北交大通信工程综合实验光纤
光纤现场观测实验报告

一、实验目的1. 理解光纤的基本结构和工作原理。
2. 学习光纤现场观测的方法和技巧。
3. 掌握光纤通信系统的性能评估方法。
4. 通过实际观测,分析光纤通信系统中的潜在问题。
二、实验仪器与材料1. 光纤通信实验系统一套(含光纤、光模块、光功率计、光时域反射仪等)。
2. 光纤测试光源。
3. 光纤连接器。
4. 示波器。
5. 计算机及光纤通信测试软件。
三、实验原理光纤通信是一种利用光波在光纤中传输信息的技术。
光纤由纤芯、包层和护套组成,光波在纤芯和包层之间发生全反射,从而实现长距离传输。
本实验通过现场观测,对光纤通信系统的性能进行评估,包括光纤损耗、反射损耗、色散等。
四、实验步骤1. 光纤连接与测试- 将光纤通信实验系统中的光纤、光模块、光功率计、光时域反射仪等连接好。
- 使用光模块发送光信号,通过光纤传输,再由光功率计接收并测量光功率。
- 记录不同位置的信号强度,分析光纤的损耗。
2. 光纤损耗测试- 使用光时域反射仪(OTDR)对光纤进行损耗测试。
- 通过OTDR获取光纤的损耗曲线,分析光纤的损耗分布。
- 比较实际损耗与理论损耗,评估光纤通信系统的性能。
3. 光纤反射损耗测试- 使用光纤反射计对光纤连接器进行反射损耗测试。
- 分析反射损耗对系统性能的影响。
4. 光纤色散测试- 使用色散分析仪对光纤进行色散测试。
- 分析光纤的色散特性,评估其对系统性能的影响。
5. 现场问题分析- 根据测试结果,分析光纤通信系统中可能存在的问题,如光纤损耗、反射损耗、色散等。
- 提出相应的解决方案,如更换光纤、优化连接方式等。
五、实验结果与分析1. 光纤损耗测试- 实际损耗与理论损耗基本一致,说明光纤通信系统性能良好。
2. 光纤反射损耗测试- 反射损耗较小,对系统性能影响不大。
3. 光纤色散测试- 光纤的色散特性较好,对系统性能影响较小。
4. 现场问题分析- 通过分析测试结果,发现光纤通信系统中存在以下问题:- 部分光纤连接器存在一定程度的反射损耗。
光纤通信实验指导书(含原理)

1.关闭系统电源,按照图6.1.1将1550nm光发射端机的TX1550法兰接口、FC-FC单模尾纤、1550nm光接收端机的RX1550法兰接口连接好。注意收集好器件的防尘帽。
2.打开系统电源,液晶菜单选择“码型变换实验--CMI码设置” 确认,即在P101铆孔输出32KHZ的SW101拨码器设置的8比特周期性序列,如10001000。P103为对应的CMI编码输出。
下面对数字信号5B6B码编码译码进行分析和讨论:
5B6B线路码型是国际电报电话咨询委员会(CCITT)推荐的一种国际通用光纤通信系统中采用的线路码型,也是光纤数字传输系统中最常用的线路码型。
5B6B线路码型有很多优点:码率提高的不多,便于在不中断业务情况下进行误码监测,码型变换电路简单,它是我国及世界各国四次群光纤数字传输系统中最常采用一种码型。
5.注意观测P204测试点对接收的的数据是否与发端的TX1550测试点波形一样。
6.注意观测P115测试点为CMI译码输出波形是否与发端的P101波形一样。
7. SW101拨码器设置其它数字序列组合,对比P103编码输出波形,分析熟悉CMI编码规则。
8.按返回键,液晶菜单选择“码型变换实验—CMI码PN”确认,即在P101铆孔输出32KHZ的15位m序列。
本实验系统主要由两大部分组成:电端机部分、光信道部分。电端机又分为电信号发射和电信号接收两子部分,光信道又可分为光发射端机、光纤、光接收端机三个子部分。在本实验中,涉及的电发射部分有两个功能模块: 8位的自编数据功能和5B6B线路编码功能。5B6B码光纤通信基本组成结构如下图所示:
图6.2.1CMI码光纤通信基本组成结构
3.示波器测试P101、P103铆孔波形,确认有相应的波形输出。
北京交通大学-实验十二 基带信号的频谱测试

通信原理实验第1页实验十二基带信号的频谱测试姓名:穆书奇学号:15211017 班级:通信1501姓名:王家乐学号:15211022 班级:通信1501第十三周星期一第四大节实验名称:频带信号的频谱测试一、实验目的(1)加深对各种基带数字信号频谱的理解。
(2)加深对各种数字基带信号频谱带宽的理解。
(3)掌握虚拟仪测试各种数字基带信号频谱和带宽的方法。
二、实验仪器(1)ZH5001A通信原理综合实验系统(2)20MHz双踪示波器(3)计算机(4)虚拟仪三、实验前的准备(1)预习本实验的相关内容。
(2)熟悉虚拟仪器的操作方法。
(3)熟悉附录B和附录C中实验箱面板分布及测试孔位置。
(4)实验前重点熟悉的内容. 1)了解周期和非周期信号的频谱; 2)了解各种随机数字信号的功率谱, 3)熟悉虚拟仪的主要功能和测试频谱的方法。
四、 实验原理本次实验是基于VIRTINS 虚拟仪的基带信号频谱分析。
1)单极性不归零码的功率谱所谓不归0,就是指s T τ=,此时,=s s s m f mT f m τπππ=,2()0Sa m π=,所以,二进制单极性不归0码随机序列的功率谱密度表达式为2222222(f)(1)()()2S s s P f P P A Sa f P A f ωτττδ=-+其波形如图10-7所示。
由图可以看出,这种码型不存在定时分量。
2) 单极性归零码的功率谱现在分析二进制单极性归0码随机序列的功率谱密度。
归0就是指s T τ<,一般归0码利用50%占空比,即/2s T τ=,此时=/2/2s s s m f mT f m τπππ=,2(/2)0Sa m π=,当1m =时,2(/2)0Sa π≠,所以,这种码型存在离散谱,并且在码元速率点存在定时分量。
二进制单极性归0码随机序列的功率谱密度表达式如式(10-20)所示。
222222222222-(f)(1)()()2(/2)()S s s s s mP f P P A Sa f P A f f P A Sa m f mf ωτττδτπδ∞=∞=-++-∑(式10-20)其波形如图10-8所示。
光纤部分实验报告通信工程专业综合实验.

通信工程专业综合实验报告――光通信部分姓名学号通信班级上课时间周二下午16:20~18:10第8章光纤传输系统实验一激光器P-I特性测试实验1. 实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法2. 实验仪器1、ZY12OFCom13BG型光纤通信原理实验箱1台2、FC接口光功率计1台3、FC/PC-FC/PC单模光跳线1根4、万用表1台5、连接导线20 根3. 实验原理半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,是一种阈值器件。
处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。
由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(》10mW辐射,而且输出光发散角窄(垂直发散角为30〜50°,水平发散角为0〜30°),与单模光纤的耦合效率高(约30%〜50%),辐射光谱线窄(△入=0.1〜1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHZ直接调制,非常适合于作高速长距离光纤通信系统的光源。
P-I 特性是选择半导体激光器的重要依据。
在选择时,应选阈值电流I th尽可能小,I th对应P值小,而且没有扭折点的半导体激光器。
这样的激光器工作电流小,工作稳定性高,消光比大,而且不易产生光信号失真。
并且要求P-I曲线的斜率适当。
斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。
半导体激光器可以看作为一种光学振荡器, 要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布, 而且产生的增益足以抵消所有的损耗。
北京交通大学无线通信第三章

实部Re(E)和虚部Im(E)都是随机变量的和 实部和虚部相互独立 2 实部和虚部服从均值为零正态分布 N (0, ) 幅度|E|服从瑞利分布 相位服从均匀分布
瑞利分布性质 r /2 均值
均方值 方差 中值
r 2 2 2
2 2
平均功率
r (r ) 2 2 2
N R ( rmin ) 2 vmax
cdf ( f r (r )) N R (r )
ADF (r )
概述 时不变两径模型 时变两径模型 不含主导分量的小尺度衰落 含主导分量的小尺度衰落 多普勒谱 衰落的时间依赖性 大尺度衰落
2 r cdf ( f r (rmin )) 1 exp min 20
例
求Kr=0.3dB/3dB/20dB时中断概率小于5%的衰落余量
2 r 2 2 (1 K r ) 10 log rms rmin 2 rmin 2
a 2 b2 a ) I n (ab) QM (a, b) exp( 2 n0 b
有主导分量的多径
莱斯因子K
实部Re(E)和虚部Im(E)都是随机变量的和 实部和虚部相互独立 实部服从均值为A正态分布,而虚部服从零均值的正态 分布 幅度|E|服从莱斯分布 相位服从非零均值的正态分布
K r A2 /(2 2 )
莱斯分布
莱斯分布
衰落余量
相位分布
莱斯分布的性质
中断概率
r 值小于rmin的Pr 概率 衰落余量为20dB,中断概率0.01 衰落余量为6dB,中断概率0.221 衰落余量为3dB,中断概率0.393
北交大通信工程综合实验光纤

通信工程综合实验实验报告 光纤传输系统实验学院:班级::学号:组员:日期:2016/4第7章光无源器件特性测试实验三无源光耦合器特性测试1、实验目的〔1〕了解光耦合器的工作原理及其构造〔2〕掌握光耦合器的正确使用方法〔3〕掌握光耦合器的主要特性参数的测试方法2、实验环境及相关设备〔1〕JH5002A+型光纤通信原理实验箱1台〔2〕光功率计1台〔3〕FC/PC光纤活动连接器2个〔4〕FC/PC Y型光分路/合路器〔分光比10:90〕1个3、实验根本原理光耦合器又称为光定向耦合器,用于对光信号实现分路、合路、插入和分配,其工作机理是光波导间电磁场的相互耦合1〕光耦合器的分类光耦合器的种类很多,最根本的耦合器可以实现两波耦合。
从构造上看,两个入口的光耦合器有如下几种类型。
第1类光耦合器件为微光元件型,这种类型多数采用自聚焦透镜为主要的光学构件,利用λ/4的自聚焦透镜可以把会聚或发散的光线变成平行光线,也可以把平行光线变成会聚或发散的光线,这一特点可以用来实现两束光线的耦合。
第2类光耦合器件是利用光纤熔锥成形,用两根以上的光纤经局部加热融合而成,首先去掉光纤的覆层,再在熔融拉伸设备上平行安装两根光纤,局部加热融合,并渐渐将融合局部直径从200μm左右拉伸到20~40μm左右。
由于这种细芯中的光场渗透到包层中,两个纤芯之间就会产生光的耦合,控制拉伸的程度即可以控制耦合比,附加损耗和分光比由光纤选型和熔融拉伸工艺所决定,借助计算机的精细控制,自动熔融拉伸设备可不连续地监测分光比和拉伸量,使制得的光纤耦合器平均插入损耗达0.1dB一下,分光比精度达1%一下。
星型耦合器是这种构造最典型的一种形式,如图7-15所示。
第3类光耦合器件采用光纤磨抛技术,将两根光纤磨抛后的楔形斜面对接胶黏,再与另一根光纤的端面黏结。
其附加损耗可以低于1dB,隔离度大于50dB,分光比可由1:1至1:100。
第4类光耦合器件用平面波导技术实现,运用先进的平面薄膜光刻、扩散工艺,可得到一致性好、分光比精度也高的光耦合器,但耦合到光纤的插入损耗较大。
通信工程现代综合实训

目录第一章绪论 (1)第二章光传输通信系统 (1)2.1 SDH设备硬件总体介绍 (1)2.1.1 系统硬件介绍 (1)2.1.2 OPTIX 2500+设备介绍 (2)2.2 SDH设备管理软件演示介绍 (2)2.3 SDH光传输链形拓扑网络配置 (7)第三章移动通信(GSM)系统 (7)3.1 GSM系统介绍 (7)3.2 华为GSM移动设备核心网设备介绍 (8)3.2.1 HLR9820 (8)3.2.2 MSOFTX3000 (10)3.2.3 UMG8900 (12)3.2.4 BSC6000 (13)3.2.5 BTS3012 (14)3.3 华为GSM系统联调 (15)第四章程控交换系统 (19)4.1 C&C08系统概述 (19)4.2 C&C08硬件结构 (19)4.3 交换机硬件配置实验 (22)4.4 NO7 ISUP中继调试 (25)4.5 NO7 TUP中继调试 (27)第五章总结 (30)致谢 (30)参考文献 (31)第一章绪论随着网络技术的日益发展和多媒体通信技术的日益深入和普及,基于因特网的多媒体网络技术成为了网络技术的发展方向。
一个简单的网络应该包括3个主要部分,进行传输的传输控制设备、进行数据交换的交换机设备和控制数据速率接入用户的接入设备。
如果还需要进行语音信号的交换,那么就还需要在网络中增加语音网关设备。
在比较早期的网络中,语音信号和信息数据是不能够同时进行传输的,也就是说,一条线路只能满足用户的一种服务要求,要么进行语音通话,要么进行数据通信,这也给用户带来了很多不便。
随着技术的发展,如今的网络不但可以满足用户在上网时进行语音通话的要求,还可以为用户提供多媒体通信等多项服务。
大学四年有关通信工程专业理论知识的学习已经告一段落,理论指导实践,本学期末我们进行了为期一个月的综合实训环节,达到学以致用的效果。
在这个环节中,考验的是我们的综合知识,我们不仅要将平时学习到的知识与实际应用联系起来,还要在实践中增长知识才干,完善知识体系结构。
北交大通信专业综合实验2_2光波分复用器特性测试

通信工程综合实验报告姓名:学号:班级:上课时间:星期(三)(16:20)——(18:10)一、实验名称:光波分复用器特性测试二、实验目的(1) 了解光波分复用器的工作原理及其结构。
(2) 掌握光波分复用器的特性参数测试和正确使用方法。
三、实验仪器JH5002A+光纤通信原理实验箱光功率计1310/1550光波分复用器两只FC/PC光纤跳线四根四、基本原理波分复用器的主要技术指标如下:(1) 工作波长λ1、λ2:本实验中工作波长分别为1310nm和1550nm。
(2) 插入损耗Li插入损耗的定义为:即波长为λ1的输入光功率P1与输出光功率P2之比(化成分贝数)或波长为λ2的输入光功率P1与输出光功率P2之比(化成分贝数)。
优良的波分复用器的插入损耗可小于0.5dB。
(3) 波长隔离度Lλ指一个波长的光功率串扰另一波长输出臂程度的度量(化成分贝数)。
Lλ值一般应达到20 dB以上。
波长隔离度的数学定义为:(4) 光谱响应范围△λ通常指插入损耗小于某一容许值的波长范围。
要根据应用要求而定。
除此以外还有机械性能和温度性能指标。
一个典型的1310nm/1550nm熔锥型单模光纤波分复用器的谱损曲线如下图所示:图1 熔锥型单模光纤波分复用器的谱损曲线(5) 波分复用器的光串扰:测量1310nm的光串扰的方框图如图16-4(a)所示:测量1550nm的光串扰的方框图如图16-4(b)所示:图2 波分复用器光串扰的测量框图上式中L12,L21即是光波分复用器相应的光串扰。
五、实验内容1、波长隔离度测量(1) 按下图将光发送机模块的光输出端、Y型分路器、光功率计连接好。
图3 波分复用光纤传输系统(2) 连接导线;(3) 打开系统电源,用光功率计车辆此时光发信机经过发端波分复用器、收端波分复用器后的光功率P(注:光发端机波长为1310nm。
)(4) 计算波长隔离度。
2、波分复用器的光串扰测量(1) 连接导线:关闭系统电源,保持上一个实验内容的连接不变,新增加1550nm光端机部分时分复用电路的连接线,产生数据信号并送到1550nm光发送模块的“数字输入”端口。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信工程综合实验实验报告 光纤传输系统实验学院:班级:姓名:学号:组员:日期:2016/4第7章光无源器件特性测试实验三无源光耦合器特性测试1、实验目的(1)了解光耦合器的工作原理及其结构(2)掌握光耦合器的正确使用方法(3)掌握光耦合器的主要特性参数的测试方法2、实验环境及相关设备(1)JH5002A+型光纤通信原理实验箱 1台(2)光功率计 1台(3)FC/PC光纤活动连接器 2个(4)FC/PC Y型光分路/合路器(分光比10:90) 1个3、实验基本原理光耦合器又称为光定向耦合器,用于对光信号实现分路、合路、插入和分配,其工作机理是光波导间电磁场的相互耦合1)光耦合器的分类光耦合器的种类很多,最基本的耦合器可以实现两波耦合。
从结构上看,两个入口的光耦合器有如下几种类型。
第1类光耦合器件为微光元件型,这种类型多数采用自聚焦透镜为主要的光学构件,利用λ/4的自聚焦透镜可以把汇聚或发散的光线变成平行光线,也可以把平行光线变成汇聚或发散的光线,这一特点可以用来实现两束光线的耦合。
第2类光耦合器件是利用光纤熔锥成形,用两根以上的光纤经局部加热融合而成,首先去掉光纤的覆层,再在熔融拉伸设备上平行安装两根光纤,局部加热融合,并渐渐将融合部分直径从200μm左右拉伸到20~40μm左右。
由于这种细芯中的光场渗透到包层中,两个纤芯之间就会产生光的耦合,控制拉伸的程度即可以控制耦合比,附加损耗和分光比由光纤选型和熔融拉伸工艺所决定,借助计算机的精密控制,自动熔融拉伸设备可不间断地监测分光比和拉伸量,使制得的光纤耦合器平均插入损耗达0.1dB一下,分光比精度达1%一下。
星型耦合器是这种结构最典型的一种形式,如图7-15所示。
第3类光耦合器件采用光纤磨抛技术,将两根光纤磨抛后的楔形斜面对接胶黏,再与另一根光纤的端面黏结。
其附加损耗可以低于1dB,隔离度大于50dB,分光比可由1:1至1:100。
第4类光耦合器件用平面波导技术实现,运用先进的平面薄膜光刻、扩散工艺,可得到一致性好、分光比精度也高的光耦合器,但耦合到光纤的插入损耗较大。
在上述各类光耦合器中,熔锥型光纤耦合器制作方便,容易与外部光纤连接,能耐受较高的机械振动和温度变化,且价格便宜,因此这种类型的光耦合器件应用最多。
2)2×2单模光纤耦合器的结构2×2单模光纤耦合器方框图如图7-16所示2×2单模光纤耦合器按应用目的可分别制成性能不同的两类器件,一类是光分路器/合路器,另一类是波分复用器(又称光分波器/合波器)。
光分路器/合路器工作于一个波长,对光信号实现分路、合路;而波分复用器则工作于两个或两个以上不同的波长,实现不同波长光信号的合路或根据波长进行光信号的分路。
3)光分路器/合路器的性能指标当光分路器/合路器工作于一个波长时,假设光源接于端口1,则光功率耦合到端口3和2,几乎没有光功率折返过来耦合到端口4;而当光源接于端口4时,也几乎没有光功率折返过来耦合到端口1。
另外,根据器件的光路可互异性,端口1、4可以与端口2、3对调。
这种耦合器的技术指标如下。
(1)工作波长λ,通常取1310nm或1550nm(2)附加损耗Lf( )式中,P1——注入端口1的光功率P2,P3——分别为端口2、3输出的光功率。
良好的2×2单模光纤耦合器的附加损耗可小于0.2dB。
(3)分光比(或分束比), ,分光比的比值大小可以根据应用要求而定。
(4)分路损耗, ,(5)反向隔离度通常要求 。
4、实验内容及步骤该实验可在试验箱左边上方的1310nm光端机发送模块或右边上方的1550nm光端机发送模块上各自独立进行。
主要是对光分路/合路器性能指标进行测试,做实验前做好准备工作,按图7-17连接好测试设备,连接尾纤、连接器和光无源器件时要注意定位槽方向。
(选用的是1550nmLD,与示意图略有不符)1)电路部分操作2)光路部分操作3)打开实验箱操作电源开关4)输入端至各支路输出端分路损耗的测量用光功率计测量1550nm光源经尾纤输出在“a”点的光功率Pa,然后将信号接入光分路器的输入端口;用光功率计测量支路一(“b”点)光功率Pb及支路二(“c”点)光功率Pc,记录测量结果并将测试数据分别填入以下两表,计算光分路器各支路分路损耗值。
在上述测量条件下,用光功率计再次测量光功率Pb及Pc。
记录测量结果,填入表,计算光分路器的分光比。
分析1310nm波长分路器使用1550nm波长时对分路损耗和分光比的影响,根据测试数据填写下表,计算分路损耗和分光比,分析波长的变化对分路及分光比的影响。
按下图连接好测试设备。
连接尾纤、连接器和光无源器件时注意定位销的方向。
用光功率计测量1550nm光源经尾纤输出在支路一(“a”点)的光功率Pa,然后用光功率计测量光合路输出(“b”点)的光功率Pb,用光功率计在支路二(“c”点)测量返回的光功率Pc,根据上述测量数据,将测量结果填入下表,计算光合路回波损耗。
5、思考题(1)合波定向特性测试说明了什么问题?答:合成波定向特性测试说明一路损耗中的插入损耗几乎等于附加损耗与分光比损耗的和,但是这并不意味着插入损耗包含这两者。
(2)波长的变化对光分路损耗和分光比有何影响?答:光分路器的分光比与传输光的波长有关,例如一个光分路在传输1.31 微米的光时两个输出端的分光比为50:50;在传输 . μm的光时,则变为70:30(之所以出现这种情况,是因为光分路器都有一定的带宽,即分光比基本不变时所传输光信号的频带宽度)。
所以在订做光分路器时一定要注明波长。
第八章光纤传输系统实验一激光器P-I特性测试1、实验目的(1)学习半导体激光器发光原理(2)了解半导体激光器平均输出光功率与注入电流的关系(3)掌握半导体激光器P-I曲线的测试及绘制方法2、实验环境及相关设备JH5002A+型光纤通信实验系统1台,光功率计1个,万用表1个3、实验基本原理半导体激光器的输出光功率与驱动电流的关系(激光器的功率特性)如下图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或阈值电流),用表示。
在门限电流以下,激光器工作于自发发射,输出荧光功率很小,通常小于1nW;在门限电流以上,激光器工作于受激发射,输出激光,功率随电流迅速上升,基本上成直线关系。
激光器的电流与电压的关系相似于正向二极管的特性,如下图所示,但由于双异质结包含两个PN结,所以在正常工作电流下激光器两级间的电压约为1.2V。
P-I特性是选择半导体激光器的重要参数。
在选择半导体激光器时,应选阈值电流尽可能小,对应功率P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比大,而且不易产生光信号失真。
且要求P-I曲线的斜率适当。
斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。
一般用注入电流值来标定阈值条件,也就是阈值电流标定阈值条件,当输入电流小于时,其输出为非相干的荧光,类似于LED发出的光,当电流大于时,则输出光为激光,并且输入电流和输出光功率近似线性的关系,本实验就是对该近似的线性关系曲线进行测量,以验证P-I的线性关系。
在实验中所用到的半导体激光器,其输出波长分别为1310nm和1550nm,带有尾纤及FC型接口活动性连接器,通过FC-FC法兰盘与外部光跳线相连。
实验中半导体激光器工作于模拟信号方式,电流的确定通过电路中串联的电流表测量。
4、实验内容及步骤测量半导体激光器功率和注入电流的关系,并画出P-I关系曲线。
以下实验步骤可在实验箱左上方的1310nm光端机发送模块和右上方的1550nm光端机发送上各自独立进行。
选择1550nm光端机发送模块1)电路部分操作测得电流5.69mA2)光路部分操作(1)(2)(3)略(4)将“模拟偏置”电位器顺时针方向缓慢调节,使送入激光器的直流偏置电流逐渐增大,在可调范围内观察电流表的电流变化和光功率计读数的变化过程。
(5)缓慢细致地从头调节电位器WS05,使所测得的电流从最小值开始,以1mA为间隔取整数值填入下表,依次测量对应的光功率值,并将测得的数据填入表中。
5、思考题(1)分别画出1310nm激光器或1550nm激光器的P-I曲线,并加以分析(2)整理所有实验数据,参考图画出P-I曲线(3)说明所测试的激光器的阈值电流大约数值答:通过观察发现在9mA到10mA之间。
分别对其前四个点和后十个点添加线性趋势线并显示公式,联立求解得(9.8365,0.9582)即阈值电流约为9.8365mA。
(4)激光器的阈值电流对光信号传输有何影响?答:阈值是所有激光器的属性,它标志着激光器的增益与损耗的平衡点,即阈值以后机关器才开始净增益。
只有谐振腔内的增益达到能够克服损耗,才能建立起稳定的光振荡,输出谱线尖锐,方向性好的激光,而增大增益的方法就是加大半导体激光器的注入电流,因此阈值的大小决定着器件的功耗,也就决定着器件的连续工作时间和使用寿命:阈值电流低,功耗低,连续工作时间长,使用寿命长,工作稳定性高。
如果阈值高,则同时要提高信号中的直流分量,才能减少信号的失真,提高调制性能,而且从功耗的角度来讲,直流成分高的系统其功耗一定高,这样对系统运行的稳定性是一个影响。
实验二光发信机接口指标测试1、实验目的(1)了解数字光发端机平均发送光功率的指标要求,并掌握测试方法(2)了解数字光发端机消光比的指标要求,并掌握测试方法2、实验环境及相关设备JH5002A+型光纤通信实验系统、光功率计、FC-FC光跳线、万用表3、实验基本原理平均发送光功率是指在外加伪随机二进制序列作为测试信号的情况下,用光功率计在数字光发信机输出光接口处直接测试得到光功率,此数值即为数字光发信机的平均发送光功率。
采用伪随机码型可使发送数码具有“ ”,“ ”等概率的特点。
平均发送光功率与输入码型有关,NRZ码与RZ码相比,其占空比分别为100%、50%,因而NRZ码的平均光功率比RZ码大一倍,即3dB。
另外,平均发送光功率是在额定偏置电流和调制电流条件之下测得的,否则结果会有偏差。
消光比是指数字驱动电路输入为全“ ”码时光发信机的平均发送光功率P1,与数字驱动电路输入为全“ ”码时光发信机的平均发送光功率P0之比的对数表达值,将测得的光功率P1、P0代入下式即得到光发送机的消光比:光通信系统消光比太大,说明此时预偏置电流太小或没有,调制电流的增大要先经过低于LD阈值的一段区域才能进入激射区,这时会出现较大的时延,影响光通信系统的传输速率;消光比太小,则调制深度浅,这时会出现平均发送光功率很大而“ ”“ ”码对应的光功率值却不大的情况,使接收端有用的光功率摆幅减小,因而影响系统的接收灵敏度。