直接空冷与间接空冷概要
空冷机组直接空冷系统简介

空冷机组直接空冷系统简介目前国内外电站空冷是二大类:一是间接空气冷却系统,二是直接空气冷却系统。
其中间接空气冷却系统又分为混合式空气冷却系统和表面式空气冷却系统。
世界上第一台1500KW直接空冷机组,于1938年在德国一个坑口电站投运,已有60多年的历史,几个典型空冷机组是:1958年意大利空冷电站2X36MW机组投运、1968年西班牙160MW电站空冷 机组投运、1978年美国怀俄明州Wodok电站365MW空冷机组投运、1987年南非Matimba电站6X665MW直接空冷机组投运。
当今采用表面式冷凝器间接空冷系统的最大单机容量为南非肯达尔电站6X686MW;采用混合式凝汽器间接空冷系统的最大单机容量为300MW级,目前在伊朗投运的325MW(哈尔滨空调股份有限公司供货)运行良好。
全世界空冷机组的装机容量中,直接空冷机组的装机容量占60%,间接空冷机组约占40%。
直接空冷系统的特点,无论是直接空冷,还是间接空冷电厂,经过几十年的运行实践,证明均是可靠的。
但不排除空冷系统在运行中,存在种种原因引发的问题,如严寒、酷暑、大风、系统设计不够合理、运行管理不当等。
这些问题有的已得到解决,从国内已投运的200MW空冷机组运行实践证明了这一点。
从运行电站空冷系统比较,直接空冷系统具有主要特点:(1)背压高(2)由于强制通风的风机,使电耗大(3)强制通风的风机产生噪声大;(4)钢平台占地,要比钢筋混凝土塔为小;(5)效益要比间接冷却系统大30%左右,散热面积要比间冷少30%左右;(6)造价相比经济。
2、直接空冷系统的组成和范围2.1直接空冷系统的热力系统,直接空冷系统,即汽轮机排汽直接进入空冷凝汽器,其冷凝水由凝结水泵排入汽轮机组的回热系统。
2.2直接空冷系统的组成和范围,自汽轮机低压缸排汽口至凝结水泵入口范围内的设备和管道,主要包括:;(1)汽轮机低压缸排汽管道;(2)空冷凝汽器管束;(3)凝结水系统;(4)抽气系统;(5)疏水系统;(6)通风系统;(7)直接空冷支撑结构;(8)自控系统;(9)清洗装置。
空冷系统简介

空冷系统简介1 空冷系统简介1.1 空冷技术方案介绍在火力发电厂中采用的空冷系统形式有:直接空冷系统、混凝式间接空冷系统、表凝式间接空冷系统。
直接空冷系统是将汽轮机排汽由管道送入称之为空冷凝汽器的钢制散热器中,直接由空气冷却。
混凝式空冷系统由于有水轮机和喷射式凝汽器等系统设备,设备多系统复杂,使得整套系统实行自动控制较难;而表凝式间接空冷系统与常规的湿冷系统比较接近,也是通过两次换热,以循环冷却水作为中间冷却介质,循环冷却水由水泵加压后,进入凝汽器冷却汽轮机排汽,热水进入自然通风冷却塔由空气冷却。
表凝式间接空冷系统与湿冷系统不同之处是在冷却塔内(外)布置着钢(铝)制散热器,热水与空气不接触,进行表面对流散热。
直接空冷系统直接空冷系统主要由排汽装置、大排汽管道(包括大直径膨胀节、大口径蝶阀等)、钢制空冷凝汽器、风机组(包括轴流风机、电动机、减速机、变频器等)、凝结水系统、抽真空系统(包括水环式真空泵)、清洗系统等设备构成。
空冷凝汽器布置在汽机房A列外的高架空冷平台上。
直接空冷系统是将汽轮机排出的乏汽,通过排汽管道引入钢制空冷凝汽器中,由环境空气直接将其冷却为凝结水,多采用机械通风方式。
其特点是:设备较少,系统简单,调节灵活,占地少,防冻性能好,冷却效率高;直接空冷受环境风的影响较大,运行费用较高,煤耗较大,风机群产生一定噪声污染,厂用电较高。
表凝式间接空冷系统表凝式间接空冷系统是指汽轮机排汽以水为中间介质,将排汽与空气之间的热交换分两次进行:一次为蒸汽与冷却水之间在表面式凝汽器中换热;一次为冷却水和空气在空冷塔里换热。
该系统主要由表面式凝汽器与空冷塔构成,采用自然通风方式。
表凝式间接空冷与直接空冷相比,其特点是:冬季运行背压较低,所以煤耗较低;由于采用了表面式凝汽器,循环冷却水和凝结水分成两个独立系统,其水质可按各自的水质标准和要求进行处理,使水处理系统简单、便于操作;表凝式间接空冷塔基本无噪声,满足环保要求;空冷塔占地大,冬季运行防冻性能较差。
直接空冷与间接空冷比较

直接空冷机组与间接空冷机组的比较
通过对比国内600MW同类型机组直冷与间冷的对比,直接空冷比间接空冷煤耗高3~5g,同类型300MW机组借鉴以上对比直接空冷比间接空冷耗煤多1.5~2.5万吨,每年可高出煤耗费用为525~875万元(发电利用小时数按5000小时计算,煤价按350T/H计算)。
直接空冷特点:
1、直接空冷系统简单,设备少,控制系统也不复杂,所以运行调整比较简便。
采取了逆流凝汽器、由风机调节空气量等措施,而且空冷凝汽器管是大管径的椭圆管,在布置上使其不易积水,所以有利于防止冬天冻坏设备事故的发生。
2、直冷系统抽真空系统庞大,大型轴流风机多,所以检修维护工作量较大。
3、运行维护费用高。
4、直接空冷初投资较少。
间接空冷特点:
1、间接空冷系统可采用汽动给水泵方案,驱动给水泵汽轮机排汽直接进入冷凝器,百万千瓦耗水量约为0.125 m3/s.GW。
间接空冷系统比直接空冷系统节省约15%的水量,节约运营费用。
2、间接空冷系统的给水泵汽轮机排汽接入主机的空冷系统,
不需增加设备。
3、间接空冷系统噪音较低,一般能满足环保要求。
4、由于间接冷却系统的运行背压低于直接空冷系统,单位千瓦时煤耗较低,间接冷却系统其年发电效益高于直接空冷系统。
5、表凝式间冷系统由于增加了中间的冷却环节,所以系统较简单,操作较繁琐。
但设备维护量少,检修方便。
6、运行维护费用少。
7、表面式间接空冷初投资较大,比直接空冷多7251万元。
直接空冷与间接空冷

空冷系统介绍摘要:电厂采用空冷系统可以大幅度降低电厂耗水量,在节水方面有显著的效果,因而空冷机组得到了越夹越多的应用。
本文以2X3OOMW机组为例介绍了直接空冷系统及其控制;以2×2OOMW机组为例介绍了间接空冷系统及其控制。
一、概述空冷系统主要指汽轮机的排汽通过一定的装置被空气冷却为凝结水的系统,它与常规湿式冷却方式(简称湿冷系统)的主要区别是避免了循环冷却水在湿塔中直接与空气接触所带来的蒸发、风吹损失以及开式循环的排污损失,消除了蒸发热、水雾及排污水等对环境造成的污染。
由于空冷方式用空气直接冷却汽轮机排汽或用空气冷却循环水再间接冷却汽轮机排汽构成了密闭的系统,所以在理论上它没有循环冷却水的上述各种损失,从而使电厂的全厂总耗水量降低80%左右。
用于电厂机组末端冷却的空冷系统主要有直接空冷系统和间接空冷系统,间接空冷系统又分为带表面式凝汽器和带混合式凝汽器的两种系统。
三种空冷方式在国际上都得到广泛的应用,技术均成熟可靠,在国际上三种空冷方式单机容量均已达到600MW。
我国目前己有60OMW直冷机组投运,两种间冷方式在国内运行机组均为200MW。
采用空冷机组大大减少了电厂耗水,为水源的落实和项目的成立提供了便利条件。
特别对缺水地区,有着重要的意义。
内蒙古地区煤资源丰富,近几年投产的机组,基本都采用了空冷系统,而且大部分为直接空冷系统。
二、空冷系统2.1直接空冷系统电厂直接空冷系统是汽机的排汽直接用空气冷却,汽机排出的饱和蒸汽经排汽管道排至安置在室外的空冷凝汽器中,冷凝后的凝结水,经凝结水泵升压后送至汽机回热系统,最后送至锅炉。
电厂直接空冷系统主要包括以下系统:空冷凝汽器(ACC,Aircooledcondenser),空气供给系统、汽轮机排汽管道系统、抽真空系统、空冷凝汽器清洗系统、空冷凝汽器平台及土建支撑。
蒸汽从汽轮机出来,经过蒸汽管道流向空冷凝汽器,由蒸汽分配管道间空冷冷凝器分配蒸汽。
直接空冷的概述

一、结构简介:1:直接空冷系统汽轮机的排汽通过大直径的管道进入布置于主厂房A列前的空冷凝汽器,采用轴流风机使冷空气流过空冷凝汽器,以此使蒸汽得到冷凝,冷凝水经过处理后送回到锅炉给水系统。
2:凝汽器构件空冷凝汽器由三排翅片管束,蒸汽分配管,管束下联箱,支撑管束的钢架组成。
3:排汽管道系统汽轮机低压缸排汽装置出口到与连接各空冷凝汽器的蒸汽分配管之间的管道以及在排汽管道上设置的滑动和固定支座,膨胀补偿器,相关的隔断阀门及起吊设施,安全阀,防爆膜,疏水系统等。
4:凝结水回收系统经空冷凝汽器凝结成的水通过凝结水管道收集到汽轮机排汽装置下的热井中,然后通过凝结水泵送入汽轮机热力系统。
补水量为锅炉BMCR工况流量的3∽5%。
5:抽真空系统由三台100%的水环式真空泵以及所需的管道阀门等组成。
是机组启动和正常运行时抽出空冷凝汽器和其他辅助设备和管道中的空气,建立和维护机组真空。
真空泵一用二备,冷态抽空时间40分钟,要求管道系统必须严密不漏。
6:直接空冷系统性能保证的考核点工况在夏季空气干球温度为34℃,外界环境风速≤5m/s时,每台汽轮机的排汽量为692t/h,排汽焓为2530﹒3KJ/kg时,风机100%转速的情况下,应保证汽轮机排汽口处背压不大于32Kpa,这一工况作为直接空冷系统性能的主要考核点。
7:空气通道每台风机对应的冷却管束﹙冷却单元﹚应有其空气通道,以保证冷空气进入及热空气排出。
凝汽器支撑钢架的布置应不影响冷空气进入凝汽器。
不同冷却单元之间应设隔墙,以免相邻冷却单元互相影响和相邻风机的停运而降低通风效率。
并且隔墙要有一定的强度,以免由于振动而损坏。
对整个冷凝器风道以外的缝隙应采用抗腐蚀板进行封堵,以保证空气通过凝汽器时不走旁路,保证通风量和冷却效果,减少风机电耗。
8:冷却风机风机﹙包括电机减速机风扇叶片变频柜﹚为德国斯必克公司生产,单台功率110KW,台数30台﹙其中顺流24台,逆流6台﹚,叶片旋转直径10﹒363米。
冷却塔冷却方式

建立资源节约型和环境友好型社会,促进经济社会可持续发展,我国大力加强节能减排工作。“十一五”期间节能减排目标:实现国内生产总值能耗降低20%、主要污染物排放总量减少10%。在“十一五”开局之年,我国经济社会发展绝大部分目标超额完成,而节能减排目标没有实现。今后的节能减排工作面临着巨大压力和严峻挑战。电力行业既是优质清洁能源的创造者,又是一次能源消耗大户和污染排放大户,因而也是国家实施节能减排的重点领域。未来的节能减排工作将以火电厂节能减排为核心,以降低火电厂煤耗、厂用电率和二氧化硫排放量为重点。面临这样严峻的形势,电力生产厂家需从设备管理、运行管理、燃料管理等全方位入手深化节能减排工作,从而提高机组的经济性,降低发电成本。发电厂作为发电单位,其任务已不再是简单的完成年度发电指标,而是致力于提供优质、低耗的电能,满足社会的需要[3]。
近年来,随着我国经济建设的快速发展,市场对电力供应的需求不断升温,电力建设正处在一个历史高峰期。火力发电作为我国目前的发电主体,据相关资料统计,截止到2014初,全国火电装机约占总装机容量的75%,火电的发电量占总发电量的80%左右,我国目前的火电机组中绝大多数都是煤电机组。受我国能源结构特点的影响,决定了今后很长一段时间内,我国的电力构成仍然以煤电为主。因此,在煤炭资源丰富的地区大力发展火电事业,实现变输煤为输电的经济发展模式的转变,既是落实国家相关的经济发展政策,也是加快我国区域经济发展的必由之路[2]。
汽轮机直接空冷系统概述

汽轮机直接空冷系统概述直接空冷系统亦称为ACC(Air Cooled Condencer)系统,它是指汽轮机的排汽引入室外空冷凝汽器内直接用空气来将排汽凝结。
其工艺流程为汽轮机排汽通过大直径的排气管道引至室外的空冷凝汽器内,布置在空冷凝汽器下方的轴流冷却风机驱动空气流过冷却器外表面,将排汽冷凝为凝结水,凝结水再经凝结水泵送回汽轮机的回热系统。
直接空冷机组原则性汽水系统1—锅炉;2—过热器;3—汽轮机;4—空冷凝汽器;5—凝结水泵;6—凝结水精处理装置;8—低压加热器;9—除氧器;10—给水泵;11—高压加热器;12—汽轮机排汽管道;13—轴流冷却风机;14—立式电动机;15—凝结水箱;17—发电机直接空冷系统的空冷岛部分直接空冷系统的特点直接空冷系统是将汽轮机排出的乏汽,由管道引入称之为空冷凝汽器的钢制散热器中,由环境空气直接将其冷却为凝结水,减少了常规二次换热所需要的中间冷却介质,换热温差大,效果好。
该系统的主要特点还有:1、自然界大风的影响比较严重。
在夏季,自然气温普遍较高,如在这一时段再受到自然大风的影响,必然对机组的运行产生影响。
各电厂在夏季高温段遇到外界大风时,均有不同程度的降负荷现象,特别是山西漳山电厂、大一电厂、大二电厂在夏季高温时段皆因受到大风的影响,出现过机组跳闸现象。
自然大风影响是一个世界性难题,对直接空冷机组影响是很大的。
但是,自然大风的影响又是很难人为克服的。
因此,大一电厂在厂房顶部安装了测风装置采集数据,准备在进行相关数据分析的基础上,做出空冷机组应对自然大风的预案,尽量将因大风影响造成的损失降至最低。
榆社电厂、漳山电厂也准备采取同样的措施。
这种方法是否行之有效,还有待进一步探讨。
2、机组的真空系统严密性是一个普遍存在的问题。
特别是有一个奇怪的现象,就是有些电厂在机组刚投运时,空冷系统的严密性较好,但通过运行一年半载后,出现了反常现象。
由于空冷机组的真空容积庞大,汽轮机泄漏、安装焊接等原因,都会在很大程度上影响真空系统的严密性,致使机组背压提高,增大了煤耗,降低了机组带负荷的能力。
api661空冷结构型式

api661空冷结构型式
摘要:
1.API661 的概述
2.空冷结构型式的定义
3.空冷结构型式的分类
4.空冷结构型式的设计和应用
5.空冷结构型式的优势和局限性
正文:
API661 是美国石油学会的标准,主要规定了石油、天然气和化工行业的设备设计和制造标准。
在这个标准中,空冷结构型式是一个重要的部分。
空冷结构型式,顾名思义,是指通过空气冷却的方式对设备进行冷却的一种结构型式。
这种结构型式主要应用于高温、高压的设备,如汽轮机、压缩机等。
根据API661 的规定,空冷结构型式主要分为以下几种:直接空冷型、间接空冷型、混合空冷型和自然空冷型。
直接空冷型是指空气直接与设备表面接触进行冷却;间接空冷型是指通过冷却器将空气冷却后再送至设备表面进行冷却;混合空冷型是指直接空冷和间接空冷两种方式的结合;自然空冷型则是指利用自然通风进行冷却。
在设计和应用空冷结构型式时,需要考虑设备的热负荷、环境温度、空气的流动速度和冷却器的效率等因素。
通过合理的设计和选型,空冷结构型式可以有效地降低设备的温度,保证设备的安全运行。
空冷结构型式的优势主要体现在其节能、环保和安全等方面。
相较于水冷结构型式,空冷结构型式无需水资源,可以节约大量的水资源;同时,空冷结构型式无需水冷却系统,可以减少设备的维护工作量和运行成本。
但是,空冷结构型式也存在一些局限性,如冷却效率受环境温度影响较大,需要占用较大的空间等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空冷系统介绍摘要:电厂采用空冷系统可以大幅度降低电厂耗水量,在节水方面有显著的效果,因而空冷机组得到了越夹越多的应用。
本文以2X3OOMW机组为例介绍了直接空冷系统及其控制;以2×2OOMW机组为例介绍了间接空冷系统及其控制。
一、概述空冷系统主要指汽轮机的排汽通过一定的装置被空气冷却为凝结水的系统,它与常规湿式冷却方式(简称湿冷系统)的主要区别是避免了循环冷却水在湿塔中直接与空气接触所带来的蒸发、风吹损失以及开式循环的排污损失,消除了蒸发热、水雾及排污水等对环境造成的污染。
由于空冷方式用空气直接冷却汽轮机排汽或用空气冷却循环水再间接冷却汽轮机排汽构成了密闭的系统,所以在理论上它没有循环冷却水的上述各种损失,从而使电厂的全厂总耗水量降低80%左右。
用于电厂机组末端冷却的空冷系统主要有直接空冷系统和间接空冷系统,间接空冷系统又分为带表面式凝汽器和带混合式凝汽器的两种系统。
三种空冷方式在国际上都得到广泛的应用,技术均成熟可靠,在国际上三种空冷方式单机容量均已达到600MW。
我国目前己有60OMW直冷机组投运,两种间冷方式在国内运行机组均为200MW。
采用空冷机组大大减少了电厂耗水,为水源的落实和项目的成立提供了便利条件。
特别对缺水地区,有着重要的意义。
内蒙古地区煤资源丰富,近几年投产的机组,基本都采用了空冷系统,而且大部分为直接空冷系统。
二、空冷系统2.1直接空冷系统电厂直接空冷系统是汽机的排汽直接用空气冷却,汽机排出的饱和蒸汽经排汽管道排至安置在室外的空冷凝汽器中,冷凝后的凝结水,经凝结水泵升压后送至汽机回热系统,最后送至锅炉。
电厂直接空冷系统主要包括以下系统:空冷凝汽器(ACC,Aircooledcondenser),空气供给系统、汽轮机排汽管道系统、抽真空系统、空冷凝汽器清洗系统、空冷凝汽器平台及土建支撑。
蒸汽从汽轮机出来,经过蒸汽管道流向空冷凝汽器,由蒸汽分配管道间空冷冷凝器分配蒸汽。
目前直接空冷凝汽器大多采用矩形翅片椭圆管芯管的双排、三排管和大口径蛇形翅片的单排管。
空冷凝汽器由顺流管束和逆流管束两部分组成。
顺流管柬是冷凝蒸汽的主要部分,可冷凝75%一80%的蒸汽,在顺流管束中,蒸汽和凝结水是同方向移动的。
设置逆流管束主要是为了能够比较顺畅地将系统内的空气和不凝结气体排出,避免运行中在空冷凝汽器内的某些部位形成死区、冬季形成冻结的情况,在逆流管束中,气体和凝结水是反方向移动的。
冷凝所需要的冷空气由轴流冷却风机从大气中吸入,并吹间换热器翅片。
风机采用变频控制,系统可通过控制启停风机台数和对风机转速进行调整来控制进风量,能灵活的适应机组变工况运行,并且起到很好的防冻作用。
抽真空系统由3×1O0%水环真空泵组成。
泵连接逆流管束的顶部和主排汽管道。
在启动的时候,不凝气体在抽真空系统中被压缩,并排到大气中。
在部分排汽支路管道上设置蒸汽隔离阀,当冬季汽轮机低负荷运行或启动时,切断某几个散热端的阀门,将热量集中在剩余的散热端中,增加热负荷达到防冻目的。
为防止灰尘附着凝汽器翅片影响系统散热效果,设立冲洗系统,冲洗系统由冲洗水泵以及管道阀门组成。
为减少系统容积,大型机组的空冷凝汽器一般布置在紧靠汽机房A 列柱外的平台上。
为适应机组变工况运行相维护,空冷凝汽器被分为几组,每组由相同冷却单元组成,每个冷却单元由"人"型的冷却器排架构成,每个冷却单元下面设一台轴流风机。
直接空冷系统为一次冷却,直接空冷系统的主要优点有:不需中间换热介质,换热温差大,冷凝效果好;冬季防冻措施比较灵活可靠; 占地少;节省投资。
不足之处是:汽轮机背压变幅大;真空系统庞大;风机群噪声大;厂用电高。
直接空冷机组原则性汽水系统见图1。
1、锅炉;2、过热器;3、汽轮机;4、发电机:5、凝结水泵;6、凝结水精处理装置:7、凝结水升压泵:8、低压加热器;9、除氧器:10、给水泵:11、高压加热器:12、汽轮机排汽管道;13、轴流冷却风机;14、凝结水箱;15、空冷凝汽器;2×300MW直接空冷机组共两套空冷凝汽器(ACC),每台机组ACC共有6排冷凝器,每排冷凝器包括4个顺流管束和1个逆流管束以及5个单元空气供应系统(包括变频风机)。
共计24个顺流管束、6个逆流管束和30台风机。
2.2 间接空冷系统间接空冷系统又分为带棍合式凝汽器(海勒式)和带表面式凝汽器(哈蒙式)的两种系统。
2.2.1 混合式间接空冷系统(海勒式)混合式间接空冷系统工艺流程是汽轮机尾部排汽排至安装在汽机房内的辊合式凝汽器内与喷射咸水膜的循环水直接接触冷却,混合的冷凝水一小部分经精处理后送至再热系统,其余的经循环水泵升压后回至室外的空冷塔,进入安装在塔底部的表面式空冷凝汽器内与空气进行表面式换热冷却,冷却后的循环水通过水轮机或节流阀调压后回至混合式凝汽器循环使用。
混合式凝汽器的间接空冷系统主要由喷射式凝汽器相空冷塔构成。
系统中的冷却水是高纯度的中性水,中性冷却水进入凝汽器直接与汽轮机排汽混合并将其冷凝,受热后的冷却水绝大部分由冷却水循环泵送至空冷却塔散热器,经与空气对流换热冷却后通过调压水轮机将冷却水再送至喷射式凝汽器进入下一个循环。
空冷塔散热器外侧装有百叶窗,百叶窗的开度可调,可控制通风量,从而控制冷却性能。
当环境温度较低时,关闭百叶窗,防止散热器冻坏。
系统特点:两次换热、凝结水与循环水棍合冷却、运行分正压和微正压两部分,因此,需要设大规模的精处理设备,与其它空冷方式相比增设了水轮机和调节阀这样的大型设备,系统复杂,循环水泵必须紧靠凝汽器布置,为防止水泵汽蚀需设大型泵坑,需设大型冷却塔,因此,基建投资高,优点是年平均背压低。
带混合式凝汽器的间接空冷系统的优点是以微正压的低压水系统运行,较易掌握。
缺点是设备多、系统复杂、需要凝结水精处理装置、自动控制系统复杂、全铝制散热器的防冻性能差。
混合式间接空冷机组原则性汽水系统见图2。
1、锅炉:2、过热器;3、汽轮机;4、喷射式凝汽器;5、凝结水泵;6、凝结水精处理装置:7、凝结水升压泵;8、低压加热器;9、除氧器:10、给水泵;11、高压加热器:12、冷却水循坏泵;13、调压水轮机;14、全铝制散热器;15、空冷塔;16、旁路截流阀;17、发电机2.2.2 表面式间接空冷系统(哈蒙式)表面式间接空冷系统与常规湿冷系统基本相同,不同的是空冷塔代替湿冷塔。
工艺流程为汽轮机尾部排汽排至安装在汽机房内的表面式凝汽器内,经与循环水换热后,由凝结水泵升压回至再热系统,换热后的循环水回至安装在室外空冷塔内的表面凝汽器内,与空气换热后经循环水泵升压,送回至汽机房内的表面式凝汽器循环使用。
该系统由表面式凝汽器与空冷塔构成。
与常规的湿冷系统基本相仿,不同之处是用表面式对流换热的空冷塔代替混合式蒸发冷却换热的湿冷塔,通常用不锈钢管凝汽器代替铜管瘫汽器,用碱性除盐水代替循环水,用密闭式循环冷却水系统代替开敞式循环冷却水系统。
该系统采用自然通风方式冷却,将散热器装在自然通风冷却塔中。
系统特点:循环水与凝结水分为两个系统,两水质可按各自的要求分别处理,系统简单、设备少,缺点是因两次换热,热效率相对较低,需要大量的冷却面积、设大型冷却塔,因此基建投资高。
带表面式凝汽器的间接空冷系统类似于湿冷系统,其优点是节约厂用电,设备少,冷却水系统与汽水系统分开,两者水质可按各自要求控制。
缺点是空冷塔占地大,基建投资多,系统中需进行两次换热,且都属表面式换热,使全厂热效率有所降低。
表面式间接空冷机组原则性汽水系统见图3。
1、锅炉:2、过热器;3、汽轮机:4、表面式凝汽器;5、凝结水泵;6、凝结水精处理装置:7、凝结水升压泵;8、低压加热器;9、除氧器;10、给水泵:11、高压加热器;12、循环水泵;13、膨胀水箱; 14、全钢制散热器h5、空冷塔;16、发电机三、空冷控制系统目前建设的电厂空冷控制系统大多直接纳入机组DCS系统,空冷系统采用独立的冗余CPU。
控制系统功能包括数据采集和处理系统(DAS)、顺序控制系统(SCS)、模拟量控制系统(MCS)。
空冷系统在集中控制室实现集中监控,由DCS的操作员站完成对其工艺系统的程序启/停、中断控制及单个设备的操作。
3.1 直接空冷控制系统本文以2×3OOMW空冷机组为例,介绍直接空冷系统的控制。
3.1.1 主要监控测点:(1)排汽压力(2)环境温度(3)大气压力(4)风速风向(5)凝结水温度(6)抽气温度(7)抽气压力(8)排汽管道凝结水收集装置液位(9)阀门位置显示和控制(10)空冷风机变频控制(11)抽真空系统(12)ACC清洗系统3.1.2 主要监控内容:控制系统通过控制启停风机台数和改变风机转速来改变通过冷凝器换热片的空气流量,从而控制ACC性能。
三个压力传感器测量排汽管道压力。
在正常运行时,排汽压力是主控制变量。
控制系统通过排汽压力控制变频风机,当排汽压力改变时,风机转速也改变,以确保提前设定的运行工况。
ACC的压力控制器和抽气温度控制器/凝结水温度控制器联合工作。
如果压力是主控变量,温度控制器最小选择器被启动。
一旦实际测得的温度降到设定值以下,这一排的温度控制器会覆盖压力控制器的信号,转为温度控制。
其他排只要是凝结水/抽气温度还没有到达设定值之下,仍然是压力控制。
每个覆盖行为都会显示在人机界面上。
当排汽压力是主控制变量时,只要其在设定值范围内,控制系统就能正常运行。
为了避免单个单元凝结水过冷,控制变量排汽压力能自动被凝结水温度/抽气温度取代。
在温度控制模式下,依据抽气温度和凝结水管道的凝结水温度来调节风机转速。
检测环境温度可以保护ACC不被冻结。
在更差的工况,风机全部关闭,然后关闭个别的蒸汽隔离阀以减少换热面积。
为了加强系统监控,在冬季寒冷期,系统运行必须为自动控制。
在冬季运行中如出现异常,控制系统及时发出指令,调整运行,同时发出警报,提请运行人员注意。
3.1.3 风机变频控制每台300MW机组共30台变频控制柜,负责控制空冷机组30台风机的启停和转速调节。
其中控制逆流管束单元风机变频柜6台,控制顺流管束单元风机变频柜24台。
该控制装置具有调节风机转速的功能,并具有自动、手动两种控制方式。
当在手动工作状态时,可以通过空冷平台的就地按钮对风机手动启停。
也可以通过控制柜上变频器操作面板对风机的运行进行控制以及变频器参数的设定。
当在自动工作状态时,变频器投入运行,在集中控制室可以自动控制风机的最佳运行状态。
由集中控制室输出频率控制信号对风机的转速进行控制,变频控制柜反馈电流和频率信号送入集中控制室。
变频控制柜与集中控制室交换的相关信号:风机远方/就地、风机变频器故障、风机己运行、风机已停止、启动风机、停止风机、风机速度给定、风机频率输出、风机电流输出。