =∠CD ′E =α. ∴sin α=1'2CE CE CD CD ==,∴α=30°(2) ∵G 为BC 中点,∴GC =CE ′=CE =1, ∵∠D ′CG =∠DCG +∠DCD ′=90°+α, ∠DCE ′=∠D ′CE ′+∠DCD ′=90°+α,∴∠D ′CG =∠DCE ′又∵CD ′=CD , ∴△GCD ′≌△E ′CD , ∴GD ′=E ′D(3) 能. α=135°或α=315°考点:图形的旋转、三角函数、解直角三角形、全等三角形的判定点评:本题依据学生的认知规律,从简单特殊的问题入手,将问题向一般进行拓展、变式,通过操作、观察、计算、猜想等获得结论.此类问题综合性较强,要完成本题学生需要有较强的类比、迁移、分析、变形应用、综合、推理和探究能力. 5.(2013·潍坊,23,13分)为了改善市民的生活环境,我是在某河滨空地处修建一个如图所示的休闲文化广场.在Rt △ABC 内修建矩形水池DEFG ,使顶点E D 、在斜边AB 上,G F 、分别在直角边AC BC 、上;又分别以AC BC AB 、、为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设地砖.其中米324=AB ,︒=∠60BAC .设x EF =米,y DE =米.(1)求y 与x 之间的函数解析式;(2)当x 为何值时,矩形DEFG 的面积最大?最大面积是多少?(3)求两弯新月(图中阴影部分)的面积,并求当x 为何值时,矩形DEFG 的面积等于两弯新月面积的31? 答案:(1)在Rt △ABC 中,由题意得AC =312米,BC =36米,∠ABC =30°, 所以,330tan ,33360tan x EFBE x x DG AD =︒===︒=又AD +DE +BE =AB , 所以,334324333324x x x y -=--=(0<x <8). (2)矩形DEFG 的面积.3108)9(334324334)334324(22+--=+-=-==x x x x x xy S 所以当x =9时,矩形DEFG 的面积最大,最大面积为3108平方米.(3)记AC 为直径的半圆\、BC 为直径的半圆、AB 为直径的半圆面积分别为S 1、S 2、S3,两弯新月面积为S ,则,81,81,81232221AB S BC S AC S πππ===由AC 2+BC 2=AB 2可知S 1+S 2=S 3,∴S 1+S 2-S =S 3-S △ABC ,故S =S △ABC所以两弯新月的面积S =32163631221=⨯⨯(平方米) 由3216313108)9(334⨯=+--x ,即27)9(2=-x ,解得339±=x ,符合题意, 所以当339±=x 米时,矩形DEFG 的面积等于两弯新月面积的31.考点:考查了解直角三角形,二次函数最值求法以及一元二次方程的解法。