北师大版九年级数学上册第一次月考试卷
北师大版九年级上册数学第一次月考试卷附答案

北师大版九年级上册数学第一次月考试题一、填空题1.有一块长30cm ,宽20cm 的纸板,要挖出一个面积为2200cm 的长方形的孔,并且四周宽度相等,若设这个框的宽为xcm ,则可得方程为________.2.如图,点E 是正方形ABCD 边BC 延长线上一点,且CE AC =,则AFC ∠的度数为________.3.某校初三年级组织一次篮球比赛,每两班之间都赛一场,共进行了55场比赛,则该校初三年级共有________个班.4.要使一个菱形ABCD 成为正方形,则需增加的条件是________.(填一个正确的条件即可)5.当x =________时,()8x x -的值与16-的值相等.6.如图,在Rt ABC 中,90ACB ∠=,AC BC =,在AC 上取一点D ,在AB 上取一点E ,使BDC EDA ∠=∠,过点E 作EF BD ⊥于点N .交BC 于点F ,若8CF =,11AD =,则CD 的长为________.7.已知关于x 的方程()()212110m x m x m -+-++=有两个不相等的实数根,则实数m 的取值范围是________.8.如图,四边形ABCD 是菱形,E 在AD 上,F 在AB 延长线上,CE 和DF 相交于点G ,若CE DF =,30CGF ∠=,AB 的长为6,则菱形ABCD 的面积为________.9.方程2320x x --=的解是________.二、单选题10.菱形的对角线长为8cm 和6cm ,则该菱形面积为( )A .48cm 2B .24cm 2C .25cm 2D .14cm 211.方程()()31241x x -+=的解是( )A .23或32- B . C . D .23. 12.已知四边形ABCD 中,90A B C ∠=∠=∠=,如果添加一个条件,即可判定该四边形是正方形,那么所添加的这个条件可以是( )A .90D ∠=;B .AB CD =;C .AD BC =; D .BC CD =. 13.如图,某小区规划在一个长30m 、宽20m 的长方形土地ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分钟花草,要使每一块花草的面积都为278cm ,那么通道宽应设计成多少m ?设通道宽为xm ,则由题意列得方程为( )A .()()302078x x --=B .()()30220278x x --=C .()()30220678x x --=⨯D .()()302202678x x --=⨯14.如图,ABC 中,AD 平分BAC ∠,DE //AC 交AB 于E ,DF//AB 交AC 于F ,若AF 6=,则四边形AEDF 的周长是( )A .24B .28C .32D .3615.已知关于x 的一元二次方程2kx 2x 10--=,若方程有两个不相等的实数根,则k 的最小整数值为( )A.0B.1-C.1D.216.一元二次方程两根之和为6,两根之差为8,那么这个方程为()A.x2-6x-7=0 B.x2-6x+7=0 C.x2+6x-7=0 D.x2+6x+7=0 17.已知三角形的两边长分别为2和4,第三边的长是方程2430-+=的解,则这个三x x角形的周长为()A.3 B.9 C.7或9 D.718.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE三、解答题=.19.如图:ABC中,AB AC()1求作BC边上的垂直平分线MN,使得MN交BC于D;将线段BA沿着BC的方向平D,画出平移后的线段DE;(要求用尺规作图,不写移到线段DE(其中点B平移到点)作法,保留作图痕迹.)()2连接AE、EC,试判断四边形ADCE是矩形吗?说明理由.20.解方程()2+-=(配方法)x xx+-=()21(2)2502450()()() 3323x x x +=+ ()242710x x -+=21.已知关于x 的一元二次方程()()22120x m x m m ---+=. ()1若2x =-是这个方程的一个根,求m 的值和方程的另一个根;()2求证:对于任意实数m ,这个方程都有两个不相等的实数根.22.()1如图1,ABC 中,AD 平分BAC ∠交BC 于点D ,在AB 上截取AE AC =,过点E 作//EF BC 交AD 于点F .求证:四边形CDEF 是菱形;()2如图2,ABC 中,AD 平分ABC 的外角EAC ∠交BC 的延长线于点D ,在BA 的延长线上截取AE AC =,过点E 作//EF BC 交DA 的延长线于点F .四边形CDEF 还是菱形吗?如果是,请证明;如果不是,请说明理由.23.如图,四边形ABCD 是正方形,点E 是BC 的中点,90AEF ∠=,EF 交正方形外角的平分线CF 于F ,连接AC 、AF 、DF ,求证:()1AE EF =;()2ABE ACF ∽;()3DFC 是等腰直角三角形.参考答案1.()()302202200x x --=2.112.53.114.A 90∠=或AC BD =5.46.37.54m <且1m ≠8.189.1x =2x =10.B11.C12.D13.C14.A15.C16.A17.B18.B19. (1)作图见解析;(2)证明见解析.20.(1)13x =,27x =-;(2)11x =,25x =-;(3)13x =-,22x =;(4)1x = ,274x = . 21.(1)0x =; 4x =或.(2)证明见解析. 22.(1)证明见解析;(2)四边形CDEF 是菱形,理由见解析. 23.(1)证明见解析;(2)证明见解析;(3)证明见解析.。
北师大版九年级上册数学第一次月考测试卷(含答案)

北师大版九年级上册数学第一次月考测试卷(满分120分,时间120分钟)合要求的)1.下列方程是关于x的一元二次方程的是( )=0B.ax²+bx+c=0 C.(x--1)(x+2)=0 D.3x²−2xy−5y²=0A.x2+1x22.四边形ABCD中,O是对角线的交点,下列条件中能判定此四边形是正方形的是( )①AC=BD,AB∥CD,AB=CD;②AD∥BC,∠BAD=∠BCD;③AO=CO,BO=DO,AB=BC;④AO=BO=CO=DO,AC⊥BD.A.1个B.2个C.3个D.4个3.已知方程x²+px+q=0的两个根分别是2和-3,则x²−px+q可分解为( )A.(x+2)(x+3)B.(x-2)(x-3)C.(x-2)(x+3)D.(x+2)(x--3)4.如图所示,菱形ABCD中,AB=2,∠A=120°,点P,Q,K 分别为线段BC,CD,BD 上任意一点,则PK+QK 的最小值为( )A.1B.√3C.2D.√3+15.已知α,β是方程.x²+2006x+1=0的两个根,则(1+2008α+α²)(1+2008β+β²)的值为( )A.1B.2C.3D.46.用配方法解一元二次方程x²−6x−4=0,,下列变形正确的是( )A.(x−6)²=−4+36B.(x−6)²=4+36C.(x−3)²=−4+9D.(x−3)²=4+97.如图所示,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B 为圆心,大于线段AB 长度的一半的长为半径画弧,相交于点C,D,则直线CD 即为所求.连接AC,BC,AD,BD,根据她的作图方法可知四边形ADBC一定是( )A.矩形B.菱形C.正方形D.等腰梯形8.教师节期间,某校数学组教师向本组其他教师各发一条祝福短信.据统计,全组共发了240条祝福短信,如果设全组共有x名教师,依题意,可列出的方程是( )x(x+1)=240 A. x(x+1)=240 B. x(x-1)=240 C.2x(x+1)=240 D.129.如图所示,在矩形ABCD 中,边AB的长为3,点E,F 分别在AD,BC上,连接BE,DF,EF,BD,若四边形B EDF 是菱形,且 EF=AE+FC,则BC的长为( )√3A.2√3B.3√3C.6√3D.9210.如图所示,在一张矩形纸片 ABCD 中,AB=4,BC=8,点 E,F 分别在AD,BC上,将纸片 ABCD 沿直线EF折叠,点C落在AD 上的一点H 处,点 D 落在点G 处,有以下四个结论:①四边形 CFHE 是菱形;②CE平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点 H 与点A 重合时,EF=2√5.以上结论中,你认为正确的有( )A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题4分,共32分,本题要求把正确结果填在规定的横线上,不需要解答过程)=0有实数根,则k的取值范围是 .11.关于x的方程kx2−4x−2312.如图,AB∥GH∥CD,点 H 在 BC 上,AC 与 BD 交于点G,AB=2,BG:DG=2:3,,则GH 的长为13.如图所示,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H 分别为边AD,AB,BC,CD 的中点.若AC=8,BD=6,则四边形EFGH的面积为 .14.将相同的矩形卡片按如图所示的方式摆放在一个直角上,每个矩形卡片长为2,宽为1,以此类推,摆放2 014个时,实线部分长为 .。
北师大版九年级上册数学第一次月考试卷及答案

北师大版九年级上册数学第一次月考试卷及答案北师大版九年级上册数学第一次月考试题一、选择题。
(每小题只有一个正确答案,每小题3分,共30分)1.将一元二次方程3x2=4x-6化为一般形式,得到3x2-4x-6=0.2.由已知条件可得:2的平方-3×2+k=0,即k=2.3.菱形不一定具有对角线互相垂直的性质。
4.将x2+4x-1=0配方法得到(x+2)2=5.5.2x2-3x+1=0的根为x=1/2和x=1,即有两个不相等的实数根。
6.若顺次连结四边形四条边的中点所得的四边形是菱形,则原四边形是矩形。
7.根据勾股定理可得:AC'=√(AD²+CD²)=√(6²+8²)=10.8.∠XXX∠CFA+∠AFD=∠BAD+∠AFD=70°+90°-∠DFC=160°-∠XXX。
9.将矩形沿AE折叠后,DE=AB=3/2,因此DE的长为3/2.10.△BCF的面积最大值为8.二、填空题11.一元二次方程2x2-4x-9的一次项系数是-4.12.方程x2=9的解是x=3或x=-3.13.方程(x+2)(x-1)=0的解是x=-2或x=1.14.已知菱形的边长是10cm,较短的对角线长为12cm,则较长的对角线为20cm。
15.∠AEB=120°。
公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m²,求原正方形空地的边长.设原正方形的空地的边长为x,则可列方程$(x-1)(x-2)=18$.17.解方程$x^2+4x-5=0$,得到$x=1$或$x=-5$.18.已知关于x的一元二次方程$x^2+kx-5=0$的一个根是1,由二次方程的性质可知另一个根为$\frac{-5}{1}=-5$,将这个根代入方程中,得到$k=4$.19.在矩形ABCD中,两条对角线相交于O,$\angle AOB=60°$,$AB=2$,设AD的长为x,则由三角函数可得$OD=\frac{x}{2}$,又由勾股定理可得$AD=\sqrt{4+x^2}$,根据正弦定理可得$\frac{\frac{x}{2}}{sin60°}=\frac{\sqrt{4+x^2}}{sin120°}$,解得$x=2\sqrt{3}$.20.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,由对角线的性质可知$\triangle AOB\cong\triangle COD$,$\triangle AOD\cong\triangle BOC$,因此$\angleAOD=\angle BOC=90°$,又因为DE∥AC,所以$\angleADE=\angle ACD$,$\angle CDE=\angle CAB$,因此$\angle AED=\angle BDC$,又因为CE∥BD,所以$\angle CED=\angle CBD$,因此四边形OCED是菱形.21.解方程$(x+1)-3(x+1)+2=0$,我们可以将$x+1$看成一个整体,设$x+1=y$,则原方程可化为$y-3y+2=0$,解得$y_1=1$,$y_2=2$.当$y_1=1$时,$x+1=1$,解得$x=0$,当$y_2=2$时,$x+1=2$,解得$x=1$,所以原方程的解为$x_1=0$,$x_2=1$.22.如图,把一张矩形纸片沿对角线折叠,已知AB=6,AD=8。
北师大版九年级上册数学第一次月考试卷及答案

北师大版九年级上册数学第一次月考试卷及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直4. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B .22﹣2C .22+2D .227.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.下列图形中,是中心对称图形的是( )A .B .C .D .9.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23⨯=______________.2.因式分解:x 3﹣4x=_______.3.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于__________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为________.6.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.三、解答题(本大题共6小题,共72分)1.解方程:33122 xx x-+=--2.先化简,再求值:2443(1)11m mmm m-+÷----,其中22m=-.3.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度.(3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、B5、B6、B7、D8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、x (x+2)(x ﹣2)3、7或-14、8.5、6、35r <<.三、解答题(本大题共6小题,共72分)1、4x =2、22m m-+ 1. 3、(1)略;(2)结论:四边形ACDF 是矩形.理由略.4、(1)理由见详解;(2)2BD =或1,理由见详解.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。
2023-2024学年九年级上学期数学(北师大版)第一次月考试卷附详细答案精选全文

可编辑修改精选全文完整版2023-2024学年九年级上学期数学(北师大版)第一次月考试卷▼(上册1.1~2.4) ▼说明:共有六个大题,23个小题,满分120分,作答时间120分钟. 一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内.错选、多选或未选均不得分. 1.下列方程是一元二次方程的是( )A.3x −1=0B.a x 2+b x +c=0(a ,b ,c 为常数)C.x ²+x =3D.3x 2−2x y −5y 2=0 2.菱形具有而平行四边形不一定具有的性质是( )A.对角线互相垂直B.对边相等C.对角相等D.是中心对称图形 3.一元二次方程x 2=4的解为( )A.x =2B.x =4C.x 1=−2,x 2=2D.x 1=−4,x 2=4 4.如图,若四边形ABCD 是平行四边形,则下列结论中错误的是( ) A.当AC ⊥BD 时,它是菱形 B.当AC=BD 时,它是矩形 C.当∠ABC=90°时,它是矩形 D.当AB=BC 时,它是正方形5.已知关于x 的一元二次方程x 2+b x +c=0有一个非零实数根c ,则b+c 的值为( )ADCBOA.1B.−1C.0D.26.如图,把一张矩形纸片ABCD 按如下方法进行两次折叠:第一次将DA 边折叠到DC 边上得到DA ´,折痕为DM ,连接A ´M ,CM ,第二次将△MBC 沿着MC 折叠,MB 边恰好落在MD 边上.若AD=1,则AB 的长为( )A.32 B.√2 C.√3 D.√2−1 二、填空题(本大题共6小题,每小题3分,共18分)7.把一元二次方程x (x −3)=4化成a x 2+b x +c=0的一般形式,其中a=1,则常数项c=______.8.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ADB=25°,那么∠AOB 的度数为______.9.若关于x 的方程x 2−2x +1−k=0有两个相等的实数根,则k 的值为______. 10.若关于x 的一元二次方程a x 2=b(ab >0)的两个根分别为m 与2m −6,则m 的值为______.11.如图,在平面直角坐标系x Oy 中,四边形ABCO 是正方形,已知点A 的坐标为(2,1),则点C 的坐标为______.12.如图,在菱形ABCD 中,AB=20,∠A=45°,点E 在边AB 上,AE=13,点P 从点A第8题图ADCBO第12题图A D BCPE第11题图ACDB出发,沿着A →D →C →B 的路线向终点B 运动,连接PE ,若△APE 是以AE 为腰的等腰三角形,则AP 的长可以是______.三、解答题(本大题共5小题,每小题6分,共30分) 13.(1)解方程:x 2−2x −1=0.(2)如图,在Rt △ABC 中,∠ACB=90°,D 为AB 的中点,∠A=30°,BC=2,求CD 的长.14.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点C 作BD 的平行线交AB 的延长线于点E.求证:AC=CE.15.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AE ⊥BC 于点E ,若OB=2,S 菱形ABCD =4,求AE 的长.16.如图,△ACB 和△CED 都是等腰直角三角形,点B ,C ,E 在同一直线上,且E 是BC 的中点,请仅用无刻度的直尺......按要求完成以下作图(保留作图痕迹). (1)在图1中,作□ABMC. (2)在图2中,作正方形ACBN.ADBEO ABCDEOADBC17.如图,矩形绿地的长为12m ,宽为9m ,将此绿地的长、宽各增加相同的长度后,绿地面积增加了72m 2,求绿地的长、宽增加的长度.四、解答题(本大题共3小题,每小题8分,共24分)18.设关于x 的一元二次方程为x 2+b x +c=0.在下面的四组条件中选择其中一组b ,c 的值,使这个方程有两个不相等的实数根,并解这个方程. ①b=2,c=1;②b=1,c=2;③b=3,c=−1;④b=−3,c=2. 注:如果选择多组条件分别作答,按第一个解答计分.19.定义:如果关于x 的一元二次方程a x 2+b x +c=0(a ≠0)满足b=a+c ,那么我们称这个方程为“完美方程”.(1)下面方程是“完美方程”的是______.(填序号) ①x 2−4x +3=0;②2x 2+x +3=0;③2x 2−x −3=0.(2)已知3x 2+m x +n=0是关于x 的“完美方程”,若m 是此“完美方程”的一个根,求m 的值.20.如图,在□ABCD 中,E ,F 分别是边CD ,BC 上的点,连接BE ,DF ,BE 与DF 交于点P ,BE=DF.添加下列条件之一使□ABCD 成为菱形:①CE=CF ;②BE ⊥CD ,DF ⊥BC. (1)你添加的条件是_______(填序号),并证明.图1ADCBEA图2CDE B(2)在(1)的条件下,若∠A=45°,△BFP 的周长为4,求菱形的边长.五、解答题(本大题共2小题,每小题9分,共18分) 21.【阅读】解方程:(x −1)2−5(x −1)+4=0.解:设x −1=y ,则原方程可化为y 2−5y+4=0,解得y 1=1,y 2=4. 当y=1时,即x −1=1,解得x =2;当y=4时,即x −1=4,解得x =5. 所以原方程的解为x 1=2,x 2=5. 上述解法称为“整体换元法”. 【应用】 (1)若在方程x−1x−3xx−1=0中,设y=x−1x,则原方程可化为整式方程:________.(2)请运用“整体换元法”解方程:(2x −3)2−(2x −3)−2=0.22.如图1,在□ABCD 中,点E ,F 在对角线AC 上,AE=CF ,DE ⊥AC ,过点D 作DG ∥AC 交BF 的延长线于点G. (1)求证:四边形DEFG 是矩形.(2)如图2,连接DF ,BE ,当∠DFG=∠BEF 时,判断四边形 DEFG 的形状,并说明理由.图1E F ABCDG图2ABDGCFE AFCDE P B六、解答题(本大题共12分) 23.【课本再现】(1)如图1,在正方形ABCD 中,F 为对角线AC 上一点,连接BF ,DF.你能找出图中的全等三角形吗?结论猜想:图中的全等三角形有__________ (不必证明). 【知识应用】(2)如图2,P 为DF 延长线上一点,且BP ⊥BF ,DP 交BC 于点E.判断△BPE 的形状,并说明理由. 【拓展提升】(3)如图3,过点F 作HF ⊥BF 交DC 的延长线于点H. ①求证:HF=DF.②若AB=√3+1,∠CBF=30°,请直接写出CH 的长.2023-2024学年九年级上学期数学(北师大版)第一次月考试卷参考答案▼(上册1.1~2.4) ▼说明:共有六个大题,23个小题,满分120分,作答时间120分钟. 一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后图1AB CDFA图2B PDC EF图3ABDHCF括号内.错选、多选或未选均不得分. 1.下列方程是一元二次方程的是( )A.3x −1=0B.a x 2+b x +c=0(a ,b ,c 为常数)C.x ²+x =3D.3x 2−2x y −5y 2=01.解:A 是一元一次方程,B 当a ≠0时是一元二次方程,C 是一元二次方程,D 是二元二次方程,故选C 。
北师大版九年级上册数学第一次月考试卷含答案解析

北师大版九年级上册数学第一次月考试题一、选择题。
(每小题只有一个正确答案)1.正方形具有而菱形不具有的性质是( )A .对角线互相平分B .对角线相等C .对角线平分一组对角D .对角线互相垂直2.平行四边形ABCD 是正方形需增加的条件是( )A .邻边相等B .邻角相等C .对角线互相垂直D .对角线互相垂直且相等3.依次连接菱形的各边中点,得到的四边形是( )A .矩形B .平行四边形C .菱形D .梯形 4.在平行四边形、菱形、矩形、正方形中,能够找到一个点,使该点到各顶点距离相等的图形是( )A .平行四边形和菱形B .菱形和矩形C .矩形和正方形D .菱形和正方形5.菱形的边长是2cm ,一条对角线的长是,则另一条对角线的长是( )A .4 cmBC .2 cmD .6.矩形的对角线长10cm ,顺次连结矩形四边中点所得四边形的周长为( ) A .40cm B .10cm C .5cm D .20cm 7.如图,正方形ABCD 的对角线AC 是菱形AEFC 的一边,则FAB ∠等于( )A .135°B .45°C .22.5°D .30° 8.方程()()2353x x x -=-的根为( )A .52x =B .3x =C .125,32x x ==D .125,32x x =-=- 9.一元二次方程x 2﹣x+2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .只有一个实数根10.已知1x 、2x 是方程221x x =+的两个根,则1211x x +的值为( ) A .12- B .2 C .12 D .2-11.用配方法解一元二次方程2420x x -+=,下列配方正确的是( )A .()222x +=B .2(2)2x -=-C .2(2)2x -=D .2(26)x -= 12.若方程2(4)x a -=有解,则a 的取值范围是( ).A .0a ≤B .0a ≥C .0a >D .无法确定二、填空题13.如果x 1,x 2是方程2x 2﹣3x ﹣6=0的两个根,那么x 1+x 2=________;x 1•x 2=________ 14.如图,矩形ABCD 沿AF 折叠,使点D 落在BC 边上E 处,如果∠BAE=50°,则∠DAF=_______.15.如图所示,把两个大小完全一样的矩形拼成“L”形图案,则∠FAC =_____度,∠FCA =_____度.16.若菱形的对角线长分别是6cm 、8cm ,则其周长是________ ,面积是____________ 17.若关于x 的一元二次方程mx 2+4x+3=0有实数根,则m 的取值范围是________ 18.已知x=-1是关于x 的方程222x ax a 0+-=的一个根,则a=_____.19.把方程x 2-4x =-5整理成一般形式后,得其中常数项是_______.20.方程22(2)(3)20m m x m x --+--=是一元二次方程,则m=_____.21.若式子4x 2-nx+1是一个完全平方式,则n 的值为____________.22.已知x 2+4x -2=0,那么3x 2+12x +2002的值为 _________.三、解答题23.用适当的方法解方程: ()2143x x +=- ()2 22340x x +-=()2325360x -= ()()24(4)54x x +=+24.已知菱形ABCD 中,E 、F 分别是CB 、CD 上的点,且BE=DF ;求证:⑴△ABE ≌△ADF ;⑵∠AEF=∠AFE25.如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD ,求证:四边形OCED 是菱形.26.已知:如图Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC 于点F.求证:四边形CEDF是正方形.27.阅读第(1)题的解题过程,再解答第(2)题:(1)例:解方程x2﹣|x|﹣2=0.解:当x≥0时,原方程可化为x2﹣x﹣2=0.解得:x1=2,x2=﹣1(不合题意.舍去)当x<0时,原方程可化为x2+x﹣2=0.解得:x1=﹣2,x2=1(不合题意.舍去)∴原方程的解是x1=2,x1=﹣2.(2)请参照上例例题的解法,解方程x2﹣x|x﹣1|﹣1=0.28.已知关于x的一元二次方程x2﹣4x+m﹣1=0有两个相等的实数根,求m的值及方程的根.参考答案1.B【解析】根据正方形和菱形的性质逐项分析可得解.【详解】根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,故选B.【点睛】考点:1.菱形的性质;2.正方形的性质.2.D【解析】如图所示:添加的条件是AC=BD且AC⊥BD,平行四边形ABCD为正方形;理由如下:添加的条件时AC=BD且AC⊥BD时;∵四边形ABCD是平行四边形.又AC=BD,∴四边形ABCD是矩形,∵AC⊥BD,∴四边形ABCD是菱形,∴四边形ABCD是正方形;故选D.3.A【解析】【分析】如图,连接EF、FG、GH、HE,根据菱形的性质得到AC⊥BD,根据三角形中位线定理得到EF⊥FG,FG⊥HG,GH⊥EH,HE⊥EF,根据矩形的判定定理解答即可.【详解】解:如图,连接EF、FG、GH、HE,∵四边形ABCD是菱形,∴AC⊥BD,∵E,F,G,H是中点,∴EF∥BD,FG∥AC,∴EF⊥FG,同理:FG⊥HG,GH⊥EH,HE⊥EF,∴四边形EFGH是矩形.故选:A.【点睛】本题考查的是菱形的性质、矩形的判定定理以及三角形的中位线定理,掌握三个角是直角的四边形是矩形是解题的关键.4.C【详解】由平行四边形、菱形、矩形、正方形的性质易得,矩形对角线相等,所以选C.5.C【解析】如图所示,已知AB=2cm,因为菱形对角线互相平分,所以BO=OD在Rt△ABO中,222AB AO BO=+,AB=2cm,BO所以AO=1cm,故菱形的另一条对角线AC长为2AO=2cm,故选C.点睛:本题考查了菱形对角线互相垂直平分的性质,勾股定理在直角三角形中的运用,本题根据勾股定理求AO的长是解题的关键.6.D【解析】因为矩形的对角线相等,所以AC=BD=10cm,∵E、F、G、H分别是AB、BC、CD、AD、的中点,∴EH=GF=12BD=12×10=5cm,EF=GH=12AC=12×10=5cm,故顺次连接矩形四边中点所得的四边形周长为EH+GF+EF+GH=5+5+5+5=20cm,故选D.【点睛】本题考查了矩形的性质,三角形中位线定理,解题的关键是要熟知矩形的对角线相等,三角形的中位线等于底边的一半.7.C【分析】根据正方形、菱形的性质解答即可.【详解】∵AC是正方形的对角线,∴∠BAC=12×90°=45°,∵AF是菱形AEFC的对角线,∴∠FAB=12∠BAC=12×45°=22.5°.故选C. 【点睛】本题考查了正方形、菱形的性质,熟知正方形、菱形的一条对角线平分一组对角的性质是解决问题的关键.8.C【分析】因式分解法解方程.【详解】解:()()2-530x x -=,125,32x x ==, 故选C .【点睛】本题考查一元二次方程的解法,熟练掌握因式分解法是关键.9.C【分析】判断上述方程的根的情况,只要看根的判别式△=b 2-4ac 的值的符号就可以了.【详解】解:∵△=b 2-4ac=1-8=-7<0,∴方程无实数根.故选C .【点睛】本题考查的知识点是一元二次方程根的判别式的应用,解题关键是熟记一元二次方程根的情况与判别式△的关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.10.D【分析】先把方程化为一般式,再根据根与系数的关系得到x 1+x 2=2,x 1x 2=-1,然后把1211x x +通分得到1212x x x x +,再利用整体代入的方法计算.【详解】方程化为一般式x 2−2x−1=0,根据题意得x 1+x 2=2,x 1x 2=−1, 所以1211x x +=1212x x x x +=21-=−2, 故选D.【点睛】此题考查了一元二次方程的根与系数的关系,熟练掌握这个关系对所求代数式进行变形是解此题的关键.11.C【分析】根据用配方法解一元二次方程的方法解答即可.【详解】解:移项,得242x x -=-,方程两边同时加上4,得24424x x -+=-+,即2(2)2x -=.故选:C .【点睛】本题考查了一元二次方程的解法,属于基础题目,掌握配方的方法是解题的关键. 12.B【分析】利用直接开平方法解方程,然后根据二次根式被开方数的非负性列出关于a 的不等式,然后可求得a 的取值范围.【详解】解:∵方程2(4)x a -=有实数解,∴x−4=∴a≥0;故选:B .【点睛】本题考查了解一元二次方程−−直接开平方法.用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.解答该题时,还利用了二次根式有意义的条件这一知识点.13.323-【分析】直接根据根与系数的关系求解.【详解】解:根据题意得x 1+x2=3322;x1•x2=632,故答案为:32,3-.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=ba-,x1·x2=ca.14.20°【分析】首先根据矩形的性质求得∠EAD的度数,然后由翻折的性质得到∠EAF=∠DAF即可得解.【详解】解:∵四边形ABCD为矩形,∴∠BAD=90°,∵∠BAE=50°,∴∠EAD=40°,由翻折的性质可知:∠EAF=∠DAF.∴∠DAF=20°,故答案为:20°.【点睛】本题主要考查的是翻折变换、矩形的性质,熟练掌握翻折的性质是解题的关键.15.90°45°【详解】解:由已知△AFG≌△CAB,∴∠AFG=∠CAB,AF=AC ∵∠AFG+∠FAG=90°,∴∠CAB+∠FAG=90°,∴∠FAC=90°.又∵AF=AC,∴∠FCA=(180°-90°)×12=45°.故答案为90;45.16.20cm 24cm2【解析】根据菱形的对角线互相垂直平分,求出对角线的一半,然后利用勾股定理求出菱形的边长,最后根据周长公式计算即可求解;根据菱形的面积等于对角线乘积的一半列式计算即可求解.解:∵菱形的两条对角线的长分别是6cm和8cm,∴两条对角线的长的一半分别是3cm和4cm,∴菱形的边长为,∴菱形的周长=5×4=20cm;面积=12×8×6=24cm2.故答案为20,24.17.43m≤且m≠0【分析】根据一元二次方程的定义和根的判别式,建立关于m的不等式组,求解即可.【详解】解:∵关于x 的一元二次方程mx2+4x+3=0有实数根,∴m≠0,△=16−12m≥0,解得:43m≤且m≠0,故答案为:43m≤且m≠0.【点睛】本题考查了一元二次方程的定义和根的判别式.熟知一元二次方程的根和判别式之间的关系18.﹣2或1【详解】试题分析:方程的解就是能使方程左右两边相等的未知数的值,把x=﹣1代入方程,即可得到一个关于a的方程:22a a0--=,解得a=﹣2或1.19.5【分析】移项可得一元二次方程的一般形式,然后根据常数项的定义直接得出答案.【详解】解:方程x2−4x=−5整理成一般形式为:x2−4x+5=0,其中常数项是5,故答案为:5.【点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.20.-2【详解】试题分析:根据一元二次方程的定义,二次项系数不为0,未知数的次数为2,可得220 22m m -≠⎧⎨-=⎩,可求得m=-2.故答案为-2点睛:本题考查了一元二次方程的定义,属于基础题,注意掌握一元二次方程的定义是解答本题的关键.21.±4【分析】利用完全平方公式的结构特征即可确定出n的值.【详解】解:∵4x2-nx+1=(2x)2-nx+12是完全平方式,∴n=±4,【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.22.2008【分析】先求出x 2+4x =2,然后把代数式3x 2+12x +2002变形为含x 2+4x 的形式,再整体代入求值即可.【详解】解:∵x 2+4x−2=0,∴x 2+4x =2,∴原式=3(x 2+4x )+2002=6+2002=2008.故答案为:2008.【点睛】本题考查了代数式求值,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x 2+4x 的值,然后把x 2+4x 看作一个整体,整体代入计算.23.113x =-(),21x =-;(2)1x =,2x =1635x =-(),265x =;144x =-(),21x =.【分析】()1用因式分解法解方程即可.()2用公式法解方程即可.()3用因式分解法解方程即可.()4用因式分解法解方程即可.【详解】()2143x x +=-,2430x x ++=,∴()()310x x ++=,∴30x +=或10x +=,解得,13x =-,21x =-;()222340x x +-=,∵2a =,3b =,4c =-,∴()23424410=-⨯⨯-=>,∴x ==∴1x =,2x = ()2325360x -=,()()56560x x +-=,∴560x +=或560x -=, 解得,165x =-,265x =; ()()24(4)54x x +=+,()2(4)540x x +-+=,()()4450x x ++-=,()()410x x +-=,∴40x +=,10x -=,解得,14x =-,21x =.【点睛】考查一元二次方程的解法,根据题目选取合适的方法是解题的关键.24.(1)证明见解析;(2)证明见解析.【分析】(1)由四边形ABCD 是菱形,即可求得AB =AD ,∠B =∠D ,又由BE =DF ,根据SAS 即可证得△ABE ≌△ADF ;(2)由全等得AE =AF ,利用等边对等角得出结论.【详解】证明:(1)∵四边形ABCD 是菱形,∴AB=AD,∠B=∠D,在△ABE和△ADF中,AD ABD B DF BE⎧⎪∠∠⎨⎪⎩===,∴△ABE≌△ADF(SAS);(2)∵△ABE≌△ADF,∴AE=AF,∴∠AEF=∠AFE.【点睛】此题考查了菱形的性质与全等三角形的判定和性质,解题的关键是熟练掌握菱形的性质,注意菱形的四条边都相等,对角相等.25.见解析【分析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论.【详解】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OC=OD=12AC=12BD∴四边形OCED是菱形.26.证明见解析【详解】试题分析:证明有三个角是直角是矩形,再证明一组邻边相等. 试题解析:∵CD平分∠ACB,DE⊥BC,DF⊥AC,∴DE=DF,∠DFC=90°,∠DEC=90°又∵∠ACB=90°,∴四边形DECF是矩形,∴矩形DECF是正方形.点睛:证明正方形(1)对角线相等的菱形是正方形.(2)对角线互相垂直的矩形是正方形,正方形是一种特殊的矩形.(3)四边相等,有三个角是直角的四边形是正方形.(4)一组邻边相等的矩形是正方形.(5)一组邻边相等且有一个角是直角的平行四边形是正方形.(6)四边均相等,对角线互相垂直平分且相等的平行四边形是正方形.27.x1=﹣0.5,x2=1【分析】解方程x2﹣|x﹣1|﹣1=0.方程中|x﹣1|的值有两个,所以就要分情况讨论,然后去掉绝对值.一种是当x﹣1≥0时,求解;另一种情况是当x﹣1<0时,求解.【详解】解:当x﹣1≥0,即x≥1时,原方程可化为x2﹣x(x﹣1)﹣1=0即x﹣1=0,解得x=1当x﹣1<0,即x<1时,原方程可化为x2﹣x(1﹣x)﹣1=0即2x2﹣x﹣1=0,解得x1=﹣0.5,x2=1(不合题意.舍去)∴原方程的解为x1=﹣0.5,x2=1【点睛】本题考查了解一元二次方程的应用,易出错的地方是要分情况而解,所以学生容易出现漏解的现象.28.m=5,x1=x2=2.【分析】首先根据原方程根的情况,利用根的判别式求出m的值,即可确定原一元二次方程,进而可求出方程的根.【详解】由题意可知△=0,即(﹣4)2﹣4(m﹣1)=0,解得:m=5.当m=5时,原方程化为x2﹣4x+4=0.解得:x1=x2=2.所以原方程的根为x1=x2=2.【点睛】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.。
北师大版九年级数学上册第一次月考考试卷及答案【完整】

北师大版九年级数学上册第一次月考考试卷及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是( )A .13-B .13C .3-D .32.实数a 在数轴上的位置如图所示,则化简22(4)(11)-+-a a 结果为( )A .7B .-7C .215a -D .无法确定3.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508x x =+ 4.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <5.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .86.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?( )A .4B .5C .6D .77.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=5708.下列图形具有稳定性的是( )A .B .C .D .9.如图,△ABC 中,∠A=30°,点O 是边AB 上一点,以点O 为圆心,以OB 为半径作圆,⊙O 恰好与AC 相切于点D ,连接BD .若BD 平分∠ABC ,AD=23,则线段CD 的长是( )A .2B .3C .32D .33210.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D 10二、填空题(本大题共6小题,每小题3分,共18分)1.计算14287-的结果是______________. 2.分解因式:2x y 4y -=_______.3.函数2y x =-中,自变量x 的取值范围是__________.4.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A ′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A ′B 所在直线于点F ,连接A ′E .当△A ′EF 为直角三角形时,AB 的长为__________.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图,在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且3a 5BE =.连接AE ,将ABE ∆沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则 a 的值为__________.三、解答题(本大题共6小题,共72分)1.计算:(1)sin30°﹣(π﹣3.14)0+(﹣12)﹣2(2)解方程;13223 x x=--2.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.3.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C (0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、D4、C5、C6、C7、A8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、02、()()y x 2x 2+-.3、2x ≥4、 45、x ≤1.6、53或三、解答题(本大题共6小题,共72分)1、(1)72;(2)x =32、(1)y=﹣x 2﹣2x+3;(2)抛物线与y 轴的交点为:(0,3);与x 轴的交点为:(﹣3,0),(1,0);(3)15.3、(1)y=x 2﹣2x ﹣3;(2)M (﹣35,﹣65);(3)存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形,P 的坐标为(3)或(13)或(2,﹣3).4、(1)DE 与⊙O 相切,理由略;(2)阴影部分的面积为25、(1)50、30%.(2)补图见解析;(3)35.6、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.。
北师大版九年级上册第一次月考数学试卷(含解析)

北师大版九年级上册第一次月考数学试卷(考试时间:90分钟总分:120分)一、选择题(共10题;共30分)1.下列各组线段中,成比例的是()A. 2cm,3cm,4cm,5cmB. 2cm,4cm,6cm,8cmC. 3cm,6cm,8cm,12cmD. 1cm,3cm,5cm,15cm2.已知ba =2,则a−ba+b的值是()A. 13B. -13C. 3D. -33.不透明袋子中装有红、绿小球各2个,除颜色外无其他差别.随机摸出一个小球后,不放回,再随机摸出一个,两次都摸到红球的概率为()A. 18B. 16C. 14D. 134.方程x(x−2)=x的解是()A. x=2B. x1=0,x2=2C. x1=0,x2=3D. x=35.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 966.如图,在△ABC中,DE∥AB,且CDBD =32,则CECA的值为()A. 35B. 23C. 45D. 327.若x2=y3=z4≠0,则下列各式正确的是()A. 2x=3y=4zB. 2x+2y5=z2C. x+12=y+13D. x+12=z−248.已知关于x的一元二次方程(a−1)x2−2x+1=0有实数根,则a的取值范围是()A. a≤2B. a>2C. a≤2且a≠1D. a<−29.把边长分别为1和2的两个正方形按图3的方式放置.则图中阴影部分的面积为()A. 16B. 13C. 15D. 1410.如图,在Rt△ABC中,CD为斜边AB的中线,过点D作DE⊥AC于点E,延长DE至点F,使EF= DE,连接AF,CF,点G在线段CF上,连接EG,且∠CDE+∠EGC=180°,FG=2,GC=3.下列结论:①DE=12BC;②四边形DBCF是平行四边形;③EF=EG;④BC=2√5.其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(共7题;共28分)11.在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是________.12.设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则2x12﹣x1+x22=________.13.如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=6,则AD=________.14.小明在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网5米的位置上,她的击球高度是2.4米,则她应站在离网的________米处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
爱尚学数学九年级上册第一次月考试题
一.选择题(共10小题)(每题3分,共30分)
1.下列方程中,关于x的一元二次方程是()
A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣1
2.把一元二次方程x2﹣4x+1=0,配成(x+p)2=q的形式,则p、q的值是()A.p=﹣2,q=5 B.p=﹣2,q=3 C.p=2,q=5 D.p=2,q=3
3.若关于x的一元二次方程方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()
A.k<5 B.k≥5,且k≠1 C.k≤5,且k≠1 D.k>5
*
4.若关于x的一元二次方程x2﹣2x+m+3=0有两个不相等的实数根,则m的最大整数值是()
A.﹣9 B.﹣8 C.﹣7 D.﹣6
5.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()
A.3对 B.4对 C.5对 D.6对
6.如图,矩形ABCD中,AC,BD相交于点O,若∠AOB=60°,AC=6,则AB的长为()
A.3 B.C.D.6
—
7.下列说法正确的是()
A.对角线相等且互相垂直的四边形是菱形
B.对角线互相垂直平分的四边形是正方形
C.对角线互相垂直的四边形是平行四边形
D.对角线相等且互相平分的四边形是矩形
8.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D 是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()
A.(3,1) B.(3,)C.(3,)D.(3,2)
'
9.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()
A.3 B.4 C.5 D.6
10.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:
①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S
△AOE :S
△BCM
=2:3.其中正
确结论的个数是()
A.4个 B.3个 C.2个 D.1个
二.填空题(共10小题)(每题3分,共30分)
11.若一元二次方程ax2﹣bx﹣2016=0有一根为x=﹣1,则a+b=.
@
12.一元二次方程﹣x2+4x=3的二次项系数、一次项系数和常数项的乘积为.
13.设x,y为实数,代数式5x2+4y2﹣8xy+2x+4的最小值为.
14.将一元二次方程x2﹣6x+5=0化成(x﹣a)2=b的形式,则ab=.15.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是.
16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=cm.
17.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2=.18.在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.
^
19.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.
20.如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为.
三.解答题(共10小题)
21.解下列方程:(每题3分,共6分)
(1)2x2﹣5x+1=0 (2)(x+4)2=2(x+4)
《
22.如果关于x的一元二次方程k2x2+2(k﹣1)x+1=0有两个不相等的实数根.(1)求k的取值范围;
(2)若方程的一个实数根是1,求k的值.(每题3分,共6分)
$
23.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)若BC=8,DE=6,求△AEF的面积.(3分,4分,共7分)
(
24.如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.
(1)求证:△ABE≌△CDF;
(2)当四边形AECF为菱形时,求出该菱形的面积.(每题4分,共8分)
.
25.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.
(1)求证:四边形AECF是菱形;
(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)
(每题4分,共8分)
…
28.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.
(1)求证:EF=EC;
(2)若AD=2AB,求∠FDC.(每题4分,共8分)。
29.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.
(1)求证:△ABE≌△DFE;
?
(2)连接BD、AF,当BE平分∠ABD时,求证:四边形ABDF是菱形.
(每题4分,共8分)
30.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.
(1)求证:BD=DF;
(2)求证:四边形BDFG为菱形;
(3)若AG=13,CF=6,求四边形BDFG的周长.(每题3分,共9分)。