2.1.1-合情推理
2.1.1合情推理(朱欢)

观察可得:数列的前4项都等于相应项数的倒数。
1 由此猜想(归纳)这个数列的通项公式为: an n
归纳推理的一般步骤:
⑴ 对有限的资料进行观察、分析、 归纳整理; ⑵ 提出带有规律性的结论,即猜想; ⑶ 检验猜想。
练 根据图中5个图形及相应点的个数的变化规律, 习 试猜测第n个图形中有 n2 n 1 个点.
1.类比推理是从特殊到特殊的推理; 2.类比推理是从人们已经掌握了的事物的特征, 推测正在被研究中的事物的特征,所以类比推理 的结果具有猜测性,不一定可靠. 3.类比推理以旧的知识作基础,推测新的结果,具有 发现的功能. 4.类比推理的前提是两类对象之间具有某些可以清 楚定义的类似的特征,所以进行类比推理的关键是 明确地指出两类对象在某些方面的类似特征.
几个著名的猜想:
费马猜想
地图的”四色猜想” 歌尼斯堡七桥猜想 歌德巴赫猜想
黎曼猜想
费马猜想 法国数学家费马提出猜想:任何形如
2n
2 1(n N ) 的数都是质数.
*
地图的”四色猜想” 每幅地图都可以用四种颜色着色, 使得有共同边界的国家着上不同的 颜色。
歌尼斯堡七桥猜想
18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的 普莱格尔河上有7座桥,将河中的两个岛和河 岸连结,如图所示。城中的居民经常沿河过桥 散步,于是提出了一个问题:能否一次走遍7 座桥,而每座桥只许通过一次,最后仍回到起 始地点。
6=3+3, 8=3+5, 10=5+5, „„ 1000=29+971, 1002=139+863, „„
猜想任何一个不小于6的 偶数都等于两个奇质数的和.
这种由某类事物的部分对象具有某些特征,推出
2.1.1合情推理

例如用16进位制表示E+D=1B,则 A×B=( A )
A.6E B.72 C.5F D.0B
小结:
(1)合情推理的含义: 归纳推理和类比推理都是根据已有的事实,经过 观察、 分析、比较 、联想 ,再进行 归纳 、类比 ,然后提出猜想 的推 理,我们把它们统称为合情推理.
(2)合情推理的过程:
从具体问题出发
类比推理
类比推理的一般步骤:
⑴ 找出两类对象之间可以确切表述的相似特征;
⑵ 用一类对象的已知特征去推测另一类对象的特 征,从而得出一个猜想;
⑶ 检验猜想。即
观察、比较 联想、类推
猜想新结论
类比推理
1.工匠鲁班类比带齿的草叶和蝗虫的牙齿,发 明了锯
2.仿照鱼类的外型和它们在水中沉浮的原理, 发明了潜水艇.
距圆心较近的弦较长
截面圆不等,距球心较近的
截面圆较大
圆的切线垂直于过切点的半 球的切面垂直于过切点的半
径;经过圆心且垂直于切线 径;经过球心且垂直于切面
的直线必经过切点
的直线必经过切点
经过切点且垂直于切线的直 经过切点且垂直于切面的直
线必经过圆心
线必经过球心
类比推理
“类比是一个伟大的引路人,求解立体几何往 往有赖于平面几何的类比问题.”
所得的结论超越了前提所包容的范围.
2.归纳是依据若干已知的、没有穷尽的现象推断尚
属未知的现象,因而结论具有猜测性.
3.归纳的前提是特殊的情况,因而归纳是立足于观
察、经验和实验的基础之上.
归纳是立足于观察、经验、实验和对有限资料分
析的基础上.提出带有规律性的结论.
需证明
归纳推理的一般步骤:
⑴ 对有限的资料进行观察、分析、归纳 整理;
2.1.1合情推理

2.1.1合情推理预习案一、【教材知识梳理】1.合情推理包括 和 .2.归纳推理:(1)概念:根据一类事物的 具有某种性质,推出这类事物的 都具有这种性质的推理叫做归纳推理。
(2)特点:归纳推理是从 到 的过程。
(3)归纳推理的一般步骤:①通过观察个别情况发现某些相同性质.②从已知的相同性质中推出一个明确表达的一般性命题(猜想).3.类比推理:(1)概念:根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另一类事物 的推理,叫做类比推理. (2)类比推理的一般步骤:①找出两类事物之间的相似性或一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想). 二、【预习检测】 1、从1=12,2+3+4=32,3+4+5+6+7=52中得出的一般性结论是 . 2.下列说法正确的是( )A .类比推理一定是一般到一般的推理B .类比推理一定是个别到个别的推理C .类比推理是从个别到个别或一般到一般的推理D .类比推理是个别到一般的推理 3.球心到球面上每一点的距离相等。
类比到平面,有_______________ _____ 4.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。
已知数列{}n a 是等和数列,且12a =,公和为5,那么18a 的值为______________,这个数列的前n 项和n S 的计算公式为________________探究案一、【典例解析】例1 已知数列{}n a 的第1项11a =,且()11,2,1n n na a n a +==+…,试归纳出这个数列的通项公式.例2.观察下面几个算式,找出规律:1+2+1=4; 1+2+3+2+1=9; 1+2+3+4+3+2+1=16; 1+2+3+4+5+4+3+2+1=25;…利用上面的规律,请你算出1+2+3+…+99+100+99+…+3+2+1= 。
2.1.1合情推理

金片
…
移动 次数
1
3
7
15 31
63
… …
推测 an=
经测算相当要移动 5845.54亿年
五、总结归纳
谈一谈你本节课的收获
五、总结归纳
定义: 部分推出全部,
归
个体概括一般.
纳
数学思想方法:归纳推理
推
数形结合
理
思考:归纳推理的结论
一定正确吗?
作业一:
在意大利馆,他发现地砖按如下规律拼成的图 案, 请观察下面三个图案中分别有多少块白色地 砖?
称为归纳推理(简称归纳).
说一说:根据概念归纳推理的方法是什么?
部分推出全部 个别概括一般
归纳推理的一般步骤
(1)对有限的资料进行观察、分析、归纳 整理;
(2)剔除不带有规律性的结论,即猜想; (3)检验猜想。
三、概念深化
例1 观察图2.1-1,可以发现:
1 23456 7
1+3=4, 1+3+5=9, 1+3+5+7=16, 1+3+5+7+9=25,
针上从下到上地穿好了由大到小的64块金片,
这就是所谓的汉诺塔。
四、应用探索 不论白天黑夜,总有一个僧侣在按照下面的 法则移动这些金块:
1、每次只能移动一块金片。 2、可以借助B针作辅助用,不能移其他处。 3、移动时,小金片必须在大金片上面。
僧侣们预言,当64块金片都从A针移到C针时, 世界末日__块白色地砖. 第10个图案中有 ______块白色地砖. 第n个图案中有 ______块白色地砖.
谢谢大家!
130m
你是怎么推测出来 的?
2.1.1合情推理(一)

2
1
3
13
设 an为把 n 个圆环从1号针移到3号针的最少次数,则
a n =1时, 1 =1 n=2时,a2=3
第1个圆环从1到3.
前1个圆环从1到2;
第2个圆环从1到3; 第1个圆环从2到3.
a n=3时, 3 =7
前2个圆环从1到2; 第3个圆环从1到3;
前2个圆环从2到3.
猜想 an= 2n -1
大胆猜想 小心求证
16
3.(05年广东)设平面内有n条直线(n≥3),其中有且 若用f(n)表示这n条直线交点的个数. 当n ≥3 时, f(n)= .(用n表示)
仅有两条直线互相平行,任意三条直线不过同一点.
1 2 ( n n 2) 2
归纳推理 归纳推理的基础 归纳推理的作用 注意
2
1
3
14
应用归纳推理可以发现新事实,获得新结论。 (但要注意,结论可能为真,也可能为假。)
观察到都是质数,进而猜想:
任何形如 的数都是质数 这就是著名的"费马猜想"
半个世纪后,欧拉发现第5个费 马数
欧拉
15
宣布了费马的这个猜想不成立,它不能作为 一个求质数的公式.以后,人们又陆续发现
不是质数.至今这样的反例共找到了46个, 却还没有找到第6个正面的例子,也就是说 目前只有n=0,1,2,3,4这5个情况下,Fn才是 质数.
an 且 an 1 ( n =1,2,3,·· ·), 1 an
1 an 请归纳出这个数列的通项公式为________. n
这就是从部分到整体,从个别到一般的归纳推理.
10
2.如图所示,有三根针和套在一根针上的若干金属片.
人教版选修【1-2】2.1.1《合情推理》习题及答案

数学·选修1-2(人教A版)2.1 合情推理与演绎推理2.1.1 合情推理►达标训练1.数列2,5,11,20,x,47,…中的x等于( )A.28 B.32C.33 D.27答案:B2.已知三角形的三边长分别是a,b,c,其内切圆的半径为r,则三角形的面积为:S=12(a+b+c)r,利用类比推理,可以得出四面体的体积为( )A.V=13 abcB.V=13 ShC.V=13(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分别是四面体四个面的面积,r为四面体内切球的半径)D.V=13(ab+bc+ca)h(h为四面体的高)解析:根据类比的一般原理,三角形的边长和面积分别类比于四面体的面积和体积,因而可以得出答案C.答案:C3.根据给出的数塔猜测123 456×9+7等于( )1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111A .1 111 110B .1 111 111C .1 111 112D .1 111 113解析:由数塔呈现的规律知,结果是各位都是1的7位数. 答案:B 4.等比数列{}a n 满足:m ,n ,p ,q ∈N *,若m +n =p +q ,则a m ·a n=a p ·a q .由此类推可得,在等差数列{}a n 中,若有m ,n ,p ,q ∈N *,且m +n =p +q ,则有( )A .a m ·a n =a p ·a qB .a m +a n =a p +a qC.a m a n =a pa qD .a m -a n =a p -a q答案:B5.下面使用类比推理正确的是( )A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”B .“(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类推出“a +b c=a c +bc (c ≠0)”D .“(ab )n =a n b n ”类推出“(a +b )n =a n +b n ”答案:C6.如右图所示,面积为S 的凸四边形的第i 条边的边长记为a i (i= 1,2,3,4),此四边形内任一点P到第i条边的距离记为h i(i=1,2,3,4),若a11=a22=a33=a44=k,则∑i=14(a i h i)=2Sk.类比以上性质,体积为V的三棱锥的第i个面的面积记为S i(i=1,2,3,4),此三棱锥内任一点Q到第i 个面的距离记为H i(i= 1,2,3,4),若S1 1=S22=S33=S44=K,则∑i=14(S i H i)=( )A.4VKB.3VKC.2VKD.VK解析:从平面类比到空间,通常是边长类比为面积,面积类比为体积,又凸四边形中,面积为S=12(a1h1+a2h2+a3h3+a4h4),而在三棱锥中,体积为V=13(S1H1+S2H2+S3H3+S4H4),即存在系数差异,所以,上述性质类比为B.答案:B►素能提高1.下图是用同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第n个图案中需用黑色瓷砖________块(用含n的代数式表示).解析:第(1),(2),(3),…个图案黑色瓷砖数依次为:15-3=12,24-8=16,35-15=20,…由此可猜测第n个图案黑色瓷砖数为:12+(n -1)×4=4n +8.答案:4n +82.图1是一个边长为1的正三角形,分别连接这个三角形三边中点,将原三角形剖分成4个三角形(如图2),再分别连接图2中一个小三角形三边的中点,又可将原三角形剖分成7个三角形(如图3),…,依此类推,设第n 个图中三角形被剖分成a n 个三角形,则第4个图中最小三角形的边长为________;a 100=________.…图1 图2 图3答案:182983.观察下列不等式:1+122<32,1+122+132<53,1+122+132+142<74,…照此规律,第五个不等式为_____________________________.解析:观察不等式的左边发现,第n 个不等式的左边=1+122+132+…+1(n +1)2,右边=2(n +1)-1n +1,所以第五个不等式为1+122+132+142+152+162<116. 答案:1+122+132+142+152+162<1164.(2013·广州二模)数列{a n }的项是由1或2构成,且首项为1,在第k 个1和第k +1个1之间有2k -1个2,即数列{a n }为:1,2,1,2,2,2,1,2,2,2,2,2,1,…,记数列{a n }的前n 项和为S n ,则S 20=______;S 2013=______.答案:36 39815.半径为r 的圆的面积S (r )=πr 2,周长C (r )=2πr ,若将r 看作(0,+∞)上的变量,则(πr 2)′=2πr .①①式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看作(0,+∞)的变量,请你写出类似于①的式子②:_______________________________________.②式可以用语言叙述为:_______________________________.解析:V (R )=43πR 3,又⎝ ⎛⎭⎪⎫43πR 3′=4πR 2,故②式可填=4πR 2,用语言叙述为“球的体积函数的导数等于球的表面积函数”.答案:⎝ ⎛⎭⎪⎫43πR 3′=4πR 2 球的体积函数的导数等于球的表面积函数6.(2013·江门佛山二模)将集合{2s +2t |0≤s <t 且s ,t ∈Z}中的元素按上小下大,左小右大的原则排成如图的三角形数表,将数表中位于第i 行第j 列的数记为b ij (i ≥j >0),则b 43=________.答案:207.在等差数列{}a n 中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立.类比上述性质,在等比数列{}b n 中,若b 9=1,则有等式______________________成立.解析:a 10是等差数列{}a n 的前19项的中间项,而b 9是等比数列{}b n 的前17项的中间项.所以答案应为:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).答案:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *)8.在平面内观察发现:凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,…,由此猜测凸n 边形有几条对角线.解析:凸四边形有2条对角线;凸五边形有5条对角线,比凸四边形多3条对角线; 凸六边形有9条对角线,比凸五边形多4条对角线;…归纳猜测:凸n 边形的对角线条数,比凸n -1边形多对角线,于是得到凸n 边形的对角线条数为2+3+4+…+(n -2)=12n (n -3)(n ≥4,n ∈N *).►品味高考1.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过下图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(1)b 2 012是数列{a n }中的第________项; (2)b 2k -1=________(用k 表示).解析:由以上规律可知三角形数1,3,6,10,…的一个通项公式为a n =n (n +1)2,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,发现其中能被5整除的为10,15,45,55,105,120,故b 1=a 4,b 2=a 5,b 3=a 9,b 4=a 10,b 5=a 14,b 6=a 15. 从而由上述规律可猜想:b 2k =a 5k +=5k (5k +1)2(k 为正整数),b 2k -1=a 5k -1=(5k -1)(5k -1+1)2=5k (5k -1)2,故b 2 012=b 2×1 006=a 5 030,即b 2 012是数列{a n }中的第5 030项.答案:(1)5 030 (2)5k (5k -1)2点评:本题考查归纳推理,猜想的能力.归纳推理题型重在猜想,不一定要证明,但猜想需要有一定的经验与能力,不能凭空猜想.2.(2013·陕西卷)观察下列等式: (1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 …照此规律,第n 个等式可为______________________________.答案:(n +1)(n +2)·…·(n +n )=2n ×1×3×5×…×(2n -1) 3.(2013·湖北卷)在平面直角坐标系中,若点P (x ,y )的坐标x ,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S ,N ,L 分别是________; (2)已知格点多边形的面积可表示为S =aN +bL +c ,其中a ,b ,c 为常数.若某格点多边形对应的N =71,L =18,则S =________(用数值作答).解析:(1)四边形DEFG是一个直角梯形,观察图形可知:S=(2+22)×2×12=3,N=1,L=6.(2)由(1)知,S四边形DEFG=a+6b+c=3.S△ABC=4b+c=1.在平面直角坐标系中,取一“田”字型四边形,构成边长为2的正方形,该正方形中S=4,N=1,L=8.则S=a+8b+c=4.联立解得a=1,b=12,c=-1.∴S=N+12L-1,∴若某格点多边形对应的N=71,L=18,则S=71+12×18-1=79. 答案:(1)3,1,6(2)79。
数学:2.1.1《合情推理与演绎推理-合情推理》PPT课件(新人教选修2-2)

归纳推理的一般步骤:
⑴ 对有限的资料进行观察、分析、归纳 整理; ⑵ 提出带有规律性的结论,即猜想; ⑶ 检验猜想。
例1:已知数列{an}的第1项a1=1且a
n +1
=
an 1 + an
(n=1,2,3 …),试归纳出这个数列的通项公式.
例2:数一数图中的凸多面体的面数F、顶
点数V和棱数E,然后用归纳法推理得出它们 之间的关系.
1 2
+
1 3
+ L + 5 2
1 n
(n Î
N )计 算 得 7 2
*
f(2)=
,f(4)>2,f(8)> 2时 ,有
, f ( 1 6 ) > 3 , f (3 2) >
-----------------.
例:如图有三根针和套在一根针上的若干金属片. 按下列规则,把金属片从一根针上全部移到另一根针上. 1.每次只能移动1个金属片; 2.较大的金属片不能放在较小的金属片上面.试推测; 把n个金属片从1号针移到3号针,最少需要移动多少次? 解;设an表示移动n块金属片时的移动次数. 当n=1时,a1=1 当n=2时,a2= 3
哥德巴赫猜想(Goldbach Conjecture)
目前最佳的结果是中国数学家陈景润於1966年 证明的,称为陈氏定理(Chen„s Theorem) ? “ 任何充份大的偶数都是一个质数与一个自然数 之和,而後者仅仅是两个质数的乘积。” 通 常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。
2
1
3
解;设an表示移动n块金属片时的移动次数. 当n=1时,a1=1 当n=2时,a2= 3 猜想 an= 2n -1 当n=3时,a3= 7 当n=4时,a4= 15
2.1.1合情推理(二)

5
4、在研究球体时,自然联想到圆.
试将平面上的圆与空间的球进行类比. 圆的定义:平面内到一个定点的距离等于定长的点的集合 球的定义:空间中到一个定点的距离等于定长的点的集合
圆
球
弦 截面圆 . . 大圆 直径 周长 表面积 面积 体积 探究:类比圆的特征,说说球的相关特征,并说 明推理的过程。 6
利用圆的性质类比得出求的性质
1、据说春秋时代鲁国的公输班(后人称 鲁班,被认为是木匠业的祖师)一次去林 中砍树时被一株齿形的茅草割破了手,这 桩倒霉事却使他发明了锯子.
鲁班的思路是这样的: 茅草是齿形的; 茅草能割破手. 我需要一种能割断木头的工具; 它也可以是齿形的.
2、人们仿照鱼类的外形和它们在水中的沉浮原理, 发明了潜水艇.
18
类比推理
由特殊到特殊的推理
类比推理
以旧的知识为基础,推测新 的结果,具有发现的功能
注意 类比推理的结论不一定成立
19
小结
☞
观察、分析、 比较、联想 归纳、 类比 提出 猜想
归纳推理和类比推理的过程
从具体问 题出发
归纳推理 合情推理 类比推理
通俗地说,合情推理是指“合乎情理”的推理.
20
小结
3
地球
火星
行星、围绕太阳运行、绕 行星、围绕太阳运行、绕 轴自转 轴自转 有大气层 有大气层 一年中有四季的变更 一年中有四季的变更 大部分时间的温度适合地 球上某些已知生物的生存
温度适合生物的生存
有生命存在
可能有生命存在
4
火星与地球类比的思维过程:
存在类似特征
地球
火星
地球上有生命存在
猜测火星上也可能有生命存在
则四面体的内切球半径 R ________________ .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章推理与证明本章概览教材分析本章的内容属于数学思维方法的范畴,把过去渗透在具体数学内容中的思维方法,以集中的、显性的形式呈现出来,使学生更加明确这些方法,并能在今后的学习中有意识地使用它们,以此培养学生言之有理、论证有据的习惯.本章将结合生活实例和学生已学过的数学实例,介绍两种基本的推理——合情推理与演绎推理;两类证明方法——直接证明和间接证明;学习数学归纳法的基本原理和步骤.课标要求(1)合情推理与演绎推理①了解合情推理的含义,能利用归纳和类比进行推理,体会合情推理在数学中的应用;②了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单的推理;③了解合情推理和演绎推理之间的联系和差异.(2)直接证明与间接证明①了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程与特点;②了解间接证明的一种基本方法——反证法;了解反证法的思考过程与特点.(3)了解数学归纳法的原理,能用数学归纳法证明一些简单命题.教学建议1.教学中应尽量从学生已学过的数学实例和生活中的实例出发,从中挖掘、提炼出合情推理与演绎推理的含义和推理方法,帮助学生了解合情推理与演绎推理的含义,为学生示范如何规范地应用这两种推理解决问题.2.通过实例引导学生分析综合法、分析法和反证法的思考过程与特点,并归纳出操作流程框图,使他们在以后的学习生活中,能自觉地有意识地运用这些方法进行数学证明,养成言之有理、论证有据的好习惯.3.数学归纳法是一种特殊的直接证明的方法,第一部分主要内容是借助具体实例归纳出数学归纳法的基本原理、步骤;第二部分的重点是用数学归纳法证明一些简单的命题,通过对数学命题的证明巩固对数学归纳法原理的认识.课时分配本章约需9课时,具体分配如下:2.1合情推理与演绎推理2.1.1合情推理整体设计教材分析合情推理所蕴含的数学思想贯穿于高中数学的整个知识体系,但是作为一节内容出现在高中数学教材中尚属首次.合情推理是新课标教材的亮点之一,本节内容对合情推理的一般方法进行了必要的归纳和总结,同时也对后继知识的学习起到了引领的作用.教材的设计是对“观察发现、归纳类比、抽象概括、演绎证明”等数学思维方法的总结与归纳,使已学过的数学知识和思想方法系统化、明晰化.教材紧密地结合了已学过的数学实例和生活实例,避免了空泛地讲数学思想、方法;以变分散为集中,变隐性为显性的方式学习合情推理,是知识、方法、思维和情感的融合与促进,让学生在学知识的同时充分体会数学的发展过程.课时分配2课时.第1课时内容为归纳推理;第2课时内容为类比推理.第1课时教学目标1.知识与技能目标结合生活实例了解推理的含义;掌握归纳推理的结构和特点,能够进行简单的归纳推理;体会归纳推理在数学发现中的作用.2.过程与方法目标通过探索、研究、归纳、总结等方式,使归纳推理全方位地呈现在学生面前,让学生了解数学不单是现成结论的体系,结论的发现也是数学的重要内容,从而形成对数学较为完整的认识;培养学生发散思维能力,充分挖掘学生的创新思维能力.3.情感、态度与价值观通过学习本节课,培养学生实事求是、力戒浮夸的思维习惯,深化学生对数学意义的理解,激发学生的学习兴趣;认识数学的科学价值、应用价值和文化价值;通过探究学习培养学生互助合作的学习习惯,形成良好的思维方式和锲而不舍的钻研精神.重点难点重点:掌握归纳推理的特点和推理过程,体会归纳推理在科学发现中的作用.难点:归纳推理的应用;如何培养学生发现问题、解决问题的能力.教学过程引入新课某市为了解本市的高中生数学学习状态,对四所学校做了一个问卷调查,其中有两方面问题的统计数据如下:根据这四所学校的情况,你能推测全市高中生对数学的印象吗?活动设计:先让学生独立思考,然后小组交流,教师巡视指导,并注意与学生交流.学情预测:学生可能会说出很多不同的答案.教师提问:你的推测一定正确吗?活动结果:有的学生可能会说“正确”;有的学生可能会说“不正确”;有的学生可能会说“不确定”.教师:推测不一定正确.设计意图自然合理地提出问题,让学生体会“数学来源于生活”,创造和谐积极的学习气氛,为课堂结尾“数学是生动活泼的,发现问题是数学学习的一个重要目的”埋下伏笔.探究新知生活中我们经常会遇到这样的情形:看见柳树发芽,冰雪融化,……看见花凋谢了,树叶黄了,……看见乌云密布,燕子低飞,……引导学生做一些简单的推理:1.由铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电.2.由三角形内角和为180°,凸四边形内角和为360°,凸五边形内角和为540°,猜想:凸n边形内角和为(n-2)·180°.提出问题:像上面这样的思维方式就是推理,请问你认为什么是推理?活动设计:学生先自由发言,教师逐步引导学生发现推理的结论是通过猜想得到的.学情预测:学生开始的回答可能不全面、不准确,但在其他同学的不断补充、纠正下,会趋于完善.活动结果:推理的概念:根据一个或几个已知的事实(或假设)来确定一个新的判断的思维方式就叫推理.注意:一个完整的推理是由前提和结论两部分构成的.设计意图从大量的生活实例出发,让学生充分体会推理的含义和推理的构成,使推理概念的形成更自然、更生动,并训练和培养学生的抽象概括和表达能力.看下面两个推理:1.金受热后体积膨胀;银受热后体积膨胀;铜受热后体积膨胀;铁受热后体积膨胀.由此猜想:金属受热后体积膨胀.2.1,1+3=4,1+3+5=9,1+3+5+7=16,1+3+5+7+9=25,……由此猜想:1+3+…+(2n-1)=n2.提出问题:这两个推理在思维方式上有什么共同特点?活动设计:学生先独立思考,然后分小组讨论.活动结果:共同特点:部分推出整体,个别推出一般.归纳推理的概念:根据一类事物的部分对象具有某种性质,推出该类事物的全部对象都具有这种性质的推理,或由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体,由个别到一般的推理.设计意图引导学生观察两个推理的前提与结论,根据前提与结论的关系由学生作出进一步分类并尝试命名.提出问题:你在生活中遇到过归纳推理吗?(学生自由发言)活动设计:学生分小组讨论:将学生划分为两大部分,一部分学生讨论生活中运用归纳推理的例子,另一部分学生讨论学习中使用归纳推理的例子.学情预测:学生会举出大量的归纳推理的实例,也可能举出这样的例子:“地球上有生命,火星具有一些与地球类似的特征,猜想:火星上也有生命.”设计意图通过学生所举的例子,教师可以了解学生对归纳推理的理解程度,通过正反实例明确概念的内涵和外延,加深对关键词、重点词的理解,及时更正学生在认识理解中产生的偏差,巩固归纳推理的定义.理解新知教师举例:介绍歌德巴赫猜想.观察下列等式:3+7=10,3+17=20,13+17=30.你们能从中发现什么规律?学情预测:学生的回答可能很杂,甚至会五花八门.如果换一种写法呢?10=3+7,20=3+17,30=13+17.活动设计:学生先独立思考,然后学生分小组讨论.教师适时介入全班引导:提醒学生注意各等式左边的数是什么数?各等式右边是几个数?均是什么数?这反映了一个什么样的规律?活动结果:偶数=奇质数+奇质数.提出问题:这个规律对于其他偶数是否成立?可以先从几个较小的偶数开始,具体验证一下.活动设计:学生独立思考,独立举例.教师:全班学生交流研究成果.共同得到,第一个等于两个奇质数之和的偶数是6,即6=3+3.其他结果略.教师:根据上述过程,哥德巴赫大胆地猜想:“任何一个不小于6的偶数都等于两个奇质数之和”.从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.但我国著名数学家陈景润、王元、潘承洞等均分别取得了很好的结果,做出了巨大的贡献.当然也曾经有人作了些具体的验证工作,例如:6=3+3,8=3+5,10=5+5=3+7,12=5+7,14=7+7=3+11,16=5+11,18=5+13,…,1 000=29+971,1 002=139+863,等等.有人对3.3×108以内且大过6的偶数一一进行验算,哥德巴赫猜想都成立,但依然没有严格的数学证明.因此,我们仍然不能说:“哥德巴赫猜想”成立,即这个规律对于其他偶数是否成立还不得而知.(教师还可以介绍其他学科中运用归纳推理得到的重要发现)提出问题:请同学们根据前面所列举的归纳推理的例子,总结归纳推理的作用.活动设计:全班学生先在老师的带领下共同回顾前面所列举的归纳推理的例子,然后独立思考,小组讨论后汇报结果.活动结果:归纳推理的作用:1.发现新事实;2.提供研究方向.设计意图通过学生主动探究规律,感受归纳推理对发现新事实、得出新结论的作用.在学生独立思考时教师不做任何提示,培养学生探究能力和合作精神.介绍费马猜想:已知221+1,222+1,223+1,224+1都是质数,运用归纳推理你能得出什么样的结论?教师:22n+1(n∈N)都是质数,这就是著名的费马猜想.半个世纪后欧拉发现:225+1=4 294 967 297=641×6 700 417.这说明了什么?教师:费马猜想是不成立的.后来人们又发现226+1,227+1,228+1都是合数,又能得到什么样的结论?教师:任何形如22n+1(n∈N,n≥6)的数都是合数.设计意图教师生动讲述欧拉发现第五个费马数的过程,激发学生的好奇心与求知欲,同时,通过“猜想——验证——再猜想”说明科学的进步与发展处在一个螺旋上升的过程,同时说明归纳推理的结论不一定正确,有待进一步证明.活动结果:归纳推理的一般步骤:1.通过观察个别情况发现某些相同性质;2.从已知的相同性质中推出一个表述明确的一般性命题;(即猜想)3.检验猜想.运用新知例题 已知数列{a n }的首项a 1=1,且有a n +1=a n a n +1,试归纳出数列的通项公式. 思路分析:数列的通项公式表示的是数列{a n }的第n 项与序号之间的对应关系.为此,我们先根据已知的递推公式,算出数列的前几项.解:当n =1时,a 1=1;当n =2时,a 2=11+1=12; 当n =3时,a 3=121+12=13;当n =4时,a 4=131+13=14. 观察可得,数列的前4项都等于相应序号的倒数,由此猜想,这个数列的通项公式为a n =1n. 点评:掌握归纳推理的一般步骤,进一步感受归纳推理的作用.我们通过归纳得到了关于数列的通项公式的一个猜想,虽然猜想是否正确还有待严格证明,但这个猜想可以为我们的研究提供一种方向.巩固练习设n 是自然数,则18(n 2-1)[1-(-1)n ]的值( ) A .一定是零 B .不一定是整数C.一定是偶数D.是整数但不一定是偶数答案:C变练演编设f(n)=n2+n+11,n∈N,计算f(1)、f(2)、f(3)、f(4)、f(5)、…,你有什么发现?思路分析:分别计算f(1)、f(2)、f(3)、f(4)、f(5)的具体数值,进行观察,发现这组数据的局部特征,从而对整体作出推断.解:当n=1时,f(1)=12+1+11=13;当n=2时,f(2)=22+2+11=17;当n=3时,f(3)=32+3+11=23;当n=4时,f(4)=42+4+11=31;当n=5时,f(5)=52+5+11=41.观察可得,f(1)、f(2)、f(3)、f(4)、f(5)都是质数,由此猜想,任何f(n)=n2+n+11,n∈N都是质数.变式1:设f(n)=n2+n,n∈N,计算f(1)、f(2)、f(3)、f(4)、f(5)、…,你有什么发现?变式2:设f(n)=n2+n+11,n∈N,计算f(2)-f(1)、f(3)-f(2)、f(4)-f(3)、f(5)-f(4)、…,你有什么发现?变式3:设f(n)=n2+n,n∈N,计算f(2)-f(1)、f(3)-f(2)、f(4)-f(3)、f(5)-f(4)、…,你有什么发现?提出问题:归纳推理所得的结论有时是正确的,但有时也是错误的,那么我们为什么还要进行归纳推理呢?活动设计:学生自己进行计算研究,将所有发现的结果一一列举,并由学生相互之间予以评价.活动成果:变式1:f(n)(n∈N)都是偶数;变式2:f(n+1)-f(n)=2(n+1)(n∈N)都是偶数;变式3:f(n+1)-f(n)=2(n+1)(n∈N)都是偶数.达标检测1.根据下面给出的数塔猜测123 456×9+7等于()A.1 111 1101×9+2=11B.1 111 11112×9+3=111C.1 111 112123×9+4=1 111D.1 111 113 1 234×9+5=11 1112.在数列{a n}中,a1=1,且a n=12(a n-1+1a n-1)(n≥2),试归纳出这个数列的通项公式.3.观察下面的“三角阵”,试找出相邻两行数间的关系.11 112 1133 11464 1……1 10 45 …… 45 10 1答案:1.B2.数列的通项公式a n =1(n ∈N ).3.相邻两行数间的关系是每一行首尾的数都是1,其他的数等于上一行中与之相邻的两个数的和.课堂小结1.知识收获:了解了归纳推理的含义;2.方法收获:掌握了归纳推理的方法和步骤;3.思维收获:归纳推理是进行猜测发现结论、探索和提供思路的常用的思维方法. 布置作业1.课本习题2.1 A 组 1题、3题.2.实习作业:登陆网站,选择两个猜想探究来源.补充练习基础练习1.观察下列数列的特点1,2,2,3,3,3,4,4,4,4,…,第100项是( )A .10B .13C .14D .1002.由集合{a 1},{a 1,a 2},{a 1,a 2,a 3},…的子集个数归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为( )A .nB .n +1C .2nD .2n -13.由710>58,911>810,1328>921,…,若a>b>0,m>0,则b +m a +m 与b a之间的大小关系为( ) A .相等 B .前者大C .后者大D .不确定4.1,13,17,115,131,…的一个通项公式a n =__________. 5.f(x)=12x+2,通过计算f(0)+f(1),f(-1)+f(2)的值,猜想f(-n)+f(n +1)=__________.答案:1.C 2.C 3.B 4.a n =12n -1(n ∈N *) 5.22 拓展练习6.观察以下各等式:sin 230°+cos 260°+sin30°·cos60°=34; sin 240°+cos 270°+sin40°·cos70°=34; sin 215°+cos 245°+sin15°·cos45°=34. 分析上述各式的共同特点,写出能反映一般规律的等式,并对等式的正确性加以证明. 解:反映一般规律的等式是sin 2θ+cos 2(θ+30°)+sinθ·cos (θ+30°)=34. 证明:sin 2θ+cos 2(θ+30°)+sinθ·cos (θ+30°)=sin 2θ+(cosθcos30°-sinθsin30°)2+sinθ(cosθcos30°-sinθsin30°)=sin 2θ+(32cosθ-12sinθ)2+sinθ(32cosθ-12sin θ) =sin 2θ+34cos 2θ+14sin 2θ-32cosθsinθ+32cosθsinθ-12sin 2θ =34(sin 2θ+cos 2θ)=34. 设计说明以问题驱动为指导,通过不断提出问题,研究问题,解决问题,使学生获得知识,完成教学.给学生创建一个开放、有活力、有个性的数学学习环境.感受数学美和发现规律的喜悦,激励学生更积极地去寻找规律、认识规律.同时让学生感受到只要做个有心人,发现规律并非难事.以学生熟悉的例子为载体,引导他们提炼、概括、归纳推理的含义和归纳推理的方法,自然合理地提出问题,让学生体会“数学来源于生活”.创造和谐积极的学习气氛.让学生通过直观感知、观察分析、归纳类比,形成由浅入深、由易到难、由特殊到一般的思维飞跃,并借助例题具体说明在数学发现的过程中应该如何应用归纳推理.备课资料哥德巴赫(1690.3.18~1764.11.20)是德国数学家;出生于格奥尼格斯别尔格;曾在英国牛津大学学习;原学法学,但由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣.1725年到了俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年,移居莫斯科,并在俄国外交部任职.1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个质数(只能被1和它本身整除的数)之和.如6=3+3,12=5+7等等.哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者为“二重哥德巴赫猜想”,后者为“三重哥德巴赫猜想”):(1)每个不小于6的偶数都可以表示为两个奇质数之和;(2)每个不小于9的奇数都可以表示为三个奇质数之和.连欧拉这样首屈一指的数学家都不能证明其正确性,这个猜想便引起了许多数学家的注意.从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.当然也曾经有人作了些具体的验证工作,例如:6=3+3,8=3+5,10=5+5=3+7,12=5+7,14=7+7=3+11,16=5+11,18=5+13,…….有人对3.3×108以内且大于6的偶数一一进行验算,哥德巴赫猜想都成立.但还没有严格的数学证明.目前“最佳”的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.”通常都简称这个结果为大偶数.但目前没有任何人对哥德巴赫猜想作出过实质性的贡献.所有的证明都存在问题.一件事物之所以引起人们的兴趣,因为我们关心它,假如一个问题的解决丝毫不能引起人类的兴趣,我们就会闭上眼睛,假如这个问题对我们的知识毫无帮助,我们就会认为它没有价值.哥德巴赫猜想是数的一种表现次序,人们持久地喜欢它,是因为如果没有这种次序,人们就会丧失对更深刻问题的信念——因为无序是对美的致命伤,假如哥德巴赫猜想是错误的,它将限制我们的观察能力,使我们难以跨越一些问题并无法欣赏.一个问题把它无序的一面强加给我们的内心生活,就会使我们的感受趋向丑陋,引起自卑和伤感.哥德巴赫猜想实际是说,任何一个大于3的自然数n,都有一个x,使得n+x与n-x都是质数,因为,(n+x)+(n-x)=2n.这是一种质数对自然数形式的对称,代表一种秩序,它之所以意味深长,是因为质数这种似乎杂乱无章的东西被人们用自然数n对称地串联起来,正如牧童一声口哨就把满山遍野乱跑的羊群唤在一起一样,它使人心旷神怡,又像生物基因DNA,呈双螺旋结构绕自然数n转动,人们从玄虚的质数看到了纯朴而又充满青春的一面.对称不仅是视觉上的美学概念,它还意味着对象的统一.人类的精神威信建立在科学对迷信和无知的胜利之上,人类的精神健康依赖于一种自信,只有自信才能导入完美的信念使理想进入未来中,完美的信念使人生的辛劳和痛苦得以减轻,这样任何惊心动魄的灾难,荡气回肠的悲怆都难以摧毁人的信念,只有感到无能时,信念才会土崩瓦解,肉体在空虚的灵魂诱导之下融入畜类,人类在失败中引发自卑.哥德巴赫猜想的哲学意义正是如此.(设计者:赵海彬)。