21全等三角形
2021年北京市中考数学总复习考点21:全等三角形

2021年北京市中考数学总复习考点21:全等三角形一.选择题(共9小题)1.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.2.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【分析】根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.【解答】解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选:B.3.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【分析】利用判断三角形全等的方法判断即可得出结论.【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.4.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.5.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2 C.2 D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.6.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.130【分析】根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.【解答】解:∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△AED,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.7.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC ≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.8.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为()A.15 B.12.5 C.14.5 D.17【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到=△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE×5×5=12.5,即可得出结论.【解答】解:如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,=×5×5=12.5,∵S△ACE∴四边形ABCD的面积为12.5,故选:B.9.如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若AE=,AD=,则两个三角形重叠部分的面积为()A.B.3C.D.3【分析】如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.想办法求出△AOB的面积.再求出OA与OB的比值即可解决问题;【解答】解:如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.∵∠ECD=∠ACB=90°,∴∠ECA=∠DCB,∵CE=CD,CA=CB,∴△ECA≌△DCB,∴∠E=∠CDB=45°,AE=BD=,∵∠EDC=45°,∴∠ADB=∠ADC+∠CDB=90°,在Rt△ADB中,AB==2,∴AC=BC=2,∴S×2×2=2,△ABC=∵OD平分∠ADB,OM⊥DE于M,ON⊥BD于N,∴OM=ON,∵====,=2×=3﹣,∴S△AOC故选:D.二.填空题(共4小题)10.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC ≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.11.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=ED(只需写一个,不添加辅助线).【分析】根据等式的性质可得BC=EF,根据平行线的性质可得∠B=∠E,再添加AB=ED可利用SAS判定△ABC≌△DEF.【解答】解:添加AB=ED,∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB∥DE,∴∠B=∠E,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=ED.12.等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为30°或110°.【分析】分两种情形,利用全等三角形的性质即可解决问题;【解答】解:如图,当点P在直线AB的右侧时.连接AP.∵AB=AC,∠BAC=40°,∴∠ABC=∠C=70°,∵AB=AB,AC=PB,BC=PA,∴△ABC≌△BAP,∴∠ABP=∠BAC=40°,∴∠PBC=∠ABC﹣∠ABP=30°,当点P′在AB的左侧时,同法可得∠ABP′=40°,∴∠P′BC=40°+70°=110°,故答案为30°或110°.13.如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.给出以下判断:①AC垂直平分BD;②四边形ABCD的面积S=AC•BD;③顺次连接四边形ABCD的四边中点得到的四边形可能是正方形;④当A,B,C,D四点在同一个圆上时,该圆的半径为;⑤将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,当BF⊥CD时,点F到直线AB的距离为.其中正确的是①③④.(写出所有正确判断的序号)【分析】依据AB=AD=5,BC=CD,可得AC是线段BD的垂直平分线,故①正确;依据四边形ABCD的面积S=,故②错误;依据AC=BD,可得顺次连接四边形ABCD的四边中点得到的四边形是正方形,故③正确;当A,B,C,D四点在同一个圆上时,设该圆的半径为r,则r2=(r﹣3)2+42,得r=,故④正确;连接AF,设点F到直线AB的距离为h,由折叠可得,四边形ABED是菱形,AB=BE=5=AD=GD,BO=DO=4,依据S△BDE=×BD×OE=×BE×DF,可得DF=,进而得出EF=,再根据S△ABF =S梯形ABFD﹣S△ADF,即可得到h=,故⑤错误.【解答】解:∵在四边形ABCD中,AB=AD=5,BC=CD,∴AC是线段BD的垂直平分线,故①正确;四边形ABCD的面积S=,故②错误;当AC=BD时,顺次连接四边形ABCD的四边中点得到的四边形是正方形,故③正确;当A,B,C,D四点在同一个圆上时,设该圆的半径为r,则r2=(r﹣3)2+42,得r=,故④正确;将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,如图所示,连接AF,设点F到直线AB的距离为h,由折叠可得,四边形ABED是菱形,AB=BE=5=AD=GD,BO=DO=4,∴AO=EO=3,=×BD×OE=×BE×DF,∵S△BDE∴DF==,∵BF⊥CD,BF∥AD,∴AD⊥CD,EF==,=S梯形ABFD﹣S△ADF,∵S△ABF∴×5h=(5+5+)×﹣×5×,解得h=,故⑤错误;故答案为:①③④.三.解答题(共23小题)14.如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).15.如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【分析】根据角平分线的定义得到∠BAC=∠DAC,利用SAS定理判断即可.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.16.如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.17.如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.【分析】(1)根据AE=DE,BE=CE,∠AEB和∠DEC是对顶角,利用SAS证明△AEB≌△DEC即可.(2)根据全等三角形的性质即可解决问题.【解答】(1)证明:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS).(2)解:∵△AEB≌△DEC,∴AB=CD,∵AB=5,∴CD=5.18.如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠EAF=∠EDB、AE=DE即可判定全等;(2)根据AB=AC,且AD是BC边上的中线可得∠ADC=90°,由四边形ADCF是矩形可得答案.【解答】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB,∴△AEF≌△DEB(AAS);(2)连接DF,∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形,∵△AEF≌△DEB,∴BE=FE,∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB,∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.19.如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以AB=CD,证明△ABO与△CDO全等,所以有OB=OC.【解答】证明:在Rt△ABC和Rt△DCB中,∴Rt△ABC≌Rt△DCB(HL),∴∠OBC=∠OCB,∴BO=CO.20.如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根据“SAS”可判断△BAC≌△DAE,根据全等的性质即可得到∠C=∠E.【解答】解:∵∠BAE=∠DAC,∴∠BAE﹣∠CAE=∠DAC﹣∠CAE,即∠BAC=∠DAE,在△ABC和△ADE中,∵,∴△ABC≌△ADE(SAS),∴∠C=∠E.21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE 于O.求证:AD与BE互相平分.【分析】连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB∥DE,即可得出四边形ABDE是平行四边形,进而得到AD与BE互相平分.【解答】证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.22.已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF ⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,ADC从而得出答案.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,=AE•DE=•2a•a=a2,∴S△ADE∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,=AC•DE=•(2a+2a)•a=2a2=2S△ADE;则S△ADC在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,=AE•BE=•(2a)•2a=2a2,∴S△ABES△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.23.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.24.已知:∠AOB.求作:∠A'O'B',使∠A'O′B'=∠AOB(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径间弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所而的弧交于点D′;(4)过点D′画射线O′B',则∠A'O'B'=∠AOB.根据以上作图步骤,请你证明∠A'O'B′=∠AOB.【分析】由基本作图得到OD=OC=O′D′=O′C′,CD=C′D′,则根据“SSS“可证明△OCD ≌△O′C′D′,然后利用全等三角形的性质可得到∠A'O'B′=∠AOB.【解答】证明:由作法得OD=OC=O′D′=O′C′,CD=C′D′,在△OCD和△O′C′D′中,∴△OCD≌△O′C′D′,∴∠COD=∠C′O′D′,即∠A'O'B′=∠AOB.25.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC 的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)连接DF,由AAS证明△AFE≌△DBE,得出AF=BD,即可得出答案;(2)根据平行四边形的判定得出平行四边形ADCF,求出AD=CD,根据菱形的判定得出即可;【解答】(1)证明:连接DF,∵E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴EF=BE,∵AE=DE,∴四边形AFDB是平行四边形,∴BD=AF,∵AD为中线,∴DC=BD,∴AF=DC;(2)四边形ADCF的形状是菱形,理由如下:∵AF=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AC⊥AB,∴∠CAB=90°,∵AD为中线,∴AD=BC=DC,∴平行四边形ADCF是菱形;26.如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.【分析】根据AE=EC,DE=BE,∠AED和∠CEB是对顶角,利用SAS证明△ADE ≌△CBE即可.【解答】证明:在△AED和△CEB中,,∴△AED≌△CEB(SAS),∴∠A=∠C(全等三角形对应角相等).27.如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【分析】由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.【解答】证明:如图,∵∠1=∠2,∴∠ACB=∠ACD.在△ABC与△ADC中,,∴△ABC≌△ADC(AAS),∴CB=CD.28.已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【解答】证明:∵AD=BC,∴AC=BD,在△ACE和△BDF中,,∴△ACE≌△BDF(SSS)∴∠A=∠B,∴AE∥BF;29.如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.【分析】(1)利用ASA即可证明;(2)首先证明四边形AECD是平行四边形,推出CD=AE=AB即可解决问题;【解答】(1)证明:∵AD∥EC,∴∠A=∠BEC,∵E是AB中点,∴AE=EB,∵∠AED=∠B,∴△AED≌△EBC.(2)解:∵△AED≌△EBC,∴AD=EC,∵AD∥EC,∴四边形AECD是平行四边形,∴CD=AE,∵AB=6,∴CD=AB=3.30.如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.【分析】结论:DF=AE.只要证明△CDF≌△BAE即可;【解答】解:结论:DF=AE.理由:∵AB∥CD,∴∠C=∠B,∵CE=BF,∴CF=BE,∵CD=AB,∴△CDF≌△BAE,∴DF=AE.31.如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC ∥EF.【分析】由全等三角形的性质SAS判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.32.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.【分析】只要证明Rt△ADE≌Rt△CDF,推出∠A=∠C,推出BA=BC,又AB=AC,即可推出AB=BC=AC;【解答】证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=DC,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形.33.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【分析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA (ASA),再根据全等三角形的性质即可得出BE=AF.【解答】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.34.已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【解答】证明:(1)∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD=10.35.如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.【分析】(1)首先证明四边形ABCD是平行四边形,再利用ASA证明△AOE≌△COF;(2)结论:四边形BEDF是菱形.根据邻边相等的平行四边形是菱形即可证明;【解答】(1)证明:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF.(2)解:结论:四边形BEDF是菱形,∵△AOE≌△COF,∴AE=CF,∵AD=BC,∴DE=BF,∵DE∥BF,∴四边形BEDF是平行四边形,∵OB=OD,EF⊥BD,∴EB=ED,∴四边形BEDF是菱形.36.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【解答】证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°。
《全等三角形》优秀的教学反思(通用21篇)

《全等三角形》优秀的教学反思(通用21篇)在工作和生活中,少不了要写各种各样的文档,不论是写制度、写总结、写方案、写方案、写教案还是写其它的材料,能写出一篇好的文档,体现了一个人的文笔,也体现着一个人的力量,下面是我整理的《《全等三角形》优秀的教学反思(通用21篇)》,快快拿去用吧!《全等三角形》优秀的教学反思篇1全等三角形第一课时,这节课比较简洁,我接受了先学后教的教学策略。
教学过程大致是:首先,同学自学。
其次,老师多媒体呈现教材上的图案以及制作的一些图案,引导同学识图,检测同学自我建构全等三角形概念的状况。
再次,老师演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。
通过教具演示让同学体会对应顶点、对应边、对应角的概念,并以找伴侣的形式练习对应顶点、对应边、对应角,加强对对应元素的娴熟程度。
此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对学问的巩固,再给出练习推断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。
接下来,通过同学对全等三角形观看,得出全等三角形的性质。
并通过练习来理解全等三角形的性质并渗透符号语言推理。
最终老师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简洁的实际问题。
这节课有几点不足:1.同学动手活动少,应当在课前就要求同学自制一对全等三角形。
这样课堂上好操作,同学体验也深刻了,活而不乱,时间上也是可控的。
2.题目变形应当突出全等三角形的性质这一重点,所练习题的综合度和变化还是不够多。
3.多媒体演示如能协作同学手工制作的三角板同时进行,成效会更好。
但是要支配好观看次序和图形的变化次序。
《全等三角形》优秀的教学反思篇2一、教学方法让同学通过观赏来自生活中的精致图案,观看体会全等图形的定义,自学全等图形的特征,通过练习总结和强化对应边、对应角的查找方法,从而体会什么样的两个图形是全等三角形。
全等三角形的概念和性质及判定一-教师版

1 / 22【例1】 下列说法正确的是()A .全等三角形是指形状相同的三角形B .全等三角形是指面积相等的三角形C .全等三角形的周长和面积都相等D .所有的等边三角形都全等 【难度】★ 【答案】C【解析】A 错,形状相同,大小也要相同;B 错,面积相等不一定全等,反例同底等高 的三角形;D 错,大小不一定相等. 【总结】本题主要考查全等三角形的概念.【例2】 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等【难度】★ 【答案】C【解析】等底同高,所以面积相等.【总结】本题主要考查同底等高的两个三角形的面积相等的运用.【例3】 如图所示,△ABC ≌△CDA ,且AB =CD ,则下列结论错误的是() A .∠1=∠2 B .AC =CA C .∠B =∠D D .AC =BC【难度】★ 【答案】D【解析】全等三角形对应角相等,对应边相等. 【总结】考察学生对全等三角形性质的理解及运用.【例4】 下列各条件中,不能作出唯一的三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边 【难度】★ 【答案】C【解析】C 选项是边边角,不能作为全等的判定条件. 【总结】考查全等三角形的判定定理的运用.例题解析21ABCD【例5】 练习画出下列条件的三角形:(1) 画,ABC ∆使40,45,4A B AB cm ∠=︒∠=︒=; (2) 画,ABC ∆使6,8,10AB cm BC cm AC cm ===; (3) 画,ABC ∆使4,3,45AB cm AC cm A ==∠=︒; (4) 画,ABC ∆使8,5,50AB cm AC cm B ==∠=︒. 【难度】★ 【答案】略 【解析】略.【例6】 下列说法:①形状相同的两个图形是全等形;②面积相等的两个三角形是全等三角形;③全等三角形的周长相等,面积相等;④在△ABC 和△DEF 中,若∠A =∠D ,∠B =∠E ,∠C =∠F ,AB =DE ,BC =EF ,AC =DF ,则两个三角形的关系,可记作△ABC ≌△DEF ,其中说法正确的是( ) A .1个 B .2个C .3个D .4个【难度】★★ 【答案】B【解析】(1)错,大小不一定相等;(2)面积相等不一定全等,反例同底等高;(3)对; (4)对,故选B .【总结】考察学生对全等三角形的概念及性质的理解. 【例7】 下列说法中错误的是()A .全等三角形的公共角是对应角,对顶角也是对应角B .全等三角形的公共边也是对应边C .全等三角形的公共顶点是对应顶点D .全等三角形中相等的边所对应的角是对应角,相等的角所对的边是对应边 【难度】★★ 【答案】C【解析】全等三角形的公共顶点不一定是对应顶点,两个全等三角形任意放置,使得三 角形的一个顶点与另一个三角形的不对应的顶点重合.【总结】考察学生对全等三角形的概念的辨析能力,以及正确的举反例.【例8】 如图所示,ABE ADC ABC ∆∆∆和是分别沿着AB AC 、边翻折形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( ) A .80°B .100°C .60°D .45°【难度】★★α321ABCDEP3 / 22【答案】A【解析】设1=28x ∠,25x ∠=,33x ∠=,则36180x =,解得:5x =. 1140∴∠=︒,225∠=︒,315∠=︒, 22ABC ACB ∴∠∂=∠+∠212280=∠+∠=︒.【总结】考察学生对全等三角形的应用以及翻折知识的理解及运用.【例9】 如图,在矩形ABCD 中,AE 平分∠DAB 交DC 于点E ,连接BE ,过E 作EF ⊥BE交AD 于F .(1)∠DEF 和∠CBE 相等吗?请说明理由;(2)请找出图中与ED 相等的线段(不另添加辅助线和字母),并说明理由. 【难度】★★【答案】(1)相等;(2)ED BC AD ==.【解析】(1)90DEF CEB ∠+∠=︒,90CBE CEB ∠+∠=︒, DEF CBE ∴∠=∠(同角的余角相等) (2)AE 平分DAB ∠, 45DAE ∴∠=︒,DE AD ∴=.AD BC =, DE AD BC ∴==.【总结】考察学生对图形的理解和掌握,能够迅速的根据图形发现同角的余角相等,再 利用特殊的角度45得出等腰直角三角形,从而解题.【例10】 如图所示,30255ADF BCE B F BC cm ∆≅∆∠=︒∠=︒=,,,,14CD cm DF cm ==,.求:(1)1∠的度数;(2)AC 的长. 【难度】★★【答案】(1)1=55∠°;(2)4AC cm =. 【解析】(1)ADF BCE ≅,30A B ∴∠=∠=︒,AD BC =,155A F ∴∠=∠+∠=︒; (2)ADF BCE ≅,AD BC ∴=, 514AC AD CD cm ∴=-=-=.【总结】考察学生对全等三角形对应边相等,对应角相等的掌握,并且学会正确运用.【例11】 如图,在△ABC 中,∠A :∠B :∠ACB =2:5:11,若将△ABC 绕点C 逆时针旋转,试旋转前后的△A ’B ’C ’中的顶点B ’在原三角形的边AC 的延长线上,求∠BCA ’的度数. 【难度】★★ 【答案】40︒.【解析】设2A x ∠=,5B x ∠=,11ACB x ∠=,1ABC DEFABCA’B ’则18180x =, 解得:10x =, ∴110BCA ∠=,70BCB '∠=.110A CB ''∠=, 40BCA '∴∠=.【总结】考察学生对旋转的理解,注意利用全等三角形的性质进行解题.【例12】 如图,已知△ABC ≌△ADE ,BC 的延长线交AD 于点F ,交AE 的延长线于G ,∠ACB =1050,∠CAD =100,∠ADE =250,求∠DFB 和∠AGB 的度数. 【难度】★★【答案】∠DFB =85︒,∠AGB =45︒. 【解析】证明:ABC ADE ≅, 25ADE ABC ∴∠=∠=︒,50CAB EAD ∠=∠=︒, 10502585DFB ∴∠=︒+︒+︒=︒, 1801102545AGB ∠=︒-︒-︒=︒.【总结】本题主要考察学生对全等三角形的性质及三角形外角性质和内角和定理的综合 运用.【例13】 如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时.(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED 的度数为x , ∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律. 【难度】★★★【答案】(1)AED A ED '≅,A A '∠=∠, AED A ED '∠=∠,ADE A DE '∠=∠; (2)11802x ∠=-,21802y ∠=-; (3)()1122A ∠=∠+∠. 【解析】(3)证明:∵()180A x y ∠=-+,1+2=3602()x y ∠∠-+, ∴()1122A ∠=∠+∠. 【总结】本题一方面考查翻折的性质,另一方面考查全等三角形的性质及三角形内角和 定理的运用.ABC DEF G 21AB C DEA ’【例14】 如图(1)所示,把△ABC 沿直线BC 移动线段BC 那样长的距离可以变到△ECD的位置;如图(2)所示,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置;如图(3)所示,以点A 为中心,把△ABC 旋转180°,可以变到△AED 的位置,像这样,只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换. 在全等变换中可以清楚地识别全等三角形的对应元素,以上的三种全等变换分别叫平移变换、翻折变换和旋转变换,问题:如图(4),△ABC ≌△DEF ,B 和E 、C 和F 是对应顶点,问通过怎样的全等变换可以使它们重合,并指出它们相等的边和角.ABC DE(1)ABCD(2)A BCDE(3)ABC(4)DEF【难度】★★★【答案】翻折变换,平移变换或旋转变换,平移变换. 【解析】AB ED =,BC EF =,AC DF =.【总结】考察学生对图形的运动的理解和掌握,需要学生进行一定的空间想象.【例15】 如图,已知∠B =∠D ,∠1=∠2,AC =AE ,说明△ABC ≌△ADE 的理由. 【难度】★★ 【答案】见解析.【解析】证明:12∠=∠,12DAC DAC ∴∠+∠=∠+∠,即BAC DAE ∠=∠. 在ABC 和DAE 中,B D BAC DAE AC AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ADE (A.A.S ).【总结】考察学生对全等三角形的判定条件的掌握.【例16】 如图,已知∠C =∠E ,BE =CD ,说明△ABE 与△ADC 全等的理由,AB 与AD相等吗?为什么? 【难度】★ 【答案】见解析.【解析】证明:在ABE 和ADC 中,A A C E BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABE ADC ∴≅(A.A.S ), AB AD ∴=.【总结】考察学生对全等三角形的判定及性质的综合运用.ABCDEF21AB CDE【例17】 如图,已知AD =BC ,AE =BE .说明AC =BD ,∠C =∠D 的理由. 【难度】★ 【答案】见解析. 【解析】证明:AD BC =,AE BE =,DE CE ∴=.在ACE 和BDE 中,AE BE = AEC BED ∠=∠, CE DE =ACE BDE ∴≅(S.A.S )AC BD ∴=,C D ∠=∠(全等三角形的对应边相等,对应角相等)【总结】考察学生对全等三角形的判定及性质的综合运用.【例18】 如图,已知AB =CD ,AD =BC ,说明∠A =∠C 的理由. 【难度】★ 【答案】见解析. 【解析】证明:连接BD 在ABD 和CDB 中,AB CD AD BC BD DB =⎧⎪=⎨⎪=⎩, (..)ABD CDB S S S ∴≅ A C ∴∠=∠(全等三角形的对应角相等)【总结】考察学生对全等三角形的判定及性质的综合运用.【例19】 如图,已知BD 是△ABC 的中线,B 、D 、E 、F 在一条直线上,且AE ∥CF ,说明△ADE 与△CDF 全等的理由. 【难度】★★ 【答案】见解析. 【解析】//AE CF , E EFC ∴∠=∠.∵BD 是△ABC 的中线, ∴AD CD =.在ADE 和CDF 中,E EFCADE FDC AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ADE CDF ∴≅(A.A.S ). 【总结】考察学生对全等三角形的判定条件的掌握.ABCDEABCDEFAB CD【例20】 如图,已知AC ∥BD ,AC =BD ,(1)说明△AOC 与△BOD 全等的理由;(2)说明EO =FO 的理由. 【难度】★★ 【答案】见解析. 【解析】证明:(1)//AC BD ,C D ∴∠=∠.在AOC 和BOD 中,C DAOC BOD AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, AOC BOD ∴≅(A.A.S ); (2)AOC BOD ≅, CO DO ∴=.在CEO 和DFO 中,C D CO DOCOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()CEO DFO ASA ∴≅, EO FO ∴=.【总结】考察学生对全等三角形的判定及性质的综合运用.【例21】 如图,CD ⊥AB 于D ,BE ⊥AC 于E ,OD =OE ,说明AB =AC 的理由. 【难度】★★ 【答案】见解析.【解析】CD AB BE AC ⊥⊥,, 90BDC DEC ∴∠=∠=︒. 在BDO 和CEO 中,BDC BEC DO EODOB COE ∠=∠⎧⎪=⎨⎪∠=∠⎩, (..)BDO CEO A S A ∴≅. DO EO ∴=,B C ∠=∠,BO CO =, BE CD ∴=.在ABE 和ACD 中,A A BE CDBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ABE ≌ACD (A.S.A ), AB AC ∴=(全等三角形的对应边相等)【总结】本题主要考察学生对全等三角形的判定条件的掌握,注意利用多次全等.ABCDEFOABCDEO【例22】 如图,已知AD ∥BC ,BF ∥DE ,AE =CF .(1) △ADE 与△CBF 全等吗,为什么? (2) 说明AB =CD 的理由; (3) 图中有哪几对全等三角形? 【难度】★★ 【答案】见解析. 【解析】证明:(1)全等, //AD BC , DAC ACB ∴∠=∠.//BF DE ,DEF BFE ∴∠=∠, AED BFC ∴∠=∠.在AED 和BFC 中,DAC ACB AE CF AED BFC ∠=∠⎧⎪=⎨⎪∠=∠⎩, (..)ADE CBF A S A ∴≅; (2)ADE CBF ≅, AD BC ∴=.在ABC 和ADC 中AD BC DAC ACB AC AC =⎧⎪∠=∠⎨⎪=⎩,(..)ABC ADC S A S ∴≅, AB CD ∴=(全等三角形的对应边相等);(3)AED CFB ≅;DEC BFA ≅;ABC CDA ≅. 【总结】本题主要考察全等三角形的判定与性质的综合运用.【例23】 如图,已知AB =CD ,BM =CM ,AC =BD ,说明AM =DM 的理由. 【难度】★★ 【答案】见解析.【解析】在ABC 和BCD 中,AB CDAC BD BC BC =⎧⎪=⎨⎪=⎩, (..)ABC DCB S S S ∴≅, ABC BCD ∴∠=∠, 在ABM 和DCM 中,AB CD ABC BCD BM CM =⎧⎪∠=∠⎨⎪=⎩,(..)ABM DCM S A S ∴≅, AM DM ∴=. 【总结】本题主要考察全等三角形的判定与性质的综合运用,利用多次全等进行证明.AB CDMABCDEF【例24】 如图,∠1=∠2,AC =BD ,E 、A 、B 、F 在同一条直线上,说明:∠CAD =∠DBC 的理由. 【难度】★★ 【答案】见解析.【解析】12∠=∠, CAB DBA ∴∠=∠.在CAB 和DBA 中,AC BD CAB DBA AB AB =⎧⎪∠=∠⎨⎪=⎩, (..)CAB DBA S A S ∴≅, CBA DAB ∴∠=∠,又CAB DBA ∠=∠,CAD DBC ∴∠=∠.【总结】本题主要考察全等三角形的判定与角的和差的综合运用.【例25】 如图所示,AB =AC ,CE =BE ,连结AE 并延长交BC 于D ,说明AD ⊥BC 的理由. 【难度】★★ 【答案】见解析【解析】证明:在ABE 和ACE 中,AB AC BE CE AE AE =⎧⎪=⎨⎪=⎩,(..)ABE ACE S S S ∴≅, BAD CAD ∴∠=∠.在ABD 和ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, (..)ABD ACD S A S ∴≅, 90ADB ADC ∴∠=∠=, AD BC ∴⊥.【总结】本题主要考查全等三角形的判定的综合运用,通过多次全等得到垂直.21ABC DEFABCDE【例26】 如图所示,BE 、CD 相交于O ,AB =AC ,AD =AE ,说明OD =OE 的理由. 【难度】★★ 【答案】见解析.【解析】证明:在ADC 和AEB 中, AD AE A A AB AC =⎧⎪∠=∠⎨⎪=⎩, ∴(..)ADC AEB S A S ≅ B C ∴∠=∠(全等三角形的对应角相等) AB CA =,AD AE =,BD CE ∴=.在BDO 和CEO 中,DOB COE ∠=∠ B C ∠=∠ BD CE =(..)BDO CEO A A S ∴≅, OD OE ∴=(全等三角形的对应边相等)【总结】本题主要考查全等三角形的判定的综合运用,注意对全等的多次运用.【例27】 如图,已知AB ⊥BD ,DE ⊥BD ,AB =CD ,BC =DE .试说明:AC ⊥CE ,若将CD 沿CB 方向平移得到图(2)(3)(4)(5)的情形,其余的条件不变, 结论AC 1⊥C 2E 还成立吗?请说明理由. 【难度】★★★ 【答案】见解析. 【解析】证明:(1)AB BD ⊥,DE BD ⊥, 90B D ∴∠=∠=︒在ABC 和CDE 中,AB CDB D BC DE =⎧⎪∠=∠⎨⎪=⎩, (..)ABC CDE S A S ∴≅, A ECD∴∠=∠.90A ACB ∠+∠=,90ACB ECB ∴∠+∠=, 即AC CE ⊥.ABCD EMAB C 2D EC 1AB C 1D EM AB C 2 DEM C 1MAB C 1D EC 2ABCDEO(2)12ABC C ED ≅, 2A E CD ∴∠=∠.190A AC B ∠+∠=,2190EC D AC B ∴∠+∠=, 1290C MC ∴∠=, 12AC C E ∴⊥.【总结】本题主要考察全等三角形的判定及垂直的综合运用,说理时注意分析.【例28】 如图,线段BE 上有一点C ,以BC 、CE 为边分别在BE 的同侧作等边三角形ABC 、DCE ,连结AE 、BD ,分别交CD 、CA 于Q 、P .(1)找出图中的一组相等的线段(等边三角形的边长相等除外),并说明你的理由; (2)取AE 的中点M 、BD 的中点N ,连结MN ,试判断△CMN 的形状. 【难度】★★★【答案】(1)BD AE =,(2)等边三角形. 【解析】(1)∵等边三角形ABC 和 等边三角形DCE , ∴BC AC =,CD CE =, BCA DCE ∠=∠=60°.BCA ACD DCE ACD ∴∠+∠=∠+∠,即BCD ACE ∠=∠.在BCD 和ACE 中,BC ACBCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩, BCD ACE ∴≅(S.A.S ),BD AE ∴=(全等三角形的对应边相等); (2)BCD ACE ≅, DBE EAC ∴∠=∠.M 、N 分别为BD 、AE 的中点, BN ND ∴=,AM ME =,BD AE =, BN AM ∴=.在BCN 和ACM 中,BC ACCBN CAM BN AM =⎧⎪∠=∠⎨⎪=⎩, BCN ACM ∴≅(S.A.S ),CM CN ∴=,BCN ACM ∠=∠,60NCM BCA ∴∠==︒, CM CN =, ∴△CMN 是等边三角形.【总结】考察学生对全等三角形的判定条件的掌握,注意在复杂的图形中准确的找出全 等三角形及其对应条件.2121A BCDEQP ABCDEMNPQ【例29】 如图,△ABC 是等腰直角三角形,其中CA =CB ,四边形CDEF 是正方形,连接AF 、BD .(1)观察图形,猜想AF 与BD 之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF 绕点C 按顺时针方向旋转,使正方形CDEF 的一边落在△ABC 的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由. 【难度】★★★【答案】(1)AF BD =,AF BD ⊥;(2)成立.【解析】证明:(1)△ABC 是等腰直角三角形,四边形CDEF 是正方形,CF CD ∴=,AC BC =,90DCF ACB ∠=∠=, FCA DCB ∴∠=∠.在FCA 和DCB 中,CF CD FCA DCB AC CB=⎧⎪∠=∠⎨⎪=⎩,()FCA DCB SAS ∴≅.AF DB ∴=,DBC FAC ∠=∠.90DBC ABD BAC ∠+∠+∠=, 90FAC ABD BAC ∴∠+∠+∠=,AF BD ∴⊥.(2)成立,证明过程同(1).【总结】考察学生对全等三角形的判定条件的掌握,注意根据旋转图形的不变性进行解 题.【习题1】 下列命题中正确的是 ( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等【难度】★ 【答案】D【解析】A 错,全等三角形对应边上的高相等;B 错,全等三角形对应边上的中线相等; C 错,全等三角形对应角的平分线相等;D 对. 【总结】考察学生对全等三角形的相关概念的理解.随堂检测ABC D E F【习题2】 如图,△ABD ≌△CDB ,且AB 、CD 是对应边;下面四个结论中不正确的是( )A .△ABD 和△CDB 的面积相等 B .△ABD 和△CDB 的周长相等C .∠A +∠ABD =∠C +∠CBD D .AD ∥BC ,且AD =BC 【难度】★ 【答案】C【解析】C 错,正确答案是∠A +∠ABD =∠C +∠CDB ,A ,B ,D 均对. 【总结】主要考察学生对全等三角形的概念的理解.【习题3】 如图,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD =7厘米,DM =5厘米,∠DAM =390,则AN =______厘米,NM =___________厘米,∠NAB =_______. 【难度】★【答案】7;5;12°.【解析】由翻折的性质,可得:ADM ANM ≅, 则7AN AD ==厘米,5MN DM ==厘米,39MAN MAD ∠=∠=, 故9023912NAB ∠=-⨯=.【总结】本题主要考查翻折性质与全等三角形性质的综合运用.【习题4】 尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS【难度】★ 【答案】D【解析】∵AC AD =,PC PD =,OP OP =,(..)DCP ODP S S S ∴≅【总结】根据画图考察学生对画图过程中不变性的理解和掌握.A BCDA BC DM NABCDPO【习题5】如图,CE⊥AB,DF⊥AB,垂足分别为E、F,(1)若AC//DB,且AC=DB,则△ACE≌△BDF,根据_________;(2)若AC//DB,且AE=BF,则△ACE≌△BDF,根据_________;(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据_________;(4)若AC=BD,AE=BF,CE=DF.则△ACE≌△BDF,根据_________.【难度】★★【答案】(1)A.A.S;(2)A.S.A;(3)S.A.S;(4)S.S.S.【解析】//AC BD,A B∴∠=∠,C D∠=∠,则(1)、(2)、(3)、(4)分别得证.【总结】考察学生对全等三角形的判定条件的熟练掌握.【习题6】如图,已知△ABC≌△ADE, ∠CAD=150,∠DFB=900,∠B=250.求∠E和∠DGB的度数.【难度】★★【答案】105E∠=︒,65DEG∠=︒.【解析】AD BG⊥,90AFB∴∠=︒(垂直的意义)15DAC∠=︒,75FCA∴∠=︒(互余的意义)105ACB∴∠=︒(邻补角的意义)ACB AED≅,105E ACB∴∠=∠=︒,25B D∠=∠=︒902565DGB∴∠=︒-︒=︒(互余的意义)【总结】考察学生对全等三角形的性质的理解,并且对邻补角和互余等知识点要熟练掌握并应用.【习题7】如图:A、E、F、C四点在同一条直线上,AE=CF,过E、F分别作BE⊥AC、DF⊥AC,且AB∥CD,AB=CD.试说明:BD平分EF.【难度】★★【答案】见解析.【解析】//AB CD,A C∴∠=∠,ABD CDB∠=∠在ABG和CDG中,ABD CDBAB CDA C∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABG CGD ASA∴≅,AG CG∴=,AE CF=,EG GF∴=,BD∴平分EF.【总结】考察学生对全等三角形的性质及判定的理解及运用.ABCEDFA BCDEFGABDE FG【习题8】 如图所示,△ABC 绕顶点A 顺时针旋转,若∠B =40°,∠C =30°,(1)顺时针旋转多少度时,旋转后的△AB 'C '的顶点C '与原三角形的顶点B 和A 在同一直线上?(原△ABC 是指开始位置)(2)再继续旋转多少度时,点C 、A 、C '在同一直线上? 【难度】★★【答案】(1)110︒;(2)70︒.【解析】(1)1803040110CAB ∠=︒-︒-︒=︒; (2)18011070︒-︒=︒.【总结】考察学生对旋转的理解,注意旋转过程中的不变性.【习题9】 已知:如图,△ABC 是等边三角形,过AB 边上的点D 作DG ∥BC ,交AC于点G ,•在GD 的延长线上取点E ,使DE =DB ,连结AE 、CD . 试说明:△AGE ≌△DAC . 【难度】★★ 【答案】见解析. 【解析】ABC 是等边三角形.AB AC BC ∴==,60BAC ACB B ∠=∠=∠=(等边三角形的性质) //DG BC ,60ADG B ∴∠=∠=°,60AGD ACB ∠=∠=°, ADG AGD ∴∠=∠.ED DB =,又DG AD =, DE DG DB AD ∴+=+,即AB EG =.AB AC =,AC EG ∴=.在ADG 和ADC 中,AG ADAGE DAC EG AC =⎧⎪∠=∠⎨⎪=⎩,(..)AGE DAC S A S ∴≅∠.【总结】考察学生对全等三角形的判定的掌握和应用以及等边三角形的性质综合运用.ABCDE FG【习题10】 在∠O 的两边上分别取点A 、D 和B 、C ,连接AC 、BD 相交于P .(1)若∠A =∠B ,P A =PB ,试说明OA =OB 的理由; (2)若OA =OB ,P A =PB ,试说明PC =PD 的理由. 【难度】★★★ 【答案】见解析.【解析】(1)在ADP 和BCP 中,A BPA PBDPA CPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, (..)ADP BCP A S A ∴≅,DP CP ∴=(全等三角形对应边相等). AP BP =, AC BD ∴=(等式性质). 在OAC 和ODB 中,O OA B AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,(..)AOC BOD A A S ∴≅,AO BO ∴=(全等三角形的对应边相等); (2)连接OP在AOP 和BOP 中,OA OBPA PB OP OP =⎧⎪=⎨⎪=⎩,(..)AOP BOP S S S ∴≅,A B ∴∠=∠,AP = BP (全等三角形的对应角相等、对应边相等). 在ADP 和PCB 中,A BAP PB APD CPB ∠=∠⎧⎪=⎨⎪∠=∠⎩(..)ADP PCB A S A ∴≅,PC PD ∴=(全等三角形的对应边相等). 【总结】考察学生对全等三角形的性质及判定的理解和掌握,注意多次全等的综合运用.ABCDP OABCDP O【习题11】 如图,△ABC 、△ADE 都是等腰直角三角形,绕着顶点A 旋转后位置如下:(1) 当C 、A 、D 在同一直线上,说明CE 与BD 有何关系?为什么?(2) 当△ADE 再继续旋转到(2)、(3)、(4)的位置后,CE 与BD 又有何关系. 【难度】★★★【答案】(1)CE BD =,CE BD ⊥;(2)CE BD =,CE BD ⊥.【解析】(1)证明:△ABC 、△ADE 都是等腰直角三角形,AD AE ∴=,AC AB =,90BAD CAB ∠=∠=︒(等边三角形的性质)在ADB 和AEC 中,AD AEDAE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,(..)ADB AEC S A S ∴≅,CE BD ∴=,ACE ABD ∠=∠(全等三角形的对应边相等,对应角相等)90ACE BCE CBE ∠+∠+∠=, 90ABD BCE CBE ∴∠+∠+∠=,CE BD ∴⊥.(2)CE BD =,CE BD ⊥,证明过程同上.【总结】本题主要考查等腰直角三角形的性质与全等三角形的判定和性质的综合运用, 注意认真分析题目中的条件.【作业1】 如图,△ABC ≌△ABD ,C 和D 是对应顶点,若AB =6cm ,AC =5cm ,BC =4cm ,则AD 的长为_________cm . 【难度】★ 【答案】5【解析】全等三角形的对应边相等,5AD AC ==. 【总结】本题主要考查全等三角形的性质.课后作业A BCDE(1)(2)ABDCE(3) (4)AB CE DABCDE ABCD【作业2】 如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF ===∠∠,,; ③B E BC EF C F ===∠∠∠∠,,; ④AB DE AC DF B E ===∠∠,,.其中,能使ABC DEF △≌△的条件共有 ( ) A .1组B .2组C .3组D .4组【难度】★ 【答案】C【解析】(1)S.S.S ;(2)S.A.S ;(3)A.S.A ;(4)S.S.A 不符合,所以正确答案 是(1)、(2)、(3),故选C .【总结】考察学生对全等三角形的判定定理的掌握.【作业3】 下列各条件中,不能作出唯一三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边 【难度】★ 【答案】C【解析】边边角不能作为全等三角形的判定条件.【作业4】 已知△ABC ≌△DEF ,若△ABC 的周长为32,AB =8,BC =12,DE =_______,DF =_______,EF = _______. 【难度】★★ 【答案】8;12;12. 【解析】△ABC ≌△DEF ,8DE AB ∴==,3212812DF AC ==--=,12EF BC ==. 【总结】本题主要考察全等三角形的性质的运用.ABCDEF【作业5】 如图△ACE ≌△DBF ,AE =DF ,CE =BF ,AD =8,BC =2.(1)求AC 的长度;(2)说明CE ∥BF 的理由. 【难度】★★【答案】(1)5;(2)见解析. 【解析】(1)△ACE ≌△DBF ,AC BD ∴=(全等三角形对应边相等)AB BC CD BC ∴+=+(等式性质),即AB CD =. 8AD =,2BC =,3AB CD ∴==, 5AC ∴=;(2)△ACE ≌△DBFECA DBF ∴∠=∠(全等三角形的对应角相等) //CE BF ∴(内错角相等,两直线平行)【总结】考察学生对全等三角形的性质的掌握及运用.【作业6】 如图,已知△ABC ≌△AED ,AE =AB ,AD =AC ,∠D -∠E =200,∠BAC =600,求∠C 的度数. 【难度】★★ 【答案】70︒.【解析】设E x ∠=,20D x ∠=+,△ABC ≌△AED , 60BAC EAD ∴∠=∠=︒,C D ∠=∠2060180x x ∴+++=︒,50x ∴=,70D ∴∠=︒, 70C ∴∠=︒.【总结】考察学生对全等三角形的性质的理解和运用,注意利用设未知数解题.【作业7】 如图,△DAC 和△EBC 均是等边三角形,点C 在线段AB 上,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论①△ACE ≌△DCB ;②CM =CN ;③AC =DN .其中正确的结论是_______________,证明正确的结论. 【难度】★★ 【答案】①和②正确.【解析】①△DAC 和△EBC 均是等边三角形, ∴AC DC =,BC EC =,60ACD BCE ∠=∠=︒, ACE DCB ∴∠=∠.在ACE 和DCB 中,AC CD ACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩, (..)ACE DCB S A S ∴≅;ABCDA BCD EMNABCDEF(2)ACE DCB≅,CAE CDB∴∠=∠(全等三角形的对应角相等)60ACD BCE∠=∠=︒,60DCE ACD∴∠=∠=︒.在ACM和DCN中,AC DCACD DCECAE BDC=⎧⎪∠=∠⎨⎪∠=∠⎩,ACM DCN∴≅(A.A.S)CM CN∴=(全等三角形的对应边相等)【总结】考察学生对全等三角形的性质及判定的理解和运用.【作业8】如图,AD⊥AB,AC⊥AE,且AD=AB,AC=AE.试说明:DC=BE,DC⊥BE.【难度】★★【答案】见解析.【解析】AD⊥AB,AC⊥AE,90DAB EAC∴∠=∠=︒(垂直的意义)DAC BAE∴∠=∠(等式性质)在DAC和BAE中,AD ABDAC BAEAC AE=⎧⎪∠=∠⎨⎪=⎩,(..)DAC ABE S A S∴≅DC BE∴=,B D∠=∠(全等三角形的对应角相等,对应边相等)设BE与DC交于点F,DGA BGC∠=∠,90D DGA∠+∠=,90B BGC∴∠+∠=,90BFG∴∠=︒,DC BE∴⊥(垂直的意义).【总结】考察学生对全等三角形的性质及判定及三角形内角和定理的综合运用,注意归纳总结证明垂直的方法.ABCDEFGE【作业9】 如图,已知AE =CF ,∠DAF =∠BCE ,AD =CB . (1)问△ADF 与△CBE 全等吗?请说明理由;(2)如果将△BEC 沿CA 边方向平行移动,可有图中3幅图,如上面的条件不变, 结论仍成立吗?请选择一幅图说明理由. 【难度】★★ 【答案】(1)全等; (2)成立,全等. 【解析】(1)AE CF =,AE EF CF EF ∴-=-,即AF CE =(等式性质).在ADF 和BCE 中,AF CEA C AD BC =⎧⎪∠=∠⎨⎪=⎩, (..)ADF BCE S A S ∴≅;(2)成立,证明过如(1).【总结】考察学生对全等三角形的性质及判定的理解和运用.【作业10】 如图,以△ABC 的边AB 、AC 为边向外作等边△ABD 和等边△ACE ,BE与CD 相交于点F .(1)请说明△ABE ≌△ADC 的理由; (2)求∠1的度数. 【难度】★★★【答案】(1)见解析;(2)1120∠=︒.【解析】(1)证明:在等边△ABD 和等边△ACE 中,AD AB =,AC AE =,60DAB CAE ∠=∠=︒,DAB BAC CAE BAC ∴∠+∠=∠+∠, DAC BAE ∠=∠即.在ABE 和DAC 中,AD ABDAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴(..)ABE ADC S A S ≅;(2)ABE ADC ≅, DCA BEA ∴∠=∠(全等三角形对应角相等)1DCE BEC ∠=∠+∠, 又DCA BEA ∠=∠ 1ACE AEB BEC ∴∠=∠+∠+∠6060120=︒+︒=︒.【总结】考察学生对全等三角形的性质及判定的理解和掌握,综合性较强,注意利用外 角进行适当的转化,把未知的角度转化为和题目有关的已知角,从而进行解题.ABCD EF A BCD E FAB CDEFC (A )BD。
三角形全等的判定方法(5种)例题+练习(全面)

教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1 边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”. 注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在∆ABC和∆ABD中,∠A=∠A,AB=AB,BC=BD,显然这两个三角形不全等. 例1 如图,AC=AD,∠CAB=∠DAB,求证:∆ACB≌∆ADB.例2 如图,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF求证:BF=CE.例3.(1)如图①,根据“SAS”,如果BD=CE, = ,那么即可判定△BDC≌△CEB;(2) 如图②,已知BC=EC,∠BCE=ACD,要使△ABC≌△DEC,则应添加的一个条件为例4.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是;△ABE≌,理由是.例5.如图,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出∠ =∠或∥,就可得到△ABC≌△DEF.例6.如图,已知AB∥DE,AB=DE,BF=CE,求证:△ABC≌△DEF.例7.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E例8.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在△ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是:.(不添加辅助线)例2.如图,已知AD平分∠BAC,且∠ABD=∠ACD,则由“AAS”可直接判定△≌△.例3.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,那么AE= cm.例4.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.例5.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:BC=DC.例6.如图,在△ABC中,D是BC边上的点 (不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1) 你添加的条件是:;(2) 证明:例7.如图,A在DE上,F在AB上,且BC=DC,∠1=∠2=∠3,则DE的长等于 ( ) A.DC B.BCC.AB D.AE+AC【基础训练】1.如图,已知AB=DC,∠ABC=∠DCB,则有△ABC≌_______,理由是_______;且有∠ACB=_______,AC=_______.2.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌_______,理由是_______;△ABF≌_______,理由是_______.3.如图,在△ABC和△BAD中,因为AB=BA,∠ABC=∠BAD,_______=_______,根据“SAS”可以得到△ABC≌△BAD.4.如图,要用“SAS”证△ABC≌△ADE,若AB=AD,AC=AE,则还需条件( ).A.∠B=∠D B∠C=∠EC.∠1=∠2 D.∠3=∠45.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°6.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和ACBE全等吗?请说明理由.7.如图,已知AD与BC相交于点O,∠CAB=∠DBA,AC=BD.求证:(1)∠C=∠D;(2)△AOC≌△BOD.8.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.9.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.10.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.A BC DEF角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS ”. 例1、如图,在△ABC 中,∠ABC =45°,H 是高AD 和高BE 的交点,试说明BH =AC .例2、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm . 求BE 的长.例3、如图, 在△ABC 中, AC ⊥BC, CE ⊥AB 于E, AF 平分∠CAB 交CE 于点F, 过F 作FD ∥BC 交AB 于点D. 求证:AC =AD.例4、如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;(2)求证:BC=2AB.边边边三边分别相等的两个三角形全等,可以简写成“边边边”或“SSS”.例1、如图,在四边形ABCD中,AB=CB,AD=CD.你能说明∠C=∠A吗? 试一试.例2、如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中.BE和DE是否相等? 若相等,请写出证明过程;若不相等,请说明理由.例3.如图,AB=CD ,AE=CF ,BO=DO ,EO=FO .求证:OC=OA .斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL ”。
七年级(下)数学 第11讲 全等三角形的概念和性质及判定

本节主要针对全等三角形的相关概念和性质及全等三角形的判定进行讲解,重点是全等三角形的性质的运用和判定两个三角形全等的四个判定定理,要求同学们可以达到灵活运用判定定理进行说明三角形全等的理由.本节课是几何说理的基础,综合性不高,相对简单.一、全等形、全等三角形及其相关的概念 (1) 全等形:能够重合的两个图形叫做全等形.(2) 能够完全重合的两个三角形叫做全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点;互相重合的角叫做对应角;互相重合的边叫做对应边. 如下图所示:已知:△ABC ≌DFE ,A 与D ,B 与F 是对应顶点,则:(C 与E 是对应顶点) 对应边有:AB 与DF ,AC 与DE ,BC 与FE . 对应角有:A D B F C E ∠∠∠∠∠∠与,与,与.全等三角形的概念性质和判定内容分析知识结构模块一 全等三角形的概念和性质知识精讲ABCDEF- 2 -二、全等三角形的数学语言:三角形ABC 与三角形A′B′C′全等,记作△ABC ≌△A′B′C′,读作“三角形ABC 全等于三角形A′B′C′ ”. 三、全等三角形的性质:(1)全等三角形的对应边相等,对应角相等; (2)全等三角形的面积相等,周长相等;(3)全等三角形的对应线段(高线、中线、角平分线)相等. 四、全等三角形中应注意的问题:(1)要正确区分“对应边”与“对边”、“对应角”与“对角”的不同含义; (2)符号“≌”表示的双重含义:①“∽”表示形状相同;②“=”表示大小相等; (3)表示两个三角形全等时,表示对应的顶点的字母要写在相对应的位置上; 五、画三角形:确定三角形形状、大小的条件:六个元素(三条边、三个角)中的如下三个元素: ①两角及其夹边; ②两边及其夹角; ③三边.【例1】 下列说法正确的是( )A .全等三角形是指形状相同的三角形B .全等三角形是指面积相等的三角形C .全等三角形的周长和面积都相等D .所有的等边三角形都全等【例2】 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等【例3】 如图所示,△ABC ≌△CDA ,且AB =CD ,则下列结论错误的是( ) A .∠1=∠2 B .AC =CA C .∠B =∠D D .AC =BC例题解析21ABCD【例4】 下列各条件中,不能作出唯一的三角形的是 ( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边【例5】 练习画出下列条件的三角形:(1) 画,ABC ∆使40,45,4A B AB cm ∠=︒∠=︒=;(2) 画,ABC ∆使6,8,10AB cm BC cm AC cm ===;(3) 画,ABC ∆使4,3,45AB cm AC cm A ==∠=︒;(4) 画,ABC ∆使8,5,50AB cm AC cm B ==∠=︒.【例6】 下列说法:①形状相同的两个图形是全等形;②面积相等的两个三角形是全等三角形;③全等三角形的周长相等,面积相等;④在△ABC 和△DEF 中,若∠A =∠D ,∠B =∠E ,∠C =∠F ,AB =DE ,BC =EF ,AC =DF ,则两个三角形的关系,可记作△ABC ≌△DEF ,其中说法正确的是( )A .1个B .2个C .3个D .4个【例7】 下列说法中错误的是()A .全等三角形的公共角是对应角,对顶角也是对应角B .全等三角形的公共边也是对应边C .全等三角形的公共顶点是对应顶点D .全等三角形中相等的边所对应的角是对应角,相等的角所对的边是对应边- 4 -【例8】 如图所示,ABE ADC ABC ∆∆∆和是分别沿着AB AC 、边翻折形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为 ( ) A .80° B .100° C .60° D .45°【例9】 如图所示,30255ADF BCE B F BC cm ∆≅∆∠=︒∠=︒=,,,,14CD cm DF cm ==,.求:(1)1∠的度数;(2)AC 的长.【例10】 如图,在△ABC 中,∠ A :∠B :∠ACB =2:5:11,若将△ABC 绕点C 逆时针旋转,使旋转前后的△A′B′C′中的顶点B′在原三角形的边AC 的延长线上,求∠BCA′的度数.【例11】 如图,已知△ABC ≌△ADE ,BC 的延长线交AD 于点F ,交AE 的延长线于G ,∠ACB =105°,∠CAD =10°,∠ADE =25°,求∠DFB 和∠AGB 的度数.α321AB CDEP1ABCDEFABCA′B′A BCD EF G本模块复习了全等三角形的4个判定定理,主要是已知条件为“两边及夹角对应相等(SAS )”,“两角及夹边对应相等(ASA )”,“两角及其中一角的对边对应相等(AAS )”“三边对应相等(SSS )”的两个三角形全等.【例12】 如图,已知∠B =∠D ,∠1=∠2,AC =AE ,说明△ABC ≌△ADE 的理由.【例13】 如图,已知∠C =∠E ,BE =CD ,说明△ABE 与△ADC 全等的理由,AB 与AD相等吗?为什么?【例14】 如图,已知AD =BC ,AE =BE .说明AC =BD ,∠C =∠D 的理由.模块二 全等三角形的判定知识精讲例题解析ABCDEF21AB C DEABCDE- 6 -【例15】 如图,已知AB =CD ,AD =BC ,说明∠A =∠C 的理由.【例16】 如图,已知BD 是△ABC 的中线,B 、D 、E 、F 在一条直线上,且AE ∥CF ,说明△ADE 与△CDF 全等的理由.【例17】 如图,已知AC ∥BD ,AC =BD ,(1)说明△AOC 与△BOD 全等的理由;(2)说明EO =FO 的理由.【例18】 如图,CD ⊥AB 于D ,BE ⊥AC 于E ,OD =OE ,说明AB =AC 的理由.【例19】 如图,已知AD ∥BC ,BF ∥DE ,AE =CF .(1) △ADE 与△CBF 全等吗,为什么? (2) 说明AB =CD 的理由; (3) 图中有哪几对全等三角形?ABCDABC D EFABCD EFO ABCDEOABCDEF【例20】 如图,已知AB =CD ,BM =CM ,AC =BD ,说明AM =DM 的理由.【例21】 如图所示,AB =AC ,CE =BE ,连结AE 并延长交BC 于D ,说明AD ⊥BC 的理由.【例22】 如图所示,BE 、CD 相交于O ,AB =AC ,AD =AE ,说明OD =OE 的理由.【例23】 如图,线段BE 上有一点C ,以BC 、CE 为边分别在BE 的同侧作等边三角形ABC 、DCE ,连结AE 、BD ,分别交CD 、CA 于Q 、P .(1)找出图中的一组相等的线段(等边三角形的边长相等除外),并说明你的理由; (2)取AE 的中点M 、BD 的中点N ,连结MN ,试判断△CMN 的形状.ABCDMABCDE ABC DEO2121A BCDEQP ABCDEMN PQ- 8 -【例24】 如图,△ABC 是等腰直角三角形,其中CA =CB ,四边形CDEF 是正方形,连接AF 、BD .(1)观察图形,猜想AF 与BD 之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF 绕点C 按顺时针方向旋转,使正方形CDEF 的一边落在△ABC 的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.【习题1】 下列命题中正确的是 ( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等【习题2】 如图,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD =7厘米,DM =5厘米,∠DAM =39°,则AN = 厘米,NM =_________厘米,∠NAB = .随堂检测A BCDMNABCD EF【习题3】 如图,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,(1)若AC //DB ,且AC =DB ,则△ACE ≌△BDF ,根据____________; (2)若AC //DB ,且AE =BF ,则△ACE ≌△BDF ,根据____________; (3)若AE =BF ,且CE =DF ,则△ACE ≌△BDF ,根据_____________; (4)若AC =BD ,AE =BF ,CE =DF .则△ACE ≌△BDF ,根据_______.【习题4】 如图,已知△ABC ≌△ADE , ∠CAD =15°,∠DFB =90°,∠B =25°.求∠E 和∠DGB 的度数.【习题5】 如图:A 、E 、F 、C 四点在同一条直线上,AE =CF ,过E 、F 分别作BE ⊥AC 、DF ⊥AC ,且AB ∥CD ,AB =CD .试说明:BD 平分EF .【习题6】 已知:如图,△ABC 是等边三角形,过AB 边上的点D 作DG ∥BC ,交AC于点G ,•在GD 的延长线上取点E ,使DE =DB ,连结AE 、CD . 试说明:△AGE ≌△DAC .ABCEDFABC D EFG ABCDE FGABCDE FG- 10 -【习题7】 在∠O 的两边上分别取点A 、D 和B 、C ,连接AC 、BD 相交于P .(1)若∠A =∠B ,P A =PB ,试说明OA =OB 的理由; (2)若OA =OB ,P A =PB ,试说明PC =PD 的理由.【作业1】 如图,△ABC ≌△ABD ,C 和D 是对应顶点,若AB =6cm ,AC =5cm ,BC =4cm ,则AD 的长为_________cm .【作业2】 如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF ===∠∠,,; ③B E BC EF C F ===∠∠∠∠,,; ④AB DE AC DF B E ===∠∠,,.其中,能使ABC DEF △≌△的条件共有 ( ) A .1组 B .2组 C .3组 D .4组【作业3】 下列各条件中,不能作出唯一三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边【作业4】 已知△ABC ≌△DEF ,若△ABC 的周长为32,AB =8,BC =12,则DE =_______,DF =_______,EF = _______.课后作业ABC DEFABCDPOAB CDP OABCD【作业5】 如图△ACE ≌△DBF ,AE =DF ,CE =BF ,AD =8,BC =2.(1)求AC 的长度;(2)说明CE ∥BF 的理由.【作业6】 如图,已知△ABC ≌△AED ,AE =AB ,AD =AC , ∠D -∠E =20°,∠BAC =60°,求∠C 的度数.【作业7】 如图,△DAC 和△EBC 均是等边三角形,点C 在线段AB 上,AE 、BD 分别与CD 、 CE 交于点M 、 N ,有如下结论①△ACE ≌△DCB ;② CM =CN ;③ AC =DN .其中正确的结论是 ,证明正确的结论.【作业8】 如图,AD ⊥AB ,AC ⊥AE ,且AD =AB ,AC =AE .试说明:DC =BE ,DC ⊥BE .ABCDEABCD EM NABC DEGABCDEF。
考点跟踪训练21三角形与全等三角形

考点跟踪训练21三角形与全等三角形一、选择题1.(2011·大理)三角形的两边长分别是3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长是()A.9 B.11 C.13 D.11或13答案 C解析方程x2-6x+8=0的两根为2和4,只有4与3、6可组成三角形,其周长为4+3+6=13.2.(2011·济宁)若一个三角形三个内角度数的比为2∶7∶6,那么这个三角形是() A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形答案 B解析这个三角形的最大角为72+7+6×180°=715×180°=84°,是锐角.3.(2011·连云港)小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是()答案 C解析三角形最长边是12,过其所对角的顶点作这边的垂线段,可知C是正确的.4.(2011·怀化)如图所示,∠A、∠1、∠2的大小关系是()A.∠A>∠1>∠2B.∠2>∠1>∠AC.∠A>∠2>∠1D.∠2>∠A>∠1答案 B解析∠2是∠1所在三角形中与∠1不相邻的外角,所以∠2>∠1,同理∠1>∠A,故∠2>∠1>∠A.5.(2011·宿迁)如图,已知∠1=∠2,则不一定...能使△ABD≌△ACD的条件是() A.AB=AC B.BD=CDC.∠B=∠C D.∠BDA=∠CDA答案 B解析当∠1=∠2,AD=AD,BD=CD时,边边角不一定能使两个三角形全等.二、填空题6.(2011·丽水)已知三角形的两边长为4,8,则第三边的长度可以是______(写出一个即可).答案答案不唯一,在4<x<12之间的数都可.7.(2011·绵阳)如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A=______.答案25°解析因为AB∥CD,所以∠POB=∠C=50°.又AO=PO,得∠A=∠P,由∠A+∠P =∠POB,可知2∠A=50°,∠A=25°.8.(2011·无锡)如图,在△ABC中,AB=5 cm,AC=3 cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为__________cm. 答案8解析因为DE垂直平分BC,所以DB=DC,故△ACD的周长AC+AD+DC=AC+AD+DB=AC+AB=5+3=8 cm.9.(2011·大理)如图,AB=AD,∠1=∠2,请你添加一个适当的条件,使得△ABC≌△ADE,则需添加的条件是________(只要写出一个即可).答案∠D=∠B,或∠DEA=∠C,或AE=AC等.新课标第一网10.(2011·江西)如图所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB =30°.有以下四个结论:①AF⊥BC;②△ADG≌△ACF;③O为BC的中点;④AG∶DE=3∶4,其中正确结论的序号是__________.答案 ①②③④解析 ∵∠DAB =30°,∠DAE =90°,∴∠BAE =60°,∠AFB =90°,AF ⊥BC ;由AD =AC ,∠D =∠C =60°,∠DAB =∠CAE =30°,可证得△ADG ≌△ACF ;在Rt △ABF 中,∠B =30°,可知AF =12AB =12AE =EF ,EF ⊥BC ,所以BC 垂直平分AE ,连AO ,则有OA=OE ,∠OAE =∠E =30°,∠OAC =∠C =60°,△AOC 是等边三角形,OC =AC =12BC ,O为BC 中点;设DG =k ,则有AG =3k ,EG =3k ,DE =4k ,故AG ∶DE =3∶4k =3∶4,综上,①②③④均正确.新课标第一网三、解答题11.(2011·东莞)已知:如图,E 、F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B . 求证:AE =CF .解 ∵AD ∥CB , ∴∠A =∠C .又∵AD =CB ,∠D =∠B , ∴△ADF ≌△CBE . ∴AF =CE .∴AF +EF =CE +EF , 即AE =CF .12.(2011·菏泽)已知:如图,∠ABC =∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线.求证:AB =DC .证明 ∵BD 平分∠ABC ,CA 平分∠DCB ,∴∠ACB =12∠DCB ,∠DBC =12∠ABC .∵∠ABC =∠DCB , ∴∠ACB =∠DBC .在△ABC 与△DCB 中, ⎩⎪⎨⎪⎧∠ABC =∠DCB (已知),∠ACB =∠DBC (已证),BC =BC (公共边),∴△ABC ≌△DCB , ∴AB =DC .13.(2011·江津)在△ABC 中,AB =CB ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF .(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF度数.解(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°.在Rt△ABE和Rt△CBF中,∵AE=CF, AB=BC,∴Rt△ABE≌Rt△CBF(HL).(2)解:∵AB=BC, ∠ABC=90°,∴∠CAB=∠ACB=45°.∵∠BAE=∠CAB-∠CAE=45°-30°=15°,由(1)得Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=45°+15°=60°.14.(2011·扬州)已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.解(1)证明:∵BD、CE是△ABC的高,∴∠BEC=∠CDB=90°.∵OB=OC,∴∠OBC=∠OCB.又∵BC=BC,AAS.∴△BEC≌△CDB()∴∠ABC=∠ACB.∴AB=AC,即△ABC是等腰三角形.(2)解:点O在∠BAC的角平分线上.理由如下:∵△BEC≌△CDB,∴BD=CE.∵OB=OC,∴OD=OE.又∵OD⊥AC,OE⊥AB,∴点O在∠BAC的角平分线上.15.(2011·邵阳)数学课堂上,徐老师出示一道试题:如图所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AM=MN.(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.证明:在AB上截取EA=MC,连接EM,得△AEM.∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.又CN 平分∠ACP ,∠4=12∠ACP =60°,∴∠MCN =∠3+∠4=120°.①又∵BA =BC ,EA =MC ,∴BA -EA =BC -MC ,即BE =BM . ∴△BEM 为等边三角形.∴∠6=60°. ∴∠5=180°-∠6=120°.② ∴由①②得∠MCN =∠5. 在△AEM 和△MCN 中,________________________________________________________________________ ∴△AEM ≌△MCN (ASA ).∴AM =MN .(2)若将试题中的“正三角形ABC ”改为“正方形A 1B 1C 1D 1”(如图),N 1是∠D 1C 1P 1的平分线上一点,则当∠A 1M 1N 1=90°时,结论A 1M 1=M 1N 1是否还成立?(直接写出答案,不需要证明)(3)若将题中的“正三角形ABC ”改为“正多边形A n B n C n D n …X n ”,请你猜想:当∠A n M n N n =________°时,结论A n M n =M n N n 仍然成立?(直接写出答案,不需要证明)解 (1)∠1=∠2,AE =MC ,∠MCN =∠5.(2)成立. 在A 1B 1上截取A 1H =M 1C 1,连接M 1H ,易证△A 1M 1H ≌△M 1N 1C 1.(3)∠AMN =60°=(3-2)3×180°,∠A 1M 1N 1=90°=(4-2)4×180°,∠A n M n N n =(n -2)n×180°.。
第四章 三角形——全等三角形中的一线三等角模型(k字型) 21—22北师大版数学七年级下册

变式:如图3,过△ABC的边AB.AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延 长HA交EG于点I. 求证:(1)I是EG的中点.
(2)BC=2AI.
CD是经过∠BCA定点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC =∠CFA=∠β.(1)若直线CD经过∠BCA内部,且E、F在射线CD上,①若∠BCA =90°,∠β=90°,例如图1,则BE CF,EF |BE﹣AF|.(填“>”,“<” ,“=”);②若0°<∠BCA<180°,且∠β+∠BCA=180°,例如图2,①中的两 个结论还成立吗? 并说明理由;(2)如图3,若直线CD经过∠BCA外部,且∠β= ∠BCA,请直接写出线段EF、BE、AF的数量关系(不需要证明).
全等三角形: 一线三等角模型(K字型)
解决问题, 认知模型
例2: 如图,AB=AC,直线l过点A,BM⊥l,CN⊥l,垂足分别为M、 N,且BM=AN. (1)求证△AMB≌△CNA; (2)求证∠BAC=90°.
ቤተ መጻሕፍቲ ባይዱ
变式: 如图,已知:AB⊥BD,ED⊥BD,AB=CD,BC=ED. (1)AC与CE有什么关系? (2)请证明你的结论.
.
(2)如图2,若点D在线段AB的延长线上,过点A在AB的另一侧作 AF⊥AB,并截取AF=BD, 连接DC.DF、CF,试说明(1)中结论是否成立,并说明理由.
(3)若点D在线段AB外(线段AB所在的直线上且除线段AB),点E是BC延长线上一点,且 CE=BD,连接AE,与DC的延长线交于点P,直接写出∠APC的度数.
1.李华同学用11块高度都是1cm的相同长方体小木块,垒了两堵与地面垂直的 木墙,木墙之间刚好可以放进一个正方形ABCD(∠ABC=90°,AB=BC), 点B在EF上,点A和C分别与木墙的顶端重合,求两堵木墙之间的距离EF.
(完整版)全等三角形经典题型——辅助线问题

全等三角形问题中常见的辅助线的作法(含答案) 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,D C BAED F CB A利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形
一、选择题
1. (2014•丽水,第10题3分)如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM 于点C.设BE=x,BC=y,则y关于x的函数解析式是()
.y=﹣B.y=﹣C.y=﹣D.y=﹣
2.(2014•贵州黔西南州, 第5题4分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()
第1题图
A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°
二、填空题
1.(2014•黑龙江绥化,第3题3分)如图,AC、BD相交于点0,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是(填出一个即可).
2. (2014•攀枝花,第16题4分)如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD 于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是.
3.(2014•四川绵阳,第17题4分)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.
4.(2014•重庆A,第18题4分)如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为.
三、解答题
1.(2014•湖北宜昌,第18题7分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CA B.(1)求∠CAD的度数;
(2)延长AC至E,使CE=AC,求证:DA=DE.
2.(2014•湖南衡阳,第23题6分)如图,在△ABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E、F.
求证:△BED≌△CF D.
3. (2014年广西南宁,第23题8分)如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.
(1)求证:△ADE≌△CFE;
(2)若GB=2,BC=4,BD=1,求AB的长.
4.(2014•莱芜,第21题9分)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.
(1)求证:BE=CD;
(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.
5. (2014•青岛,第21题8分)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.
(1)求证:△AOD≌△EOC;
(2)连接AC,DE,当∠B=∠AEB=°时,四边形ACED是正方形?请说明理由.
6.(2014•湖北黄冈,第18题6分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC 于点F,求证:DE=DF.
第1题图
7. (2014•湖北荆门,第19题9分)如图①,正方形ABCD的边AB,AD分别在等腰直角△AEF 的腰AE,AF上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连结BE,DF.请在图②中用实线补全图形,这时DF=BE 还成立吗?请说明理由.
第2题图
8.(2014•陕西,第19题6分)如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E,CB的延长线于点F.
求证:AB=BF.
9.(2014•四川广安,第19题6分)如图,在正方形ABCD 中,P 是对角线AC 上的一点,连接BP 、DP ,延长BC 到E ,使PB =PE .求证:∠PDC =∠PE C .
10.(2014•浙江绍兴,第23题6分)(1)如图,正方形ABCD 中,点E ,F 分别在边BC ,CD 上,∠EAF =45°,延长CD 到点G ,使DG =BE ,连结EF ,AG .求证:EF =FG .
(2)如图,等腰直角三角形ABC 中,∠BAC =90°,AB =AC ,点M ,N 在边BC 上,且∠MAN =45°,若BM =1,CN =3,求MN 的长.
11.(2014•重庆A ,第24题10分)如图,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC ,垂足是D ,AE 平分∠BAD ,交BC 于点E .在△ABC 外有一点F ,使FA ⊥AE ,FC ⊥B C . (1)求证:BE =CF ;
(2)在AB 上取一点M ,使BM =2DE ,连接MC ,交AD 于点N ,连接ME . 求证:①ME ⊥BC ;②DE =DN .
12.(2014衡阳,第23题6分)
如图,在ABC ∆中,AB AC =,BD CD =,DE AB ⊥于点E ,DF AC ⊥于点F 。
求证:BED ∆≌CFD ∆。
13.(2014•无锡,第21题6分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.。