PCR、Western blot、免疫组化(实验原理)
PCR、Western blot、免疫组化(实验原理)

PCR实验原理:聚合酶链式反应简称PCR(Polymerase Chain Reaction)是体外酶促合成特异DNA片段的一种方法,是在模板DNA、引物和4种脱氧核苷酸存在的条件下,依赖于DNA聚合酶的酶促合反应,将待扩增的DNA片段与其两侧互补的寡核苷酸链引物经“高温变性—低温退火—引物延伸”三步反应的多次循环,使DNA 片段在数量上呈指数增加,从而在短时间内获得我们所需的大量的特定基因片段,具有特异性强、灵敏度高、操作简便、省时等特点。
PCR技术的基本原理类似于DNA的天然复制过程,其结果都是以原来的DNA为模板产生新的互补DNA片段。
相比于细胞内复杂的DNA复制,PCR的反应体系相对较简单。
其特异性依赖于与靶序列两端互补的寡核苷酸引物。
反应体系包括cDNA模板、引物、dNTP、PCR缓冲液、Taq聚合酶等。
PCR由变性—退火—延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至94℃左右一定时间后,使模板DNA 双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应做准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板—引物结合物在Taq酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链。
重复循环变性—退火—延伸这三个过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。
每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。
PCR的反应动力学PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。
反应最终的DNA扩增量可用Y=(1+X)n计算。
Y代表DNA片段扩增后的拷贝数,X表示平均每次的扩增效率,n代表循环次数。
平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。
免疫组化的原理及应用

免疫组化的原理及应用原理免疫组化(Immunohistochemistry,IHC)是一种通过特异性抗体与相应抗原的特异性结合,利用染色反应显示出有关蛋白质在组织或细胞中的位置与数量的技术。
简单来说,免疫组化是通过酶标法或荧光法等方法,利用特异性抗体标记目标蛋白质,从而在组织或细胞中检测和定位目标蛋白质的方法。
免疫组化的原理主要包括以下几个步骤:1.抗原修复:免疫组化一般需要在标本切片前对组织进行抗原修复处理,以恢复和增强抗原的免疫活性。
2.阻断非特异性结合:在免疫组化过程中,为了防止非特异性结合的出现,需要使用非特异性抗体或蛋白质进行阻断。
3.抗体结合:将特异性抗体与标本中的目标抗原进行结合,可采用直接法或间接法。
4.信号显示:对于直接法,特异性抗体上已标记有荧光染料或酶标标记,可直接显示信号;对于间接法,再添加与特异性抗体免疫结合的二抗,二抗上标记有荧光染料或酶标标记,用于显示信号。
5.结果观察与分析:利用显微镜观察标本中信号的形态、分布和强度,进行结果判读和分析。
应用免疫组化在生命科学研究、临床诊断和药物研发等领域都有广泛的应用。
以下列举一些主要的应用:1.细胞定位:通过使用特异性抗体和荧光染料标记目标蛋白质,可以在细胞水平上观察和定位目标蛋白质的分布和表达情况。
2.组织检测:通过在组织切片上应用免疫组化技术,可以检测和定位特定蛋白质在组织中的表达情况,并用于研究组织的结构和功能。
3.癌症诊断:免疫组化在肿瘤诊断中有重要的应用价值。
通过检测肿瘤标志物的表达情况,可以帮助医生判断肿瘤类型、分级和预后,并指导相应的治疗方案。
4.药物研发:免疫组化可以用于评估新药对蛋白质表达的影响,了解新药的作用机制,以及筛选适合的治疗靶点。
5.神经科学研究:免疫组化在神经科学领域的研究中也有广泛的应用。
通过免疫组化技术,可以观察和定位神经元、神经递质和突触相关蛋白质,帮助研究神经系统的结构和功能。
总的来说,免疫组化技术广泛应用于生命科学研究和临床实践中,为我们研究细胞和组织的结构与功能、研究疾病机制、辅助临床诊断等提供了有力的工具和方法。
免疫组化的完整步骤及各步原理

免疫组化的完整步骤及各步原理免疫组化是一种非常神奇的实验技术,它可以让科学家们观察到细胞内部的微小世界。
那么,这个神奇的过程到底是怎么进行的呢?下面就让我们一起来揭开免疫组化的神秘面纱吧!我们要了解一下什么是免疫组化。
简单来说,免疫组化就是利用特定的抗体去识别和标记细胞表面或者细胞内部的一些蛋白质分子。
这些抗体可以是医生们自己设计的,也可以是从动物或者植物中提取出来的天然抗体。
当这些抗体与目标蛋白结合时,就会发生一些特殊的反应,比如说颜色的变化、荧光的产生等等。
通过观察这些反应,科学家们就可以了解到细胞内部的结构和功能特点。
接下来,我们来看一下免疫组化的完整步骤及各步原理。
首先是样品制备,也就是把待测的细胞样本取出来进行处理。
这个过程非常重要,因为只有处理好的样品才能够被抗体识别和标记。
接着就是抗体制备,也就是把医生们设计好的抗体合成出来。
这个过程需要一定的技术和经验,因为不同的抗体可能适用于不同的细胞类型和目标蛋白。
然后就是抗原检测,也就是把制备好的抗体加入到样品中,看看它们是否能够与目标蛋白结合。
如果结合了,就会发生一些特殊反应,比如说颜色的变化、荧光的产生等等。
最后就是结果分析,也就是根据观察到的反应来推断出细胞内部的结构和功能特点。
虽然免疫组化看起来很复杂,但是只要掌握了其中的原理和技巧,就可以轻松地完成实验了。
当然啦,在实际操作过程中也会遇到各种各样的问题和挑战,比如说抗体的选择、样品的质量等等。
但是只要我们保持耐心和信心,相信总会找到解决问题的方法的。
免疫组化是一项非常重要的技术,它可以帮助我们更好地了解细胞内部的结构和功能特点。
虽然它看起来有些复杂难懂,但是只要我们认真学习和实践,相信一定可以掌握其中的精髓并取得优异的成绩!。
western实验原理及步骤

western实验原理及步骤
western实验原理及步骤
western实验是一种分子生物学技术,它可以用来检测特定蛋白质的表达水平。
它的原理是将细胞内的蛋白质从细胞内取出,然后通过电泳来分离,最后将蛋白质用特定的抗体标记,然后用荧光染料检测,最后用荧光显微镜检测,从而检测特定蛋白质的表达水平。
Western实验的步骤包括:
1. 准备实验样本:首先准备实验样本,一般是细胞系或者组织样本,将其分离和提取蛋白质。
2. 电泳:将提取的蛋白质放入凝胶中,然后加入电流,使蛋白质受到电流的作用,从而分离不同的蛋白质。
3. 标记:将分离的蛋白质用特定的抗体标记,以便检测。
4. 检测:将标记的蛋白质用荧光染料检测,然后用荧光显微镜检测,从而检测特定蛋白质的表达水平。
western实验的原理是将细胞内的蛋白质从细胞内取出,然后通过电泳来分离,最后将蛋白质用特定的抗体标记,然后用荧光染料检测,最后用荧光显微镜检测,从而检测特定蛋白质的表达水平。
步骤包括准备实验样本、电泳、标记和检测。
免疫组化的原理及操作规程

免疫组化的原理及操作规程免疫组化,即免疫组织化学染色技术,是一种利用抗原与抗体特异性结合的原理,通过化学反应使标记抗体的显色剂(如荧光素、酶、金属离子、同位素等)显色,从而确定组织细胞内抗原(多肽和蛋白质)的定位、定性及相对定量的研究方法。
该技术广泛应用于临床病理诊断、生物医学研究以及药物开发等领域。
本文将详细介绍免疫组化的原理及操作规程。
一、免疫组化的原理免疫组化的基本原理是抗原与抗体的特异性结合。
抗原是指能够刺激机体产生免疫应答,并能与免疫应答产物(抗体或致敏淋巴细胞)发生特异性结合的物质。
抗体是机体的免疫细胞在抗原刺激下产生的具有特异性识别能力的免疫球蛋白。
在免疫组化中,通常将目标抗原(如某种蛋白质或多肽)作为待检测物,通过特定的抗体与之结合,再利用标记技术使抗体可视化,从而实现对目标抗原的定位、定性和定量研究。
免疫组化的标记技术主要有直接法和间接法两种。
直接法是将标记物(如荧光素、酶等)直接标记在抗体上,使其与目标抗原结合后直接显色。
间接法则是利用未标记的抗体(一抗)先与目标抗原结合,然后再通过标记的二抗(与一抗特异性结合的抗体)与一抗结合,最终实现显色。
间接法具有更高的灵敏度和灵活性,因此在实际应用中更为常见。
二、免疫组化的操作规程免疫组化的操作规程主要包括以下几个步骤:1. 标本处理:根据实验需求选择合适的组织标本,并进行固定、脱水、包埋等处理,制备成组织切片或细胞涂片。
固定是为了保持组织或细胞的形态结构,防止抗原丢失;脱水则是为了去除组织中的水分,便于后续操作;包埋则是将组织块包裹在支持物(如石蜡)中,便于切片。
2. 抗原修复:由于固定和脱水等处理过程可能导致抗原表位的遮蔽或改变,因此在进行免疫组化染色前,需要对抗原进行修复。
常用的修复方法包括热修复、酶修复和酸修复等。
具体方法应根据实验需求和抗原性质进行选择。
3. 阻断内源性酶活性:为了避免组织内源性酶对后续显色反应的干扰,需要使用相应的阻断剂(如过氧化氢)对内源性酶活性进行阻断。
免疫组化法原理

免疫组化法原理一、免疫组化法概述免疫组化法(immunohistochemistry,IHC)是一种将抗体与组织中的特定抗原结合并可视化的技术。
它是一种常用的诊断和研究工具,可用于检测肿瘤、感染和自身免疫性疾病等多种疾病。
二、免疫组化法的基本原理1. 抗原-抗体反应IHC技术基于抗原-抗体反应,即将特异性的抗体与组织中的特定抗原结合。
在IHC技术中,主要使用单克隆或多克隆抗体。
单克隆抗体来源于同一B细胞,具有高度特异性和亲和力;多克隆抗体则由多个B 细胞产生,具有较广泛的特异性。
2. 报告物质为了可视化抗原-抗体反应结果,在IHC技术中需要使用报告物质。
常见的报告物质包括酶标记物和荧光标记物。
酶标记物包括辣根过氧化物酶(HRP)和碱性磷酸酶(AP)等,荧光标记物则包括荧光素、罗丹明和荧光素异硫氰酸酯等。
3. 反应步骤IHC技术一般包括以下几个步骤:(1)取材:首先需要取得组织样本,如肿瘤组织或正常组织。
(2)制片:将组织样本切片,并固定在载玻片上。
(3)抗体处理:将特异性抗体加入载玻片上的组织切片中,与目标抗原结合。
(4)洗涤:去除未结合的抗体。
(5)报告物质处理:加入报告物质,可视化抗原-抗体反应结果。
(6)染色:使用适当的染色剂对载玻片进行染色,以增强可视化效果。
(7)观察和分析:使用显微镜观察载玻片,并进行结果分析。
三、免疫组化法的优缺点1. 优点(1)高度特异性:IHC技术可使用特异性抗体对目标抗原进行检测,具有较高的特异性。
(2)定量分析:通过计算染色强度或阳性细胞比例等参数,可进行定量分析。
(3)组织结构信息:IHC技术可同时检测抗原和组织结构信息,有助于了解病理过程。
(4)广泛应用:IHC技术可用于检测多种疾病,如肿瘤、感染和自身免疫性疾病等。
2. 缺点(1)假阳性结果:IHC技术可能会出现假阳性结果,即抗体与非目标抗原结合。
(2)标本制备困难:标本制备需要严格控制多个因素,如取材方式、切片厚度和固定时间等。
蛋白质分析技术(Western Blot、ELISA、免疫荧光与免疫组化技术)

记,成为一种生物反应放大系统。生物素化抗体可捕获多个亲和素,后者再与酶结合,加入
底物后,产生颜色反应。这一系统可以大大提高 ELISA 的灵敏度。
操作过程:
抗原包被→封闭→待检标本→生物素化抗体→洗涤→ 酶标记亲和素→洗涤→加底物显色和 检测 三 免疫荧光技术 利用某些荧光素,如 FITC、R-PE 等通过化学反应与抗体或其它蛋白结合制备成荧光探针, 然后与被测抗原或配体发生特异性结合,形成的荧光复合物在一定波长光的激发下可产生荧 光,因此利用荧光显微镜或流式细胞仪可检测未知抗原或相应配体。 (一)细胞膜蛋白分子的检测 原理: 细胞膜表面的抗原或受体可特异地与相应的抗体或配体结合,将针对细胞表面抗原的抗体或 配体用不同的荧光素标记,根据不同荧光物质的最大激发和发射波长的不同,即可准确定量 每种荧光物质的强度,从而推出相应细胞表面抗原表达量 1 直接法:细胞+荧光素标记的抗 CD 分子的抗体→4ºC 反应 30-60min→荧光显微镜观察 或流式细胞计分析。 2 间接法:细胞+抗 CD 分子的抗体→4ºC 反应 30-60min 荧光素标记的二抗 4ºC 反应 30-60min→荧光显微镜观察或流式细胞计分析 悬浮细胞:用 PBS 洗二次后再做染色 贴壁细胞:先用胰酶消化成悬浮细胞再染色 2 Annexin V 检测技术 (检测细胞凋亡的一个常规指标) 磷脂酰丝氨酸(Phosphatidylserine, PS)正常位于细胞膜的内侧,但在细胞凋亡的早期,PS 可从细胞膜的内侧翻转到细胞膜的表面,暴露在细胞外环境中。Annexin-V 是一种分子量为 35~36KD 的 Ca2+依赖性磷脂结合蛋白,能与 PS 高亲和力特异性结合。将 Annexin-V 进行 荧光素(FITC、PE)或 biotin 标记,以标记了的 Annexin-V 作为荧光探针,利用流式细胞 仪或荧光显微镜可检测细胞凋亡的发生。 样本处理和染色方法 1 悬浮细胞的染色:将正常培养和诱导凋亡的悬浮细胞(0.5~1×106)用 PBS 洗 2 次,加 入 100ul Binding Buffer 和 FITC 标记的 Annexin-V(20ug/ml)10ul,室温避光 30min,再 加入 PI(50ug/ml)5ul,避光反应 5min 后,加入 400ul Binding Buffer,立即用 FACScan 进行流式细胞术定量检测(一般不超过 1h), 同时以不加 AnnexinV-FITC 及 PI 的一管作为 阴性对照。 2 贴壁培养的细胞染色:先用 0.25%的胰酶消化,洗涤、染色和分析同悬浮细胞。 3 爬片细胞染色:同上,最后用荧光显微镜和共聚焦激光扫描显微镜进行观察。 (二)细胞内蛋白分子的检测 细胞内细胞因子的检测、凋亡相关蛋白 TFAR19 的检测等。 操作过程: (1)直接法: 细胞→3%多聚甲醛固定和 渗透化→封闭→荧光素标记的抗体→ 洗涤→荧光显微镜观察或 流式细胞计分析 (2)间接法: 细胞→3%多聚甲醛固定和渗透化→封闭→针对蛋白的特异抗体→洗涤→荧光素标记的二抗 →洗涤 → 荧光显微镜观察或流式细胞计分析 凋亡相关蛋白 TFAR19 蛋白的表达和细胞定位分析 TFAR19(PDCD5)是由本研究室在国际上首先报导的一个拥有自己知识产权的人类新基因, 前期的功能研究表明,它是促进细胞凋亡的增强剂。利用荧光素(FITC)标记的 TFAR19 单 克隆抗体为探针,对细胞凋亡过程中 TFAR19 蛋白的表达水平及定位研究发现,凋亡早期
生化实验九 Western_blot的原理、操作

实验九 Western blot的原理、操作及注意事项原理:通过电泳区分不同的组分,并转移至固相支持物,通过特异性试剂(抗体)作为探针,对靶物质进行检测,蛋白质的Western印迹技术结合了凝胶电泳的高分辨率和固相免疫测定的特异敏感等多种特点,可检测到低至1~5ng(最低可到10-100pg)中等大小的靶蛋白。
一、抗原的选择和制备A:样品的制备1 组织:组织的处理方法:组织洗涤后加入3倍体积预冷的PBS,0℃研磨,加入5×STOP buffer,180W,6mins,0℃超声波破碎,5000rpm,5mins 离心,取上清。
加入β-ME(9.5ml加入0.5ml),溴酚蓝(9.5ml加入0.5ml)煮沸10min,分装后于-20℃保存,用时取出,直接溶解上样。
2 细胞:细胞的处理方法:离心收集细胞或者直接往细胞培养瓶内加入5×STOP buffer,收集,180W,6mins,0℃超声波破碎,5000rpm,5mins 离心,取上清。
加入β-ME(9.5ml加入0.5ml),溴酚蓝(9.5ml加入0.5ml)煮沸10min,分装后于-20℃保存,用时取出,直接溶解上样。
3 分泌蛋白的提取(特例):直接收集分泌液,加入β-ME、溴酚蓝制样。
二、SDS-聚丙烯酸胺凝胶电泳(SDS-PAGE)A:实际操作1.做胶前的准备1)检查是否有足够的、干净的 spacer、comb 和架子。
2)检查是否有新鲜的,足量10%APS,没有立刻重配。
3)按将要检测的抗体对应的原始抗原的分子量大小,计算出胶的浓度,并算出分离胶各组分的用量。
2.制胶,电泳1)装好架子。
2)按照下面配方配制分离胶。
(单位:ml,Total: 8ml)在胶上面加入一层蒸馏水,促进胶更好的凝集。
3)4)待胶凝集好后,上样,电泳。
上层胶用60-80V电压,当样品至分离胶时,用100-120V 电压。
一般电泳时间在1.5小时左右。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCR实验原理:聚合酶链式反应简称PCR(Polymerase Chain Reaction)是体外酶促合成特异DNA片段的一种方法,是在模板DNA、引物和4种脱氧核苷酸存在的条件下,依赖于DNA聚合酶的酶促合反应,将待扩增的DNA片段与其两侧互补的寡核苷酸链引物经“高温变性—低温退火—引物延伸”三步反应的多次循环,使DNA 片段在数量上呈指数增加,从而在短时间内获得我们所需的大量的特定基因片段,具有特异性强、灵敏度高、操作简便、省时等特点。
PCR技术的基本原理类似于DNA的天然复制过程,其结果都是以原来的DNA为模板产生新的互补DNA片段。
相比于细胞内复杂的DNA复制,PCR的反应体系相对较简单。
其特异性依赖于与靶序列两端互补的寡核苷酸引物。
反应体系包括cDNA模板、引物、dNTP、PCR缓冲液、Taq聚合酶等。
PCR由变性—退火—延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至94℃左右一定时间后,使模板DNA 双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应做准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板—引物结合物在Taq酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链。
重复循环变性—退火—延伸这三个过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。
每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。
PCR的反应动力学PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。
反应最终的DNA扩增量可用Y=(1+X)n计算。
Y代表DNA片段扩增后的拷贝数,X表示平均每次的扩增效率,n代表循环次数。
平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。
反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期。
设计引物应遵循以下原则:①引物长度:15-30bp,常用为20bp左右。
②引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb的片段。
③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。
ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。
④避免引物内部出现二级结构,避免两条引物间互补,特别是3’端的互补,否则会形成引物二聚体,产生非特异的扩增条带。
⑤引物3’端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。
⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。
⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。
Mg2+浓度:Mg2+离子浓度对PCR扩增效率影响很大,浓度过高可降低PCR 扩增的特异性,浓度过低则影响PCR扩增产量甚至使PCR扩增失败而不出扩增条带。
免疫组化实验原理:免疫组织化学(immunohistochemistry),指带显色剂标记的特异性抗体在组织细胞原位通过抗原抗体反应和组织化学的呈色反应,对相应抗原进行定性、定位、定量测定的一项技术。
它把免疫反应的特异性、组织化学的可见性巧妙地结合起来,借助显微镜(包括荧光显微镜、电子显微镜)的显像和放大作用,在细胞、亚细胞水平检测各种抗原物质(如蛋白质、多肽、酶、激素、病原体以及受体等)。
1、基本原理:抗原抗体反应,即抗原与抗体特异性结合的原理,通过化学反应使标记抗体的显色剂(荧光素、酶、金属离子、同位素) 显色来确定组织细胞内抗原(多肽和蛋白质),对其进行定位、定性及定量的研究。
免疫组化正是利用抗原抗体特异性结合的原理,先将组织或细胞中的某些化学物质提取出来,以其作为抗原或半抗原去免疫实验动物,制备特异性抗体,再用这种抗体(第一抗体)作为抗原去免疫动物制备第二抗体,并用某种酶(常用辣根过氧化物酶)或生物素等处理后再与前述抗原成分结合,形成抗原-一抗-二抗复合物,将抗原放大。
由于抗体与抗原结合后形成的免疫复合物是无色的,还必须借助于组织化学方法将抗原抗体反应部位显示出来(常用显色剂DAB显示为棕黄色颗粒)。
通过抗原抗体反应及呈色反应,显示细胞或组织中的化学成分,在显微镜下可清晰看见细胞内发生的抗原抗体反应产物,从而能够在细胞或组织原位确定某些化学成分的分布、含量。
组织或细胞中凡是能作抗原或半抗原的物质,如蛋白质、多肽、氨基酸、多糖、磷脂、受体、酶、激素、核酸及病原体等都可用相应的特异性抗体进行检测。
2、几种常用的免疫组织化学方法的原理2.1、免疫荧光细胞化学技术免疫荧光细胞化学技术是最早建立的免疫组织化学技术。
它利用抗原抗体特异性结合的原理,先将已知抗体标上荧光素,以此作为探针检查细胞或组织内的相应抗原,在荧光显微镜下观察。
当抗原抗体复合物中的荧光素受激发光的照射后即会发出一定波长的荧光,从而可确定组织中某种抗原的定位,进而还可进行定量分析。
免疫荧光技术特异性强、灵敏度高、快速简便,在临床病理诊断、检验中应用较广。
2.2、免疫酶细胞化学免疫酶标技术是目前最常用的技术。
其基本原理是:先以酶标记的抗体与组织或细胞作用,然后加入酶的底物,生成有色的不溶性产物或具有一定电子密度的颗粒,通过光镜或电镜,对细胞表面和细胞内的各种抗原成分进行定位研究。
该方法与免疫荧光技术相比的主要优点是:定位准确,对比度好,染色标本可长期保存,适合于光、电镜研究等。
免疫酶标方法的发展非常迅速,已经衍生出了多种标记方法,且随着方法的不断改进和创新,其特异性和灵敏度都在不断提高,使用也越来越方便。
目前在病理诊断中广为使用的有ABC法、SP三步法、即用型二步法检测系统等。
2.3、免疫胶体金技术胶体金是指金的水溶胶,它能迅速而稳定地吸附蛋白,对蛋白的生物学活性无明显影响。
免疫胶体金技术是以胶体金作为标记物,标记一抗、二抗或其他能特异性结合免疫球蛋白的分子(如葡萄球菌A蛋白)等作为探针,对组织或细胞内的抗原进行定性、定位,甚至定量研究。
由于胶体金有不同大小的颗粒,且胶体金的电子密度高,所以免疫胶体金技术特别适合于免疫电镜的单标记或多标记定位研究。
由于胶体金本身呈淡至深红色,因此也适合进行光镜观察。
如应用银加强的免疫金银法则更便于光镜观察。
3、免疫组织化学的全过程包括①抗原的提取与纯化;③免疫动物或细胞融合,制备特异性抗体以及抗体的纯化;③将显色剂与抗体结合形成标记抗体;④标本的制备;③免疫细胞化学反应以及呈色反应;⑧观察结果。
Western-blot实验原理:蛋白质印迹法又称为免疫印迹法,这是一种可以检测固定在固相载体上蛋白质的免疫化学技术方法。
经过SDS-PAGE分离的蛋白质样品,转移到固相载体(例如硝酸纤维素薄膜)上,固相载体以非共价键形式吸附蛋白质,且能保持电泳分离的多肽类型及其生物学活性不变。
以固相载体上的蛋白质或多肽作为抗原与对应的抗体起免疫反应,再与酶或同位素标记的第二抗体起反应,经过底物显色或放射自显影以检查电泳分离的待异性目的基因表达的蛋白成分。
蛋白质的电泳分离是重要的生化分离纯化技术之一,电泳是指带电粒子在电场作用下,向着与其电荷相反的电极移动的现象。
根据所采用的支持物不同,有琼脂糖凝胶电泳、淀粉凝胶电泳、聚丙烯酰胺凝胶电泳等。
各种蛋白质因所带的净电荷、分子量大小和形状不同而有不同的迁移率。
消除净电荷对迁移率的影响,可采用聚丙烯酰胺浓度梯度电泳,利用它所形成孔径不同引起的分子筛效应,可将蛋白质分开。
也可在整个电泳体系加入十二烷基硫酸钠(SDS),则电泳迁移率主要依赖于分子量,而与所带的净电荷和形状无关,这种电泳方法称为SDS-PAGE。
SDS-PAGE是最常用的定性分析蛋白质的电泳方式,特别是用于蛋白质纯度检测和测定蛋白质分子量。
PAGE能有效的分离蛋白质,主要依据其分子量和电荷的差异,而SDS-PAGE(SDS变性不连续聚丙烯酰胺凝胶电泳)的分离原理则仅根据蛋白质的分子量的差异。
因为SDS-PAGE的样品处理液是在将进行电泳的样品中的。
如含有SDS和巯基乙醇(2-ME)或二巯基赤藓醇(DTT),则其可断开半胱氨酸残基之间的二硫键,破坏蛋白质的四级结构。
SDS是一种阴离子表面活性剂即去污剂,它可以断开分子内和分子间的氢键,破坏蛋白质分子的二级及三级结构,并与蛋白质的疏水部分相结合,破坏其折叠结构,电泳样品加入样品缓冲液后,要在沸水中煮3-5分钟使SDS与蛋白质充分结合形成SDS-蛋白质复合物,SDS-蛋白质复合物在强还原剂巯基乙醇存在时,蛋白质分子内的二硫键被打开而不被氧化,蛋白质也完全变性和解聚,并形成榛状结构,稳定的存在于均一的溶液中,SDS与蛋白质结合后使SDS-蛋白质复合物上带有大量的负电荷,平均每两个氨基酸残基结合一个SDS分子,这时各种蛋白质分子本身的电荷完全被SDS掩盖,远远超过其原来所带的电荷,从而使蛋白质原来所带的电荷可以忽略不计,消除了不同分子之间原有的电荷差别,其电泳迁移率主要取决于亚基分子质量的大小,这样分离出的谱带也为蛋白质的亚基。
样品处理液中通常加入溴酚蓝染料,溴酚蓝指示剂是一个较小的分子,可以自由通过凝胶孔径,所以它显示着电泳的前沿位置,当指示剂到达凝胶底部时,即可停止电泳。
蛋白质印迹法首先是要将电泳后分离的蛋白质从凝胶中转移到硝酸纤维素膜上,通常有两种方法:毛细管印迹法和电泳印迹法。
毛细管印迹法是将凝胶放在缓冲液浸湿的滤纸上,在凝胶上放一片硝酸纤维素膜,再在上面放一层滤纸等吸水物质并用重物压好,缓冲液就会通过毛细作用流过凝胶。
缓冲液通过凝胶时会将蛋白质带到硝酸纤维素膜上,硝酸纤维素膜可以与蛋白质通过疏水相互作用产生不可逆的结合。
这个过程持续过夜,就可以将凝胶中的蛋白质转移到硝酸纤维素膜上。
但这种方法转移的效率较低,通常只能转移凝胶中一小部分蛋白质(10%~20%)。
电泳印迹可以更快速有效的进行转移。
这种方法是用有孔的塑料和有机玻璃板将凝胶和硝酸纤维素膜夹成"三明治"形状,而后浸入两个平行电极中间的缓冲液中进行电泳,选择适当的电泳方向就可以使蛋白质离开凝胶结合在硝酸纤维素膜上。
转移后的硝酸纤维素膜就称为一个印迹(blot),用于对蛋白质的进一步检测。
印迹首先用蛋白溶液(如10%的BSA)处理以封闭硝酸纤维素膜上剩余的疏水结合位点,而后用所要研究的蛋白质的抗血清(一抗)处理,印迹中只有待研究的蛋白质与一抗结合,而其它蛋白质不与一抗结合,这样清洗去除未结合的一抗后,印迹中只有待研究的蛋白质的位置上结合着一抗。