各地高考数学模拟考试试卷

合集下载

2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。

A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。

所以A∩B={x|x=6k,k∈Z},故选B。

2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。

根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。

故选A。

3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。

又因为S6-S3=24,得到a4+a5+a6=24。

由等差数列的性质,a3+a6=a4+a5。

将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。

解方程组a1+a3=12和a4+a5=16,得到a4=8。

故选B。

二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。

再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。

5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。

【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。

三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。

2024届高三数学仿真模拟卷(全国卷)(理科)(全解全析)

2024届高三数学仿真模拟卷(全国卷)(理科)(全解全析)

2024年高考第三次模拟考试数学(理科)·全解全析(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,6【答案】A【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由260x x -≥,即()60x x -≥,解得6x ≥或0x ≤,所以{}(][)260,06,B x x x ∞∞=-≥=-⋃+,又{}24A x x =-≤≤,所以[]2,0A B ⋂=-.故选:A 2.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .14【答案】C【分析】运用复数代数运算及两复数相等的性质求解即可.【详解】由题意知,22231(i)i=i2422z a a=+=-+,所以23142a⎧-=⎪⎪=,解得12a=.故选:C.3.如图,已知AM是ABC的边BC上的中线,若AB a=,AC b=,则AM等于()A.()12a b-B.()12a b--C.()12a b+D.()12a b-+【答案】C【分析】根据平面向量线性运算法则计算可得.【详解】因为AM是ABC的边BC上的中线,所以12CM CB=,所以12AM AC CM AC CB=+=+()()()111222AC A CB A AC aBA b=+-=+=+.故选:C4.已知函数()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期为2π,直线π3x=是()f x图象的一条对称轴,则()f x的单调递减区间为()A.()π5π2π,2πZ66k k k⎛⎤-+∈⎥⎝⎦B.()5π2π2π,2πZ33k k k⎛⎤--∈⎥⎝⎦C.()4ππ2π,2πZ33k k k⎛⎤--∈⎥⎝⎦D.()π2π2π,2πZ33k k k⎛⎤-+∈⎥⎝⎦【答案】B【分析】根据()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期确定ω的值,根据函数的对称轴求出ϕ,结合正切函数的单调性,列出不等式,即可求得答案.【详解】由于()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象是将()tan y x ωϕ=+的图象在x 轴下方部分翻折到x 轴上方,且()tan y x ωϕ=+π0,02ωϕ⎛⎫><<⎪⎝⎭仅有单调递增区间,故()()tan f x x ωϕ=+和()tan y x ωϕ=+的最小正周期相同,均为2π,则π12π,2ωω=∴=,即()1tan 2f x x ϕ⎛⎫=+ ⎪⎝⎭,又直线π3x =是()f x 图象的一条对称轴,则1π1π,Z 232k k ϕ⋅+=∈,即1ππ,Z 26k k ϕ=-∈,结合π02ϕ<<,得π3ϕ=,故()1πtan 23f x x ⎛⎫=+ ⎪⎝⎭,令π1πππ,Z 223k x k k -<+≤∈,则5π2π2π2π,Z 33k x k k -<≤-∈,即()f x 的单调递减区间为()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦,故选:B5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件【答案】A【分析】根据充分性、必要性的定义,结合直线的斜率是否存在进行判断即可.【详解】当直线的斜率等于0时,直线的方程为1y =,代入方程224x y +=中,得x =,显然CD =;当直线的不存在斜率时,直线的方程为1x =,代入方程224x y +=中,得y =CD =因此是必要而不充分条件,故选:A6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种【答案】B【分析】根据题意,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,剩下的三人安排在其他三个名次,②丙不是最后一名,丙丁需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案.【详解】根据题意,丙丁都没有得到冠军,而丁不是最后一名,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,即丁有3种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有1863=⨯种名次排列情况;②丙不是最后一名,丙丁需要排在第二、三、四名,有23A 6=种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有6636⨯=种名次排列情况;则一共有361854+=种不同的名次情况,故选:B .7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.【答案】C【分析】先求出函数的定义域和奇偶性,排除BD ,再求出特殊点的函数值,得到答案.【详解】()πln sin ln cos 2x x x x f x x x⎛⎫⋅- ⎪⋅⎝⎭==定义域为()(),00,∞-+∞U ,且()()()ln cos ln cos x x x x f x f x x x-⋅-⋅-==-=--,所以函数()f x 是奇函数,图象关于原点中心对称,排除B 、D .又()ln 2cos 2202f ⋅=<,故A 错误.故选:C .8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α,则平面α与半球底面之间的几何体的体积是()A .3π24R B .3π24R C .3π12R D .3π12R 【答案】C 【分析】分别求得面α截圆锥时所得小圆锥的体积和平面α与圆柱下底面之间的部分的体积,结合祖暅原理可求得结果.【详解】 平面α截圆柱所得截面圆半径2r =,∴平面α截圆锥时所得小圆锥的体积2311ππ3212V r R R =⋅=,又平面α与圆柱下底面之间的部分的体积为232πV R R R =根据祖暅原理可知:平面α与半球底面之间的几何体体积33321πππ21212V V V R R R =-=-=.故选:C.9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<【答案】B【分析】用定义证明函数()f x 的奇偶性及在()0,1上的单调性,利用函数()f x 的奇偶性及单调性,对数函数ln y x =的性质及对数运算可得结果.【详解】因为函数()f x 的定义域为{}0x x ≠,又()()ln ln f x x x f x -=-==,所以()f x 为偶函数,当01x <<时,任取12x x >,()()12121221ln ln ln ln ln ln 0f x f x x x x x x x -=-=-=-<,即()()12f x f x <,所以()f x 在()0,1上为减函数,因为31ln2ln02>>>,所以()()()113ln ln2ln2ln2ln 22a f f f f f c-⎛⎫⎛⎫===-=<= ⎪ ⎪⎝⎭⎝⎭,即a c <,设3401,1x x <<<,则()4444ln ln ln f x x x x ===,()3333ln ln ln f x x x x ===-,若()()34f x f x =,则34ln ln x x -=,所以341x x =,因为2e ln 2ln212=->,所以22e 11ln e 22ln2ln 2b f f f ⎛⎫ ⎪⎛⎫⎛⎫=== ⎪ ⎪⎪-⎝⎭⎝⎭ ⎪ ⎪⎝⎭,又()21ln21ln202ln22ln2--=>--,即11ln202ln2>>>-,所以()1ln22ln2f f ⎛⎫< ⎪-⎝⎭,即b a <,故选:B.10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a=,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个【答案】B 【分析】由81a=,利用递推关系,分类讨论逆推出1a 的不同取值,进而可得答案.【详解】若81a =,又1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,根据上述运算法进行逆推,可得72a =,64a =,所以58a =或51a =;若58a =,则4316,32a a ==或35a =;当332a =时,2164,128a a ==或121a =;若35a =时,2110,20a a ==或13a =;当51a =,则4322,4,8a a a ===或21a =;当28a =时,116a =;当21a =时,12a =,故81a=时,1a 的所有可能的取值集合{}2,3,16,20,21,128M =即集合M 中含有6个元素.故选:B11.如图,已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为C 的离心率是()AB .32CD .3【答案】B【分析】根据斜率及双曲线的对称性得12BF F △为等边三角形,再根据同角间关系求解三角函数值,进而用正弦定理求出121410,33AF c AF c ==,由双曲线定义可得423c a =,从而得到离心率.【详解】由题意,直线1BF12π3BF F ∴∠=,又12BF BF =,所以12BF F △为等边三角形,故12122BF BF F F c ===,2112π2π,33BF F F F A ∠=∠=,在12AF F △中,21tan 0F F A ∠>,则21F F A ∠为锐角,则212111sin 14F F A F F A ∠=∠=,212πsin sin 3A F F A ⎛⎫=+∠= ⎪⎝⎭由正弦定理,12121221sin sin sin F F AF AF AF F AF F A==∠∠,=∴121410,33AF c AF c ==,由122AF AF a -=,得423c a =,32c e a ∴==.故答案选:B .12.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑【答案】D【分析】利用赋值法结合题目给定的条件可判断AC ,取()()2π2πsin,cos 33f x xg x x ==可判断B ,对于D ,通过观察选项可以推断()f x 很可能是周期函数,结合()()()(),f x g y g x f y 的特殊性及一些已经证明的结论,想到令1y =-和1y =时可构建出两个式子,两式相加即可得出()()()11f x f x f x ++-=-,进一步得出()f x 是周期函数,从而可求()20231n f n =∑的值.【详解】解:对于A ,令0x y ==,代入已知等式得()()()()()000000f f g g f =-=,得()00f =,故A错误;对于B ,取()()2π2πsin,cos 33f x xg x x ==,满足()()()()()f x y f x g y g x f y -=-及()()210f f -=≠,因为()3cos 2π10g ==≠,所以()g x 的图象不关于点()3,0对称,所以函数()21g x +的图象不关于点()1,0对称,故B 错误;对于C ,令0y =,1x =,代入已知等式得()()()()()11010f f g g f =-,可得()()()()110100f g g f ⎡⎤-=-=⎣⎦,结合()10f ≠得()100g -=,()01g =,再令0x =,代入已知等式得()()()()()00f y f g y g f y -=-,将()00f =,()01g =代入上式,得()()f y f y -=-,所以函数()f x 为奇函数.令1x =,1y =-,代入已知等式,得()()()()()21111f f g g f =---,因为()()11f f -=-,所以()()()()2111f f g g =-+⎡⎤⎣⎦,又因为()()()221f f f =--=-,所以()()()()1111f f g g -=-+⎡⎤⎣⎦,因为()10f ≠,所以()()111g g +-=-,故C 错误;对于D ,分别令1y =-和1y =,代入已知等式,得以下两个等式:()()()()()111f x f x g g x f +=---,()()()()()111f x f x g g x f -=-,两式相加易得()()()11f x f x f x ++-=-,所以有()()()21f x f x f x ++=-+,即:()()()12f x f x f x =-+-+,有:()()()()()()11120f x f x f x f x f x f x -+=++--+-+=,即:()()12f x f x -=+,所以()f x 为周期函数,且周期为3,因为()11f =,所以()21f -=,所以()()221f f =--=-,()()300f f ==,所以()()()1230f f f ++=,所以()()()()()()()2023111232023202311n f n f f f f f f ===++++===∑ ,故D 正确.故选:D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.【答案】3【分析】根据n S 求得n a ,再结合对勾函数的单调性,即可求得结果.【详解】因为2n S n n =+,则当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=,又当1n =时,112a S ==,满足2n a n =,故2n a n =;则9n n S a +29191222n n n n n ++⎛⎫==++ ⎪⎝⎭,又9y x x=+在()1,3单调递减,在()3,+∞单调递增;故当3n =时,9n n+取得最小值,也即3n =时,9n n S a +取得最小值.故答案为:3.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.【答案】9542ω≤≤【分析】根据给定条件,利用辅助角公式化简函数()f x ,再利用正弦函数的性质求解即得.【详解】依题意,函数π()2sin(13f x x ω=+-,由()0f x =,得π1sin()32x ω+=,则ππ2π36x k ω+=+或π5π2π,Z 36x k k ω+=+∈,由[0,2π]x ∈,得πππ[,2π333x ωω+∈+,由()f x 在[0,2π]上恰有5个零点,得29ππ37π2π636ω≤+<,解得935412ω≤<,由3ππ22πx ω+≤-≤,得5ππ66x ωω-≤≤,即函数()f x 在5ππ[,66ωω-上单调递增,因此5ππ[,]ππ[,]41566ωω-⊆-,即45π6πω≤--,且π6π15ω≥,解得502ω<≤,所以正实数ω的取值范围为9542ω≤≤.故答案为:9542ω≤≤15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)【答案】15【分析】根据条件,两边求导得到12342345415(23)2345x a a x a x a x a x +=++++,再取=1x -,即可求出结果.【详解】因为52345012345(23)x a a x a x a x a x a x +=+++++,两边求导可得12342345415(23)2345x a a x a x a x a x +=++++,令=1x -,得到23454115(23)2345a a a a a -=-+-+,即12345234515a a a a a -+-+=,故答案为:15.16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数②(0,),()0x f x ∃∈+∞>③41(1)e f >④0x ∀>时,41()e xf x <【答案】②③【分析】根据构造函数的规律由令()()4e xg x f x =,再结合奇函数的性质可得①,求导分析单调性和极值可得②③④.【详解】令()()4e x g x f x =,则()()()()()4444e e e 4x x x g x f x f x f x f x '''=+=+⎡⎤⎣⎦,若()f x 是奇函数,则()()f x f x -=-,取0x =时,即()00f =,但(01f =),故①错误;因为4e 0,(0,)x x >∈+∞恒成立,且()4()0f x f x '+>,所以()0g x '>恒成立,()g x 在(0,)+∞上为单调递增函数,所以()()()()()44110e 101e g g f f f >⇒>⇒>,故②正确;由②可知,③正确;因为()g x 在(0,)+∞上为单调递增函数,所以当0x >时有()()()()0,001g x g g f >==,所以()()441e 1e x xf x f x >⇒>,故④错误;故答案为:②③三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC 的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.【答案】(1)35;(2)4.【详解】(1)由()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =-- 垂直,得0m n ⋅=,...............1分即sin (5sin 6sin )(5sin 5sin )(sin sin )0B B C A C C A -++-=,整理得2226sin sin sin sin sin 5B C A B C +-=,...............2分在ABC 中,由正弦定理得22265b c a bc +-=,...............3分由余弦定理得2223cos 25b c a A bc +-==,所以cos A 的大小为35................5分(2)由(1)知,在ABC 中,3cos 5A =,则4sin 5A ==,...............6分由22265b c a bc +-=,得22266482555a b c bc bc bc bc ==+-≥-=,即10bc ≤,...................................................................................................8分当且仅当b c =时取等号,...................................................................................................9分因此ABC 的面积12sin 425ABC S bc A bc ==≤ ,..........................................................11分所以ABC 的面积的最大值是4.....................................................12分18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k 2.706 3.841 6.63510.828【答案】(1)列联表见解析,有99%的把握认为在此社区内“关注流行语与性别有关”;(2)35【详解】(1)依题意,关注流行语居民人数为81410638+++=,不关注流行语居民人数为81422+=,...................................................................................................2分所以22⨯列联表如下:男女合计关注流行语30838不关注流行语101222合计4020602K 的观测值2260(3012108)7.03 6.63540203822K ⨯-⨯=≈>⨯⨯⨯,................................................................4分所以有99%的把握认为在此社区内“关注流行语与性别有关”...................5分(2)依题意,男居民选出406660⨯=(人),.......................................6分记为a b c d ,,,,女居民选出2人,记为,E F ,从6人中任选3人的样本空间{,,,,,,,,,,abc abd abE abF acd acE acF adE adF aEF Ω=,,,,,,,,,}bcd bcE bcF bdE bdF bEF cdE cdF cEF dEF ,共20个,.................................9分选出的3人为2男1女的事件{,,,,,,,,,,,}A abE abF acE acF adE adF bcE bcF bdE bdF cdE cdF =,共12个,...........11分所以选出的3人为2男1女的概率123()205P A ==......................................12分19.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.【答案】(1)证明见解析(2)存在;4AP =-【详解】(1)证明:如图,设,M N 分别为,EF AB 边的中点,连接,,MN DM CN ,..1分因为⊥AE 平面,,5,4,3ABC AE CD BF AE CD BF ===∥∥,所以42AE BFMN CD +===,//MN BF ,进而MN CD ∥,即四边形CNMD 为平行四边形,可得MD CN ∥,......................................3分在底面正三角形ABC 中,N 为AB 边的中点,则CN AB ⊥,......................................4分又⊥AE 平面ABC ,且CN ⊂平面ABC ,所以AE CN ⊥.由于⋂=AE AB A ,且AE AB ⊂、平面ABFE ,所以CN ⊥平面ABFE ......................5分因为,MD CN CN ⊥∥平面ABFE ,则MD ⊥平面ABFE ,又MD ⊂平面DEF ,则平面DEF ⊥平面AEFB .......................................6分(2)如图,以点A为坐标原点,建立空间直角坐标系,则()())0,0,5,0,2,4,E D F .设点()0,0,P t,则)()()1,1,0,2,1,0,2,4DF DE DP t =--=-=--..................8分设平面PDF 的法向量为()1111,,n x y z = ,平面EDF 的法向量为()2222,,n x y z =.由题意知110,0,n DF n DP ⎧⋅=⎪⎨⋅=⎪⎩即()111110,240,y z y t z --=-+-=⎪⎩令12z =,则114,y t x =-=14,2n t ⎫=-⎪⎭ ,......................................9分220,0,n DF n DE ⎧⋅=⎪⎨⋅=⎪⎩即222220,20,y z y z --=-+=⎪⎩取22z =,则)22n = ,...............................10分由121212π1cos ,cos 32n n n n n n ⋅===,28290t t +-=,解得:4t =±-,由于点P 为线段AE 上一点,故05t ≤≤,所以4t =-,......................................11分当4t =-时,二面角P DF E --所成角为锐角,即存在点P 满足,此时4AP =.......................................12分20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.【答案】(1)22143x y +=(2)(ⅰ)证明见解析;(ⅱ)4【详解】(1)点31,2P ⎛⎫⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴,则有()1,0F 设椭圆C 的焦距为()20c c >,则1c =,.......................................................................1分点31,2P ⎛⎫ ⎪⎝⎭代入椭圆方程,有()222219191441a b a a +=+=-,解得2a =,则222413b a c =-=-=,所以椭圆C 的方程为22143x y +=...................................................................................3分(2)(ⅰ)设直线l 的方程为y kx m =+,由22143y y k x x m =+⎧⎪⎨⎪+⎩=,消去y ,整理得()2223484120kxkmx m +++-=,因为l 交椭圆C 于,A B 两点,所以()22Δ48430k m =-+>,设()()1122,,,A x y B x y ,所以21212228412,3434km m x x x x k k -+=-=++, (5)分因为直线AF 和直线BF 关于PF 对称,所以()()()()12121212121212220111111AF BF kx x m k x x my y kx m kx m k k x x x x x x +-+-+++=+=+==------所以()()()21212224128222203434m kmkx x m k x x m k m k m k k --+-+-=⨯+-⨯-=++所以222282488860km k km k m mk m --+--=解得4m k =-................................................................................................................7分所以直线l 的方程为()44y kx k k x =-=-,所以直线l 过定点()4,0................................,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.......8分(ⅱ)设直线l 的方程为4x ny =+,由224143x ny x y =+⎧⎪⎨+=⎪⎩,消去x ,整理得()223424360n y ny +++=,因为l 交椭圆C 于,A B 两点,所以()()()222Δ241443414440n n n =-+=->,解得24n >,........................................................................................................9分1212222436,3434n y y y y n n +=-=++,所以12y y -=所以121331822ABFS y y =⨯-=⨯⨯ .............................10分令()24,0n t t -=>则18184ABC S ==≤,当且仅当163t =时取等号,所以ABF △面积的最大值为4......................................................................12分21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.【答案】(1)单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;极大值21(1)f e =,极小值(0)0f =;(2)(]0,2e 【详解】(1)当2a =时,()22=exx f x ()()2222222e e 22(1)=e e x x xxx x x x f x ⋅-⋅⋅--'=......................................2分令()=0f x ',解得0x =或1x =,......................................3分所以()()x f x f x '、、的关系如下表:x(,0)-∞0(0,1)1(1,)+∞()f x '-+-()f x 单调递减0单调递增21e 单调递减所以函数()f x 的单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;......................................4分极大值21(1)f e=,极小值(0)0f =;......................................5分(2)[]222()cos ln ()ln 4cos ln 2ln 4e eaa x xx x f x f x a x x a x x ⎛⎫-≥-⇔-≥- ⎪⎝⎭ln 2e 2(ln 2)cos(ln 2)0a x x a x x a x x -⇔----≥......................................6分令()e 2cos t g t t t =--,其中ln 2a x x t -=,设l (2)n a x x F x =-,0a >2()2a a x x xF x --='=令()0F x '>,解得:02ax <<,......................................8分所以函数()F x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减,max ()ln 22a a F x F a a ⎛⎫==- ⎪⎝⎭,且当0x +→时,()F x →-∞,所以函数()F x 的值域为,ln 2a a a ⎛⎤-∞- ⎥⎝⎦;......................................9分又()e 2sin t g t t '=-+,设()e 2sin t h t t =-+,,ln 2a t a a ⎛⎤∈-∞- ⎥⎝⎦,则()e cos t h t t '=+,当0t ≤时,e 1,sin 1t t ≤≤,且等号不同时成立,即()0g t '<恒成立;当0t >时,e 1,cos 1t t >≥-,即()0h t '>恒成立,所以()h t 在(0,)+∞上单调递增,又(0)1g '=-,(1)e 2sin10g '=-+>,所以存在0(0,1)t ∈,使得0()0g t '=,当00t t <<时,()0g t '<,当0t t >时,()0g t '>,所以函数()g t 在0(,)t -∞上单调递减,在0(,)t +∞上单调递增,且(0)0g =......................................11分当ln 02aa a -≤即02e a <≤时,()0g t ≥恒成立,符合题意;当ln02a a a ->即2e a >时,取10min ln ,2a t a a t ⎧⎫=-⎨⎬⎩⎭,必有1()0g t <,不符合题意.综上所述:a 的取值范围为(]0,2e ......................................12分(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.(10分)在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C 与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.【答案】(1)C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=.(2)存在,坐标为33,,4444⎛⎛--- ⎪ ⎪⎝⎭⎝⎭【详解】(1)由题设曲线C 的参数方程,消参得()2214x y -+=,............................2分由cos ,sin x y ρθρθ==,且)πsin sin cos 4ρθρθρθ⎛⎫-=-=⎪⎝⎭y =30x y -+=,......................................4分∴C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=...............................5分(2)当0y =时,()33,0x A =-⇒-,易知()12cos ,2sin B a a +,设(),M x y ,可得()()3,,2cos 1,2sin AM x y MB a x a y =+=-+-,......................................6分32cos 1cos 1,2sin sin x a x x a AM MB y a y y a +=-+=-⎧⎧=⇒⎨⎨=-=⎩⎩(a 是参数),消参得方程为()2211,x y ++=......................................8分且1,2,1,3E C C E C E r r r r r r ==-=+=,则圆心距离2,d ==得C E C E r r d r r -<<+,则两圆相交,故两圆存在公共点,联立方程组()()22221114x y x y ⎧++=⎪⎨-+=⎪⎩,解得34x y ⎧=-⎪⎪⎨⎪=⎪⎩或34x y ⎧=-⎪⎪⎨⎪=⎪⎩,故坐标为33,,44⎛⎛--- ⎝⎭⎝⎭......................10分选修4-5:不等式选讲23.(10分)已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.【答案】(1)113x x x ⎧⎫≤≥⎨⎬⎩⎭或(2)证明见解析【详解】(1)()2122f x x x x =-+-+,当0x <时,532x -+≥,解得0x <,......................................1分当102x ≤<时,332x -+≥,解得103x ≤≤,......................................2分当112x ≤<时,12x +≥,解得x ∈∅,......................................3分当1x ≥时,532x -≥,解得1x ≥,......................................4分综上所述,()2f x ≥的解集为13x x ⎧≤⎨⎩或}1≥x .......................................5分(3)由已知可得()5301330211<12531x x x x f x x x x x -+<⎧⎪⎪-+≤≤⎪=⎨⎪+≤⎪⎪->⎩,所以当12x =时,()f x 的最小值为32...............................................................................................6分1a b ∴+=,211,24a b a b ab +⎛⎫+=∴≤= ⎪⎝⎭,当且仅当12a b ==取等,......................................8分令t ab =,则104t <≤,211()212225224a b ab a b ab ab t a b ab ab ab t +-⎛⎫⎛⎫++=++=+-=+-≥ ⎪⎪⎝⎭⎝⎭,当且仅当14t =取等,此时12a b ==.......................................10分。

2024年高考数学仿真模拟(一)含解析(题型同九省联考,共 19 个题)

2024年高考数学仿真模拟(一)含解析(题型同九省联考,共 19 个题)

2024年高考仿真模拟数试题(一) 试卷+答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ( )3.设等差数列{}n a 的前n 项和为n S ,若789101120a a a a a ++++=,则17S =( ) A .150B .120C .75D .68A .672B .864C .936D .1056说法正确的是( )( )二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.10.已知复数1z ,2z ,则下列命题成立的有( )11.已知函数()f x 满足:①对任意,x y ∈R ,()()()()()2f x y f x f y f x f y +++=⋅+;②若x y ≠,则A .()0f 的值为2B .()()4f x f x +−≥C .若()13f =,则()39f =D .若()410f =,则()24f −=三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.2024年高考仿真模拟数试题(一)带答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ( ) A .4 B .5C .6D .7A .150B .120C .75D .68此时α与β可能平行或相交,故C 错误;对D 选项:若//l β,则必存在直线p β⊂,使//l p , 又l α⊥,则p α⊥,又p β⊂,则αβ⊥,故D 正确.故选D.5.有7个人站成两排,前排3人,后排4人,其中甲乙两人必须挨着,甲丙必须分开站,则一共有( )种站排方式. A .672 B .864 C .936 D .1056A .P 的轨迹为圆B .P 到原点最短距离为1C .P 点轨迹是一个菱形D .点P 的轨迹所围成的图形面积为4二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.A .()0f 的值为2B .()()4f x f x +−≥C .若()13f =,则()39f =D .若()410f =,则()24f −=答案 ABC解析 对于A ,令0x y ==,得()()23002f f =+ ,解得()01f =或()02f =, 若()01f =,令0y =,得()()212f x f x +=+,即()1f x ≡,三、填空题:本题共3小题,每小题5分,共15分.O O 当外接球的球心O在线段12 =OO h四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)。

2025届山东省六地市部分学校高考仿真模拟数学试卷含解析

2025届山东省六地市部分学校高考仿真模拟数学试卷含解析

2025届山东省六地市部分学校高考仿真模拟数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在棱长为a 的正方体1111ABCD A B C D -中,E 、F 、M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 、11A D 上,且11(0)A P AQ m m a ==<<,设平面MEF 平面MPQ l =,则下列结论中不成立的是( )A .//l 平面11BDDB B .l MC ⊥C .当2am =时,平面MPQ MEF ⊥ D .当m 变化时,直线l 的位置不变2.已知()f x 为定义在R 上的奇函数,若当0x ≥时,()2xf x x m =++(m 为实数),则关于x 的不等式()212f x -<-<的解集是( )A .()0,2B .()2,2-C .()1,1-D .()1,33.已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42B .21C .7D .34.若01a b <<<,则b a , a b , log b a ,1log ab 的大小关系为( ) A .1log log b a b aa b a b >>> B .1log log a bb ab a b a >>> C .1log log b a b aa ab b >>> D .1log log a b b aa b a b >>> 5.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab +=B .4a b +>C .()()22112a b -+-< D .228a b +>6.已知ABC △的面积是12,1AB =,2BC =,则AC =( )A .5B .5或1C .5或1D .57.设实数满足条件则的最大值为( ) A .1B .2C .3D .48.将函数()sin(2)3f x x π=-()x R ∈的图象分别向右平移3π个单位长度与向左平移n (n >0)个单位长度,若所得到的两个图象重合,则n 的最小值为( )A .3π B .23π C .2π D .π 9.某工厂只生产口罩、抽纸和棉签,如图是该工厂2017年至2019年各产量的百分比堆积图(例如:2017年该工厂口罩、抽纸、棉签产量分别占40%、27%、33%),根据该图,以下结论一定正确的是( )A .2019年该工厂的棉签产量最少B .这三年中每年抽纸的产量相差不明显C .三年累计下来产量最多的是口罩D .口罩的产量逐年增加 10.已知复数41iz i=+,则z 对应的点在复平面内位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限11.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )为( )A .163B .6C .203D .22312.已知复数z 满足()11z i i +=-(i 为虚数单位),则z 的虚部为( ) A .i -B .iC .1D .1-二、填空题:本题共4小题,每小题5分,共20分。

2024_年普通高等学校招生全国统一考试数学新高考Ⅰ卷模拟试卷

2024_年普通高等学校招生全国统一考试数学新高考Ⅰ卷模拟试卷

2024年普通高等学校招生全国统一考试数学新高考Ⅰ卷模拟试卷李昌成(乌鲁木齐市第八中学ꎬ新疆乌鲁木齐830002)中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)04-0094-10收稿日期:2023-11-05作者简介:李昌成ꎬ中学正高级教师ꎬ从事中学数学教学研究.㊀㊀一㊁单选题:本大题共8小题ꎬ共40.0分.在每小题列出的选项中ꎬ选出符合题目的一项.1.设集合U=RꎬA=x1<x<3{}ꎬB=xx<2{}ꎬ则图1中阴影部分表示的集合为(㊀㊀).㊀A.{x|xȡ2}㊀㊀㊀㊀B.{x|xɤ2}C.x1<xɤ2{}D.{x|2ɤx<3}图1㊀第1题图2.已知复数z满足2z-z=1+3iꎬ则zi=(㊀㊀).A.-1+i㊀B.1-i㊀C.1+i㊀D.-1-i3.正方形ABCD中ꎬMꎬN分别是BCꎬCD的中点ꎬ若ACң=λAMң+μBNңꎬ则λ+μ=(㊀㊀).A.65㊀㊀㊀B.85㊀㊀㊀C.2㊀㊀㊀D.834.已知三棱台ABC-A1B1C1中ꎬ三棱锥A-A1B1C1的体积为4ꎬ三棱锥A1-ABC的体积为8ꎬ则该三棱台的体积为(㊀㊀).A.12+33㊀㊀㊀B.12+42C.12+43D.12+475.从装有3个红球㊁2个白球的袋中任取2个球ꎬ则所取的2个球中至少有1个白球的概率是(㊀㊀).A.110㊀㊀㊀B.310㊀㊀㊀C.710㊀㊀㊀D.356.已知函数f(x)=Asin(ωx+φ)(ω>0ꎬ-π<φ<0)的部分图象如图2所示ꎬ则下列判断错误的是(㊀㊀).A.函数f(x)的最小正周期为2B.函数f(x)的值域为[-4ꎬ4]C.函数f(x)的图象关于点(103ꎬ0)中心对称D.函数f(x)的图象向左平移π3个单位长度后得到y=Asinωx的图象图2㊀第6题图497.若a>b>1ꎬ0<c<1ꎬ则下列结论正确的是(㊀㊀).A.ac<bc㊀㊀㊀㊀B.alogbc<blogacC.abc<bacD.logac<logbc8.某四棱锥的底面为正方形ꎬ顶点在底面的射影为正方形中心ꎬ该四棱锥内有一个半径为1的球ꎬ则该四棱锥的表面积的最小值是(㊀㊀).A.16㊀㊀B.8㊀㊀C.32㊀㊀D.24二㊁多选题:本大题共4小题ꎬ共20.0分.在每小题有多项符合题目要求.9.如图3ꎬ在棱长为1的正方体ABCD-A1B1C1D1中ꎬ点P是线段AD1上的动点ꎬ则下列命题正确的是(㊀㊀).A.异面直线C1P与CB1所成角的大小为定值B.三棱锥D-BPC1的体积是定值C.直线CP和平面ABC1D1所成的角的大小是定值D.若点Q是线段BD上动点ꎬ则直线PQ与A1C不可能平行图3㊀第9题图10.已知函数f(x)=x3-x+1ꎬg(x)=f(x)-ax(aɪR)ꎬ则(㊀㊀).A.f(x)有两个极值点B.f(x)的图象与x轴有三个交点C.点(0ꎬ1)是曲线y=f(x)的对称中心D.若g(x)存在单调递减区间ꎬ则aȡ-111.已知抛物线C:x2=2y的焦点为Fꎬ准线为lꎬAꎬB是C上的两点ꎬO为坐标原点ꎬ则(㊀㊀).A.l的方程为y=-1B.若AF=32ꎬ则әAOF的面积为24C.若OAң OBң=0ꎬ则OA OBȡ8D.若øAFB=120ʎꎬ过AB的中点D作DEʅl于点Eꎬ则ABȡ5DE12.设函数f(x)=xlnxꎬg(x)=12x2ꎬ给定下列命题ꎬ其中正确的是(㊀㊀).A.若方程f(x)=k有两个不同的实数根ꎬ则kɪ(-1eꎬ0)B.若方程kf(x)=x2恰好只有一个实数根ꎬ则k<0㊀C.若x1>x2>0ꎬ总有m[g(x1)-g(x2)]>f(x1)-f(x2)恒成立ꎬ则mȡ1D.若函数F(x)=f(x)-2ag(x)有两个极值点ꎬ则实数aɪ(0ꎬ12)三㊁填空题:本大题共4小题ꎬ共20.0分13.(x2-x+2)5的展开式中x3的系数为.14.已知圆C:x2+y2-4x-2y+1=0ꎬ点P是直线y=4上的动点ꎬ过P作圆的两条切线ꎬ切点分别为AꎬBꎬ则AB的最小值为.15.已知函数f(x)=x3+mxꎬ若f(ex)ȡf(x+1)对xɪR恒成立ꎬ则实数m的取值范围为.16.已知椭圆E:x24+y2=1ꎬ椭圆的左右焦点分别为F1ꎬF2ꎬ点A(mꎬn)为椭圆上一点且m>0ꎬn>0ꎬ过A作椭圆E的切线lꎬ分别交x=2ꎬx=-2于点CꎬD.连接CF1ꎬDF2ꎬCF1与DF2交于点Gꎬ并连接AG.若直线lꎬAG的斜率之和为32ꎬ则点A坐标为.四㊁解答题:本大题共6小题ꎬ共70.0分.解答应写出文字说明ꎬ证明过程或演算步骤.17.已知数列an{}满足a1=1ꎬan+1=an+2ꎬ数列bn{}的前n项和为Snꎬ且Sn=2-bn.(1)求数列an{}ꎬbn{}的通项公式ꎻ59(2)设cn=an+bnꎬ求数列cn{}的前n项和Tn.18.已知әABC中ꎬ角AꎬBꎬC所对的边分别为aꎬbꎬcꎬsinAcosC+cosAsinCc+b-a=sinC+sinAa-bꎬ且a=13.(1)求әABC外接圆的半径ꎻ(2)若c=3ꎬ求әABC的面积.19.如图4ꎬ直三棱柱ABC-A1B1C1中ꎬAA1=AB=AC=1ꎬEꎬF分别是CC1ꎬBC的中点ꎬAEʅA1B1ꎬD为棱A1B1上的点.图4㊀第19题图(1)证明:DFʅAEꎻ(2)是否存在一点Dꎬ使得平面DEF与平面ABC的夹角的余弦值为1414若存在ꎬ说明点D的位置ꎬ若不存在ꎬ说明理由.20.某剧场的座位数量是固定的ꎬ管理人员统计了最近在该剧场举办的五场表演的票价xi(单位:元)和上座率yi(上座人数与总座位数的比值)的数据ꎬ其中i=1ꎬ2ꎬ3ꎬ4ꎬ5ꎬ并根据统计数据得到如图5的散点图:图5㊀第20题图(1)由散点图判断y=bx+a与y=clnx+d哪个模型能更好地对y与x的关系进行拟合(给出判断即可ꎬ不必说明理由)ꎬ并根据你的判断结果求回归方程ꎻ(2)根据(1)所求的回归方程ꎬ预测票价为多少时ꎬ剧场的门票收入最多.参考数据:x=240ꎬy=0.5ꎬð5i=1x2i=365000ꎬð5i=1xiyi=457.5ꎻ设zi=lnxiꎬ则ð5i=1ziʈ27ꎬð5i=1z2iʈ147.4ꎬð5i=1ziyiʈ12.7ꎻe5.2ʈ180ꎬe5.4ʈ220ꎬe6.4ʈ600.参考公式:对于一组数据(u1|v1)ꎬ(u2|v2)ꎬ ꎬ(un|vn)ꎬ其回归直线v︿=α︿+β︿u的斜率和截距的最小二乘估计分别为:β=ðni=1uivi-nuvðni=1u2i-nu=ðni=1(ui-u)(vi-v)ðni=1(ui-u)2ꎬα︿=v-β︿u.21.已知双曲线C:x2a2-y2b2=1(a>0ꎬb>0)经过点P(4ꎬ2)ꎬ双曲线C的右焦点F到其渐近线的距离为2.(1)求双曲线C的方程ꎻ(2)已知Q(0ꎬ-2)ꎬD为PQ的中点ꎬ作PQ的平行线l与双曲线C交于不同的两点AꎬBꎬ直线AQ与双曲线C交于另一点Mꎬ直线BQ与双曲线C交于另一点Nꎬ证明:MꎬNꎬD三点共线.22.已知函数f(x)=aln(x+1)-sinx.(1)若y=f(x)在[π4ꎬπ2]上单调递减ꎬ求a的取值范围ꎻ(2)证明:当a=1时ꎬf(x)在(π2ꎬ+ɕ)上有且仅有一个零点.参考答案1.由Venn图可知ꎬ阴影部分的元素由属于集合A但不属于集合B的元素构成ꎬ所以阴影部分表示的集合为Aɘ(∁UB).因为集合U=RꎬA={x|1<x<3}ꎬB={x|x<2}ꎬ所以∁UB={x|xȡ2}.所以Aɘ(∁UB)={x|2ɤx<3}.所以图中阴影部分表示69的集合为{x|2ɤx<3}.故选D.2.设z=a+bi(aꎬbɪR)ꎬ则2z-z-=2(a+bi)-(a-bi)=a+3bi=1+3i.所以a=1ꎬ3b=3ꎬ{即a=1ꎬb=1.所以z=1+i.所以zi=1+ii=(1+i)(-i)i(-i)=1-i.故选B.3.以ABꎬAD为坐标轴建立平面直角坐标系ꎬ如图6ꎬ设正方形边长为1ꎬMꎬN分别是BCꎬCD的中点ꎬ所以AMң=(1ꎬ12)ꎬBNң=(-12ꎬ1)ꎬACң=(1ꎬ1).图6㊀第3题解析图因为ACң=λAMң+μBNңꎬ所以λ-12μ=1ꎬ12λ+μ=1.ìîíïïïï所以λ=65ꎬμ=25.所以λ+μ=85.故选B.4.设SәABC=S1ꎬSәA1B1C1=S2ꎬ棱台的高为hꎬ由已知ꎬ得VA-A1B1C1=13S2h=4ꎬ得S2=12hꎬVA1-ABC=13S1h=8ꎬ则S1=24h.所以三棱台ABC-A1B1C1的体积V=13h(S1+S2+S1S2)=13h(12h+24h2+12ˑ24h2)=12+42.故选B.5.根据题意ꎬ首先分析从5个球中任取2个球ꎬ设3个红球为a1ꎬa2ꎬa3ꎬꎬ2个白球为b1ꎬb2ꎬ所以样本空间Ω={a1a2ꎬa1a3ꎬa1b1ꎬa1b2ꎬa2a3ꎬa2b1ꎬa2b2ꎬa3b1ꎬa3b2ꎬb1b2}ꎬ共10个等可能的样本点.设事件A= 所取的2个球中至少有1个白球 ꎬ则事件A=所取的2个球中没有白球 ꎬA={a1a2ꎬa1a3ꎬa2a3}ꎬ则P(A)=310ꎬP(A)=1-310=710.则所取的3个球中至少有1个白球的概率是710.故选C.6.根据题意可得ꎬ12T=43-13ꎬ解得T=2ꎬ故函数f(x)的最小正周期为2ꎬA正确.所以ω=2πT=π.又因为函数f(x)=Asin(ωx+φ)(ω>0ꎬ-π<φ<0)的图象过点(13ꎬ0)ꎬ所以Asin(π3+φ)=0ꎬ解得φ=kπ-π3ꎬkɪZ.又因为-π<φ<0ꎬ所以φ=-π3.而函数f(x)=Asin(ωx+φ)的图象过点(0ꎬ-23)ꎬ所以Asin(πˑ0-π3)=-23ꎬ解得A=4ꎬ即f(x)的值域为[-4ꎬ4]ꎬ故B正确.所以f(x)=4sin(πx-π3).令πx-π3=kπꎬ解得x=k+13ꎬkɪZꎬ其中一个对称中心为(103ꎬ0)ꎬC正确.所以f(x)的图象向左移13个单位长度后得到y=4sinπxꎬD错误.故选D.7.因为a>b>1ꎬ0<c<1ꎬ所以ac>bcꎬ故A错误.alogbc=alogcclogcb=alogcbꎬ79blogac=blogcclogca=blogcaꎬalogcb-blogca=logc(aa/bb)logca logcbꎬ因为a>b>1ꎬ0<c<1ꎬ所以aa>ba>bb.即aabb>1.所以logcaabb<0ꎬlogca<0ꎬlogcb<0.所以alogcb<blogca.即alogbc<blogacꎬ故B正确.abcbac=(ab)1-cꎬ因为a>b>1ꎬ0<c<1ꎬ所以ab>1ꎬ1-c>0.㊀所以(ab)1-c>(ab)0=1.所以abcbac>1.即abc>bacꎬ故C错误.因为a>b>1ꎬ0<c<1ꎬ所以logac>logbcꎬ故D错误.故选B.8.因为四棱锥的底面为正方形ꎬ顶点在底面的射影为正方形中心ꎬ所以该四棱锥是正四棱锥ꎬ设正四棱锥P-ABCDꎬ当半径为1的球是正四棱锥P-ABCD的内切球时ꎬ该四棱锥的表面积最小ꎬ设正方形ABCD的边长为2aꎬ设ACɘBD=Oꎬ连接POꎬ则POʅ面ABCDꎬ所以正四棱锥P-ABCD的高为POꎬ设PO=hꎬ正四棱锥P-ABCD的表面积为Sꎬ由V=13 SABCD PO=13(4SәPAB+S四边形ABCD)ˑ1=13Sꎬ即为13ˑ2aˑ2ah=13(4ˑ12ˑ2aˑa2+h2+2aˑ2a)ˑ1ꎬ整理可得:a(h-1)=a2+h2.所以a2(h-1)2=a2+h2ꎬ可得a2=h2h2-2h.所以正四棱锥P-ABCD体积为V=13ˑ4a2h.则S=3V=3ˑ13ˑ4a2ˑh=4a2h=4a3h2-2h=4h2h-2(h>2).设t=h-2>0ꎬ可得h=t+2.所以S=4(t+2)2t=4(t+4t+4)ȡ4(2t4t+4)=32ꎬ当且仅当t=4t即t=2ꎬh=4时ꎬ等号成立.该四棱锥的表面积最小值是32.故选C.9.因为CB1ʅBC1ꎬCB1ʅABꎬBC1ɘAB=Bꎬ所以CB1ʅ平面ABC1D1.又C1P⊂平面ABC1D1ꎬ得CB1ʅC1Pꎬ所以异面直线C1P与CB1垂直ꎬ选项A正确.三棱锥D-BPC1以BDC1为底面ꎬ因为AD1ʊ平面BDC1ꎬ所以点P到平面BDC1的距离为定值ꎬ故三棱锥D-BPC1的体积是定值ꎬ选项B正确.点C在平面ABC1D1的射影是定点(BC1与B1C的交点)ꎬ线段CP长度显然随位置变化而变化ꎬ故直线CP和平面ABC1D1所成的角的正弦在变化ꎬ角的大小不是定值ꎬ选项C错误.以点D为原点ꎬDAꎬDCꎬDD1所在的直线分别为xꎬyꎬz轴ꎬ建立如图7所示空间直角坐标系ꎬ则CA1ң=(1ꎬ-1ꎬ1)ꎬ点P坐标取(23ꎬ0ꎬ13)ꎬ点Q坐标取(13ꎬ13ꎬ0)时ꎬPQң=(-13ꎬ13ꎬ-13)ꎬPQ//A1C成立ꎬ选项D错误.故选AB.图7㊀第9题解析图8910.已知f(x)=x3-x+1ꎬ则fᶄ(x)=3x2-1.由fᶄ(x)>0ꎬ得x<-33或x>33ꎻ由fᶄ(x)<0ꎬ得-33<x<33ꎬ所以函数f(x)在(-ɕꎬ-33)ꎬ(33ꎬ+ɕ)上单调递增ꎬ在(-33ꎬ33)上单调递减.则当x=-33时ꎬ函数f(x)取得极大值ꎬ当x=33时ꎬ函数f(x)取得极小值ꎬ故A项正确.而f(-33)=1+239>0ꎬf(33)=1-239>0ꎬ得函数f(x)的图象与x轴有一个交点ꎬ故B项错误.㊀令fᶄ(x)=3x2-1=h(x)ꎬ得hᶄ(x)=6x=0ꎬ得x=0ꎬ此时f(0)=1ꎬ得曲线y=f(x)的对称中心为(0ꎬ1)ꎬ故C项正确.由g(x)=f(x)-axꎬ得gᶄ(x)=fᶄ(x)-a=3x2-1-aꎬ若g(x)存在单调递减区间ꎬ即gᶄ(x)<0有解ꎬ得a>3x2-1有解ꎬ等价于a>(3x2-1)minꎬ则a>-1ꎬ故D项错误.故选AC.11.A选项:l的方程为y=-12ꎬ错误ꎻB选项:因为|AF|=32ꎬ可得yA=1ꎬ|xA|=2ꎬSәAOF=12|OF| |xA|=24ꎬ正确ꎻC选项:设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬ则OAң OBң=x1x2+y1y2=0ꎬ即x1x2=-y1y2ꎬ而y1y2=(x1x22)2=-x1x2ꎬ解得x1x2=-4ꎬy1y2=4ꎬ(|OA| |OB|)2=(x21+y21)(x22+y22)=32+x21y22+x22y21ȡ32+2|x1x2| |y1y2|=64ꎬ所以|OA| |OB|ȡ8ꎬ正确ꎻD选项:如图8ꎬ过点A作AA1ʅl于点A1ꎬ过点B作BB1ʅl于点B1ꎬ设|AF|=aꎬ|BF|=bꎬ所以|DE|=12(a+b).因为|AB|2=a2+b2-2ab cosøAFB=a2+b2+ab=(a+b)2-abȡ(a+b)2-(a+b2)2=3 (a+b2)2=3|DE|2ꎬ所以|AB|ȡ3|DE|ꎬ错误.故选BC.图8㊀第11题解析图12.对于Aꎬf(x)的定义域为(0ꎬ+ɕ)ꎬfᶄ(x)=lnx+1ꎬ令fᶄ(x)>0ꎬ得到x>1eꎬ令fᶄ(x)<0ꎬ得到0<x<1e.所以f(x)在(0ꎬ1e)上单调递减ꎬ在(1eꎬ+ɕ)上单调递增.所以[f(x)]min=f(1e)=-1eꎬ且当xң0时ꎬf(x)ң0.又f(1)=0ꎬ从而要使方程f(x)=k有两个不同的实根ꎬ即y=f(x)与y=k有两个不同的交点ꎬ所以kɪ(-1eꎬ0)ꎬ故A正确.对于Bꎬ易知x=1不是该方程的根ꎬ当xʂ1时ꎬf(x)ʂ0ꎬ方程kf(x)=x2有且只有一个实数根ꎬ等价于y=k和y=xlnx只有一个交点ꎬyᶄ=lnx-1(lnx)2ꎬ又x>0且xʂ1ꎬ令yᶄ>0ꎬ有x>eꎬ令yᶄ<0ꎬ有0<x<1或1<x<eꎬ所以函数y=xlnx在(0ꎬ1)和(1ꎬe)单调递减ꎬ在(eꎬ+ɕ)单调递增ꎬx=1是一条渐近线ꎬ极小值为e.由y=xlnx的大致图象(如图9)可知k<990或k=eꎬ故B错.图9㊀第12题解析图对于Cꎬ当x1>x2>0时ꎬm[g(x1)-g(x2)]>f(x1)-f(x2)恒成立ꎬ等价于mg(x1)-f(x1)>mg(x2)-f(x2)恒成立ꎬ即函数y=mg(x)-f(x)在(0ꎬ+ɕ)上单调递增ꎬ所以yᶄ=mgᶄ(x)-fᶄ(x)=mx-lnx-1ȡ0恒成立ꎬ即mȡlnx+1x在(0ꎬ+ɕ)上恒成立.令r(x)=lnx+1xꎬ则rᶄ(x)=-lnxx2.令rᶄ(x)>0得0<x<1ꎬ令rᶄ(x)<0得x>1ꎬ从而r(x)在(0ꎬ1)上单调递增ꎬ在(1ꎬ+ɕ)上单调递减ꎬ则r(x)max=r(1)=1ꎬ于是mȡ1ꎬ故C正确.对于Dꎬ函数F(x)=f(x)-2ag(x)有两个极值点ꎬ即F(x)=xlnx-ax2(x>0)有两个不同极值点ꎬ等价于Fᶄ(x)=lnx+1-2ax=0有两个不同的正根ꎬ即方程2a=lnx+1x有两个不同的正根ꎬ由C可知ꎬ0<2a<1ꎬ即0<a<12ꎬ则D正确.故选ACD.13.式子(x2-x+2)5=[(x2-x)+2]5的展开式的通项公式为Tr+1=Cr5 (x2-x)5-r 2rꎬ对于(x2-x)5-rꎬ它的通项公式为Trᶄ+1=(-1)rᶄ Crᶄ5-rx10-2r-rᶄꎬ其中ꎬ0ɤrᶄɤ5-rꎬ0ɤrɤ5ꎬrꎬrᶄ都是自然数.令10-2r-rᶄ=3ꎬ可得r=2ꎬrᶄ=3{或r=3ꎬrᶄ=1.{故x3项的系数为C2522(-C33)+C3523(-C12)=-200ꎬ故答案为-200.14.圆C:x2+y2-4x-2y+1=0ꎬ即(x-2)2+(y-1)2=4.图10㊀第14题解析图如图10ꎬ由于PAꎬPB分别切圆C于点AꎬBꎬ则PA=PBꎬCAʅPAꎬCBʅPBꎬ所以S四边形APBC=2SәACP=CA PA.因为CA=CB=r=2ꎬ所以S四边形APBC=2PA.又PCʅABꎬ所以S四边形APBC=12AB CP.所以PA=14AB CP.即AB=4PACP=41-4CP2.所以AB最短时ꎬCP最短ꎬ点C到直线y=4的距离即为CP的最小值ꎬ所以CPmin=3.所以AB的最小值为41-49=453.故答案为453.15.令y=ex-(x+1)ꎬ所以yᶄ=ex-1.显然当x>0时ꎬyᶄ>0ꎬ则y在(0ꎬ+ɕ)上单调递增ꎻ当x<0时ꎬyᶄ<0ꎬ则y在(-ɕꎬ0)上单调递减.即x=0时取得最小值ymin=0ꎬ故exȡx+1恒成立.若f(ex)ȡf(x+1)对xɪR恒成立ꎬ则f(x)在R上单调递增ꎬ则fᶄ(x)ȡ0恒成立ꎬfᶄ(x)=3x2+mȡ0ꎬmȡ-3x2ꎬ又(-3x2)max=0ꎬ故mȡ0.故答案为[0ꎬ+ɕ).16.设直线l的方程y=kx+bꎬ由y=kx+bꎬx24+y2=1{得001(1+4k2)x2+8kbx+4b2-4=0.如图11ꎬ因为直线l与椭圆E相切ꎬ所以ә=(8kb)2-4(4k2+1)(4b2-4)=0ꎬ解得4k2=b2-1.因为m=-4kb1+4k2ꎬn=km+bꎬ所以n=b1+4k2.所以mn=-4kꎬ即k=-m4nꎬb=1n.所以直线l的方程为mx4+ny=1.图11㊀第16题解析图分别令x=2和x=-2ꎬ得C(2ꎬ1n(1-m2))ꎬD(-2ꎬ1n(1+m2))ꎬ所以直线DF2方程为y=-(1/n)(1+m/2)2+3(x-3)ꎬ直线CF1方程为y=(1/n)(1-m/2)2+3(x+3).联立得DF2与CF1交点G(32mꎬ(23-3)n).因为kAE=(23-4)n3m/2-m=4nmꎬ所以kAG kl=4nm.(-m4n)=-1.所以由kAG kl=-1ꎬkAG+kl=32ꎬ得kl=-m4n=-12ꎬkAG=2.即m=2n.又m24+n2=1ꎬ则m=2ꎬn=22ꎬ即A(2ꎬ22).17.(1)由题知ꎬa1=1ꎬan+1-an=2ꎬ所以数列{an}是首项为1ꎬ公差为2的等差数列.所以an=1+(n-1)ˑ2=2n-1.当n=1时ꎬb1=S1=2-b1ꎬ所以b1=1.当nȡ2时ꎬSn=2-bnꎬ①Sn-1=2-bn-1.②由①-②ꎬ得bn=-bn+bn-1.即bnbn-1=12(nȡ2).所以数列{bn}是首项为1ꎬ公比为12的等比数列ꎬ故bn=(12)n-1.(2)由(1)知ꎬcn=an+bn=2n-1+(12)n-1.利用分组求和可得ꎬTn=n(1+2n-1)2+1-(1/2)n1-1/2=n2+2-(12)n-1.18.(1)依题意sin(A+C)sinC+sinA=c+b-aa-b.即bc+a=c+b-aa-b=ca-b-1.整理ꎬ得b2+c2-a2=-bc.所以cosA=b2+c2-a22bc=-12.因为0<A<πꎬ所以A=2π3.故所求外接圆半径r=a2sinA=133=393.(2)因为a=13ꎬc=3ꎬA=2π3ꎬ所以由余弦定理ꎬ得13=b2+9-2ˑ3ˑbˑcos2π3.解得b=1或b=-4(舍).则SәABC=12bcsinA=12ˑ1ˑ3ˑ32=334.19.(1)因为AEʅA1B1ꎬA1B1ʊABꎬ101所以AEʅAB.又因为AA1ʅ平面ABCꎬAB⊂平面ABCꎬ所以AA1ʅAB.又AA1ɘAE=AꎬAA1ꎬAE⊂平面A1ACC1ꎬ所以ABʅ平面A1ACC1.图12㊀第19题解析图又因为AC⊂平面A1ACC1ꎬ所以ABʅAC.所以ABꎬACꎬAA1两两垂直.以A为原点建立如图12所示的空间直角坐标系A-xyzꎬ则有A(0ꎬ0ꎬ0)ꎬE(0ꎬ1ꎬ12)ꎬF(12ꎬ12ꎬ0)ꎬA1(0ꎬ0ꎬ1)ꎬB1(1ꎬ0ꎬ1)ꎬ设D(xꎬyꎬz)ꎬA1Dң=λA1B1ңꎬ且λɪ[0ꎬ1]ꎬ即(xꎬyꎬz-1)=λ(1ꎬ0ꎬ0).则D(λꎬ0ꎬ1)ꎬDFң=(12-λꎬ12ꎬ-1).因为AEң=(0ꎬ1ꎬ12)ꎬ所以DFң AEң=0.所以DFʅAE.(2)存在一点D且D为A1B1的中点ꎬ使平面DEF与平面ABC夹角的余弦值为1414.理由如下:由题可知面ABC的法向量m=(0ꎬ0ꎬ1)ꎬ设面DEF的法向量为n=(xꎬyꎬz)ꎬ则n FEң=0ꎬn DFң=0.{则-x+y+z=0ꎬ(1-2λ)x+y-2z=0.{令x=3ꎬ则y=1+2λꎬz=2(1-λ).则n=(3ꎬ1+2λꎬ2(1-λ)).因为平面DEF与平面ABC夹角的余弦值为1414ꎬ所以|cos<mꎬn>|=|m n|m| |n||=1414.即|2(1-λ)|9+(1+2λ)2+4(1-λ)2=1414.解得λ=12或λ=74(舍).所以当D为A1B1中点时满足要求.20.(1)y=clnx+d能更好地对y与x的关系进行拟合.设z=lnxꎬ先求y关于z的线性回归方程.由已知得z=15ð5i=1ziʈ275=5.4ꎬ所以c=ð5i=1ziyi-5zyð5i=1z2i-5z2ʈ12.7-5ˑ5.4ˑ0.5147.4-5ˑ5.42=12.7-13.5147.4-145.8=-0.81.6=-0.5ꎬd=y-cz=0.5-(-0.5)ˑ5.4=3.2ꎬ所以y关于z的线性回归方程为y=-0.5z+3.2.所以y关于x的回归方程为y=-0.5lnx+3.2.(2)设该剧场的总座位数为Mꎬ由题意得门票收入为M(-0.5xlnx+3.2x)ꎬ设函数f(x)=-0.5xlnx+3.2xꎬ则fᶄ(x)=-0.5lnx+2.7ꎬ当fᶄ(x)<0ꎬ即x>e5.4时ꎬ函数单调递减ꎬ当fᶄ(x)>0ꎬ即0<x<e5.4时ꎬ函数单调递增ꎬ所以f(x)在x=e5.4ʈ220处取最大值.故预测票价为220元时ꎬ剧场的门票收入最多.21.(1)因为双曲线C的渐近线方程为y=ʃbaxꎬ所以双曲线C的右焦点F到其渐近线的距离为bca2+b2=b=2.因为双曲线C经过点P(4ꎬ2)ꎬ所以16a2-422=1ꎬ解得a2=8.故双曲线C的方程为x28-y24=1.(2)因为P(4ꎬ2)ꎬQ(0ꎬ-2)ꎬD为PQ的中点ꎬ所以D(2ꎬ0)ꎬkPQ=1.设直线l的方程为y=x+mꎬA(x1ꎬy1)ꎬB(x2ꎬy2)ꎬM(xMꎬyM)ꎬN(xNꎬyN)ꎬ201所以kAQ=y1+2x1ꎬkBQ=y2+2x2.直线AQ的方程为y=y1+2x1x-2ꎬ直线BQ的方程为y=y2+2x2x-2.联立y=y1+2x1x-2ꎬx28-y24=1ꎬìîíïïïï可得[1-2(y1+2)2x21]x2+8(y1+2)x1x-16=0.所以x1+xM=-8(y1+2)/x11-2(y1+2)2/x21=-8x1(y1+2)x12-2(y1+2)2.又因为x218-y214=1ꎬ所以x1+xM=x1+2x1y1.则xM=2x1y1ꎬyM=y1+2x1xM-2=4y1.同理可得xN=2x2y2ꎬyN=4y2.kMN=4/y1-4/y22x1/y1-2x2/y2=2ˑy2-y1x1y2-x2y1=2ˑx2-x1x1(x2+m)-x2(x1+m)=-2mꎬkMD=4/y1-02x1/y1-2=2x1-y1=-2mꎬ所以kMN=kMD.故MꎬNꎬD三点共线.22.(1)由题意得:函数定义域为(-1ꎬ+ɕ).fᶄ(x)=ax+1-cosx.若f(x)在[π4ꎬπ2]上单调递减ꎬ则fᶄ(x)ɤ0在[π4ꎬπ2]上恒成立.所以aɤ(x+1)cosx在[π4ꎬπ2]上恒成立.令g(x)=(x+1)cosxꎬ则gᶄ(x)=cosx-(x+1)sinx.当xɪ[π4ꎬπ2)时ꎬgᶄ(x)=cosx[1-(x+1) tanx].因为当xɪ[π4ꎬπ2)时ꎬcosx>0ꎬx+1>1ꎬtanx>1ꎬ所以gᶄ(x)<0.所以g(x)在[π4ꎬπ2)上单调递减ꎬ所以当xɪ[π4ꎬπ2]时ꎬg(x)ȡg(π2)=(π2+1)cosπ2=0.所以aɤ[g(x)]min=0.即a的取值范围为(-ɕꎬ0].(2)当a=1时ꎬf(x)=ln(x+1)-sinxꎬ则fᶄ(x)=1x+1-cosx.当x>e-1时ꎬln(x+1)>lne=1ȡsinxꎬ所以f(x)>0在(e-1ꎬ+ɕ)上恒成立.所以只需证f(x)在(π2ꎬe-1]上有且仅有一个零点.因为e-1<πꎬ所以当xɪ(π2ꎬe-1]时ꎬcosx<0ꎬ1x+1>0.所以fᶄ(x)>0在(π2ꎬe-1]上恒成立.所以f(x)在(π2ꎬe-1]上单调递增.又f(π2)=ln(π2+1)-sinπ2=ln(π2+1)-1<0ꎬf(e-1)=1-sin(e-1)>0ꎬ所以f(x)在(π2ꎬe-1]上有且仅有一个零点.即f(x)在(π2ꎬ+ɕ)上有且仅有一个零点.[责任编辑:李㊀璟]301。

备战2024年高考数学模拟卷(新高考Ⅰ卷专用)含解析

备战2024年高考数学模拟卷(新高考Ⅰ卷专用)含解析

【赢在高考·黄金8卷】备战2024年高考数学模拟卷(新高考Ⅰ卷专用)黄金卷(答案在最后)(考试时间:120分钟试卷满分:150分)第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要A.51 62 a b+C.51 63 a b+【答案】CA .242B .24【答案】B【详解】如图所示,在正四棱锥P ABCD -连接OP ,则底面边长32AB =,对角线又5BP =,故高224OP BP BO =-=故该正四棱锥体积为()21323V =⨯⨯故选:B5.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果可以表示为两个素数的和身外没有其他因数的自然数)中,随机选取两个不同的数,其和等于将APQ △翻折后,PQ A Q '⊥,PQ BQ ⊥,又平面平面A PQ ' 平面BCPQ PQ =,A Q '⊂平面A PQ ',BQ ⊂平面BCPQ ,于是A Q '⊥平面显然A P ',BP 的中点D ,E 分别为A PQ ' ,四边形BCPQ 则DO ⊥平面A PQ ',EO ⊥平面BCPQ ,因此//DO BQ 取PQ 的中点F ,连接,DF FE 则有////EF BQ DO ,DF 四边形EFDO 为矩形,设A Q x '=且023x <<,DO 设球O 的半径R ,有22223324A P R DO x x '⎛⎫=+=-+⎪⎝⎭当23x =时,()22R =,所以球O 表面积的最小值为故选:A .二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得5分,部分选对的得2分,有选错的得0分。

A .正方体11ABCD A B C -B .两条异面直线1D C 和C .直线BC 与平面ABC D .点D 到面1ACD 的距离为【答案】BC【分析】根据正方体和内切球的几何结构特征,可判定的角的大小即为直线1D C 和进而求得直线BC 与平面ABC 判定D 错误.【详解】对于A 中,正方体所以内切球的半径12R =,所以对于B 中,如图所示,连接因为11//AB C D 且11AB C D =所以异面直线1D C 和1BC 所成的角的大小即为直线又因为112AC AD D C ===对于C 中,如图所示,连接B 因为AB ⊥平面11BB C C ,1B C 又因为1AB BC B =I ,AB ⊂所以1B C ⊥平面11ABC D ,所以直线所以C 正确;对于D 中,如图所示,设点D 所以111πsin 23ACD S AC AD =⨯⨯V 又因为12ACD S AD CD =⨯⨯=V 即111133ACD ACD S h S DD ⨯⨯=⨯⨯ 故选:BC.10.已知函数321()3f x x x =-A .()f x 为奇函数C .()f x 在[1,)-+∞上单调递增【答案】BC【分析】根据奇函数的定义判断12.已知函数()f x 及其导函数f 则()A .(1)(4)f f -=B .g ⎛- ⎝【答案】ABD【分析】由题意分析得到()f x 关于直线【详解】因为3(2)2f x -为偶函数,所以所以()f x 关于直线32x =对称,令因为33()()22f x f x -=+,所以f '所以()()21g x g x +=--,因为所以()()21g x g x -=--,即(g 则()g x 的一个周期为2.因为(f x 所以33022g f ⎛⎫⎛⎫== ⎪ '⎪⎝⎭⎝⎭,所以g 因为()()1g x g x +=-,所以(2g 设()()h x f x c =+(c 为常数),定义域为3322h x f x c ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,又f ⎛ ⎝显然()()h x f x c =+也满足题设,即()f x 上下平移均满足题设,显然()0f 的值不确定,故C 错误.故选:ABD第II 卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分。

2024届河南省部分名校高三下学期高考仿真模拟考试数学试卷

2024届河南省部分名校高三下学期高考仿真模拟考试数学试卷

2024届河南省部分名校高三下学期高考仿真模拟考试数学试卷一、单选题(★★) 1. 已知集合,,则()A.B.C.D.(★) 2. 若复数,则()A.1B.C.D.(★★) 3. 在矩形中,,,则矩形的面积为()A.5B.10C.20D.25(★★) 4. 6人站成一排,其中甲、乙两人中间恰有1人的站法有()A.240种B.192种C.144种D.96种(★★★) 5. 记的内角A,B,C的对边分别是a,b,c,已知,,的平分线交边AC于点D,且,则()A.B.C.6D.(★★) 6. 已知圆台的上、下底面半径分别为,,且,若半径为的球与的上、下底面及侧面均相切,则的体积为()A.B.C.D.(★★★) 7. 已知函数,将的图象向左平移个单位长度后,得到函数的图象.若,是关于x的方程在内的两个不同的根,则()A.B.C.D.(★★★) 8. 已知函数,,若函数没有零点,则的取值范围是()A.B.C.D.二、多选题(★★★) 9. 下列命题正确的是()A.已知变量,的线性回归方程,且,则B.数据4,6,7,7,8,9,11,14,15,19的分位数为11C.已知随机变量最大,则的取值为3或4D.已知随机变量,则(★★★) 10. 下列函数中,最小值为1的是()A.B.C.D.(★★★★) 11. 在平面直角坐标系xOy中,为曲线上任意一点,则()A.E与曲线有4个公共点B.P点不可能在圆外C.满足且的点P有5个D.P到x轴的最大距离为三、填空题(★★★) 12. 已知为R上的奇函数,且,当时,,则的值为 ______ .(★★★) 13. 已知P,Q是抛物线上的两个动点,,直线AP的斜率与直线AQ的斜率之和为4,若直线PQ与直线平行,则直线PQ与之间的距离等于 ______ .(★★★) 14. 如图,在平行四边形中,,,且交于点,现沿折痕将折起,直至折起后的,此时的面积为 ______ .四、解答题(★★★) 15. 甲、乙两人进行射击比赛,每场比赛中,甲、乙各射击一次,甲、乙每次至少打出8环.根据统计资料可知,甲打出8环、9环、10环的概率分别为,乙打出8环、9环、10环的概率分别为,且甲、乙两人射击的结果相互独立.(1)在一场比赛中,求乙打出的环数少于甲打出的环数的概率;(2)若进行三场比赛,其中场比赛中甲打出的环数多于乙打出的环数,求X的分布列与数学期望.(★★★)16. 如图所示,在三棱锥中,平面平面,,为锐角.(1)证明:;(2)若,点满足,求直线与平面所成角的正弦值.(★★★) 17. 已知数列的前n项和为,,,(1)求;(2)若,求数列的前1012项和.(★★★★) 18. 已知双曲线的右焦点为F,左、右顶点分别为M,N,点是E上一点,且直线PM,PN的斜率之积为.(1)求的值;(2)过F且斜率为1的直线l交E于A,B两点,O为坐标原点,C为E上一点,满足,的面积为,求E的方程.(★★★★) 19. 已知函数.(1)若对恒成立,求的取值范围;(2)当时,若关于的方程有三个不相等的实数根,,,且,求的取值范围,并证明:.。

2024届山东省联合模拟考试数学试题(解析版)

2024届山东省联合模拟考试数学试题(解析版)

2024年全国普通高考模拟考试数学试题2024.5注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.3.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.样本数据2,3,4,5,6,8,9的第30百分位数是()A.3B.3.5C.4D.5【答案】C 【解析】【分析】利用百分位数的求法计算即可.【详解】易知730% 2.1⨯=,则该组数据的第三个数4为第30百分位数.故选:C2.已知集合{}|12024A x x =-≤≤,{}|1B x a x a =+≤≤()0a >,若A B ⋂≠∅,则a 的取值范围是()A.()0,2024 B.(]0,2024 C.()0,2023 D.(]0,2023【答案】B 【解析】【分析】由A B ⋂≠∅,则集合B 中最小元素a 应在集合A 中,即可得到a 的取值范围.【详解】由题意A B ⋂≠∅,再由0a >,所以集合B 中最小元素a 应在集合A 中,所以02024a <≤,即a 的取值范围是(]0,2024.故选:B.3.已知抛物线2:4C x y =的焦点为F ,点P 在C 上,若P 到直线=3y -的距离为5,则PF =()A.5B.4C.3D.2【答案】C【解析】【分析】利用抛物线的定义先确定准线及焦点,计算即可.【详解】由题意可知()0,1F ,抛物线的准线为1y =-,而PF 与P 到准线的距离相等,所以()()5133PF =----=.故选:C4.某所学校的3名同学和2名老师站成一排合影,若两名老师之间至少有一名同学,则不同的站法种数为()A.120B.72C.64D.48【答案】B 【解析】【分析】根据给定条件,利用不相邻的排列问题列式计算即得.【详解】依题意,两名老师不相邻,所以不同的站法种数为2334A 62A 127=⨯=.故选:B5.已知5a = ,4b = ,若a 在b 上的投影向量为58b - ,则a 与b 的夹角为()A.60° B.120°C.135°D.150°【答案】B 【解析】【分析】利用投影向量的定义计算即可.【详解】易知a 在b上的投影向量为cos ,55cos ,88a b a b a b a b b b ⋅=-⇒=- ,而51cos ,82b a b a =-⋅=-,所以a 与b 的夹角为120 .故选:B6.已知圆()22:200M x y ay a ++=>的圆心到直线322x y +=M 与圆()()22:221N x y -++=的位置关系是()A.相离B.相交C.内切D.内含【答案】D 【解析】【分析】根据点到直线的距离公式求a 的值,再利用几何法判断两圆的位置关系.【详解】圆M :2220x y ay ++=⇒()222x y a a ++=,所以圆心()0,M a -,半径为a .==,且0a >,所以112a =.又圆N 的圆心()2,2N -,半径为:1.所以2MN ==,912a -=.由922<,所以两圆内含.故选:D7.已知等差数列{}n a 满足22144a a +=,则23a a +可能取的值是()A.2-B.3- C.4D.6【答案】A 【解析】【分析】根据题意,令12cos a θ=,42sin a θ=,由等差数列的下标和性质结合三角函数的性质求解即可.【详解】设12cos a θ=,42sin a θ=,则1243π)4a a a a θ=+++=,所以23[a a ∈+-,故选:A.8.已知函数()1cos 4221f x x x ππ⎛⎫=-+ ⎪-⎝⎭,则21y x =-与()f x 图象的所有交点的横坐标之和为()A.12B.2C.32D.3【答案】D 【解析】【分析】先用诱导公式化简函数,然后变形成一致的结构,再换元,转化成新元方程根的横坐标之和,分别画图,找出交点横坐标的关系,再和即可.【详解】由题意化简()11cos 4sin(4)22121f x x x x x πππ⎛⎫=-+=+ ⎪--⎝⎭11sin(42)sin 2(21)2121x x x x πππ=-+=-+--,21y x =-与()f x 图象有交点,则1sin 2(21)2121x x x π-+=--有实根,令21t x =-,则12t x +=,则化为1sin 2t t t π+=,即1sin 2t t tπ=-的所有实根之和,即()sin 2g t t π=与1()h t t t =-所有交点横坐标之和,显然()g t 是周期为1的奇函数,()h t 为奇函数且在(0,)+∞上为增函数,图像如图所示,显然,一共有6个交点123456,,,,,t t t t t t ,它们的和为0,则12345612345616322t t t t t tx x x x x x ++++++++++=⨯+=,故选:D .二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1z ,2z 为复数,则()A.1212z z z z +=+ B.若12z z =,则2121z z z =C.若11z =,则12z -的最小值为2 D.若120z z ⋅=,则10z =或20z =【答案】BD 【解析】【分析】通过列举特殊复数验证A ;设()1i,,R z a b a b =+∈,则()2i,,R z a b a b =-∈,通过复数计算即可判断B ;设()1i,,R z a b a b =+∈,由复数的几何意义计算模长判断C ;由120z z ⋅=得120z z =,即可判断D.【详解】对于A ,若121i,1i =+=-z z ,则121i 1i 2z z +=++-=,121i 1i z z +=++-=1212z z z z +≠+,故A 错误;对于B ,设()1i,,R z a b a b =+∈,则()2i,,R z a b a b =-∈,所以()()2212i i z z a b a b a b =+-=+,而2221z a b =+,所以2121z z z =,故B 正确;对于C ,设()1i,,R z a b a b =+∈,因为11z =,所以221a b +=,所以()1i 22a b z =-+===-,因为11a -≤≤,所以1549a ≤-≤,所以12z -的最小值为1,故C 错误;对于D ,若120z z ⋅=,所以120z z ⋅=,所以120z z =,所以10z =或20z =,所以12,z z 至少有一个为0,故D 正确.故选:BD10.袋子中有6个相同的球,分别标有数字1,2,3,4,5,6,从中随机取出两个球,设事件A =“取出的球的数字之积为奇数”,事件B =“取出的球的数字之积为偶数”,事件C =“取出的球的数字之和为偶数”,则()A.()15P A =B.()1|3P B C =C.事件A 与B 是互斥事件D.事件B 与C 相互独立【答案】AC 【解析】【分析】分别求出事件,,A B C 的概率,再根据互斥事件和相互独立事件的概率进行判断.【详解】因为“取出的求的数字之积为奇数”,就是“取出的两个数都是奇数”,所以()2326C 31C 155P A ===;故A 正确;“取出的球的数字之积为偶数”就是“取出的两个数不能都是奇数”,所以()2326C 3411C 155P B =-=-=;“取出的两个数之和为偶数”就是“取出的两个数都是奇数或都是偶数”,所以()2326C 22C 5P C =⨯=;A B +表示“取出的两个数的积可以是奇数,也可以是偶数”,所以()1P A B +=;BC 表示“取出的两个数的积与和都是偶数”,就是“取出的两个数都是偶数”,所以()2326C 1C 5P BC ==.因为()()()|P BC P B C P C =12=,故B 错误;因为()()()P A B P A P B +=+,所以,A B 互斥,故C 正确;因为()()()P BC P B P C ≠⋅,所以,B C 不独立,故D 错误.故选:AC11.已知双曲线()222:10x C y a a-=>的渐近线方程为12y x =±,过C 的右焦点2F 的直线交双曲线右支于A ,B 两点,1F AB 的内切圆分别切直线1F A ,1F B ,AB 于点P ,Q ,M ,内切圆的圆心为I,半径为,则()A.CB.切点M 与右焦点2F 重合C.11F BI F AI ABI S S S +-=△△△D.17cos 9AF B ∠=【答案】ABD 【解析】【分析】A 选项,根据渐近线方程求出2a =,得到离心率;B 选项,由双曲线定义和切线长定理得到22AP BQ AM BM AF BF -=-=-,得到切点M 与右焦点2F 重合;C 选项,根据双曲线定义和1F AB 的内切圆的半径得到11F BI F AI ABI S S S +-=△△△;D 选项,作出辅助线,得到112tan 4PI AF I PF ∠==,利用万能公式得到答案.【详解】A 选项,由题意得112a =,解得2a =,故离心率c e a ===A 正确;B 选项,11,,AP AM F P FQ QB BM ===,由双曲线定义可得1224AF AF a -==,1224BF BF a -==,两式相减得1122AF BF AF BF -=-,即22AP BQ AM BM AF BF -=-=-,故切点M 与右焦点2F 重合,B 正确;C 选项,1F AB 的内切圆的半径为2r =故()111111111122222F BI F AI ABI S S S F A r F B r AB r F A F B AB +-=+-=+- ()11112424222F A AM F B BM a =-+-=⨯=C 错误;D 选项,连接1F I ,则1F I 平分1AF B ∠,其中111224F P AF AP AF AF a =-=-==,故112tan 4PI AF I PF ∠==,所以2221111212112c i os cos co s s c s n s s in o in AF I AF IAF I AF I AF I AF IAF B ∠-∠∠-=∠=+∠∠∠2212212141tan 71tan 9214AF I AF I ⎛⎫-⎪-∠⎝⎭===+∠⎛⎫+ ⎪⎝⎭.故选:ABD【点睛】关键点点睛:利用双曲线定义和切线长定理推出切点M 与右焦点2F 重合,从而推理得到四个选项的正误.三、填空题:本题共3小题,每小题5分,共15分.12.二项式5a x x ⎛⎫+ ⎪⎝⎭的展开式中,3x 的系数为10,则=a ___________.【答案】2【解析】【分析】利用二项式展开式的通项计算即可.【详解】易知二项式5a x x ⎛⎫+ ⎪⎝⎭的展开式通项公式为()5152155C C rr rr rr r T x a x a x ---+=⋅=⋅,显然1r =时,115C 102a a =⇒=.故答案为:213.若函数()()πcos sin 3f x x x ϕ⎛⎫=-++ ⎪⎝⎭的最大值为2,则常数ϕ的一个取值为___________.【答案】π6(答案不唯一,满足πZ π2,6k k ϕ=+∈即可)【解析】【分析】利用和(差)角公式化简,再判断1sin 02ϕ+≠,利用辅助角公式化简,再结合函数的最大值,求出ϕ.【详解】因为()()πcos sin 3f x x x ϕ⎛⎫=-++⎪⎝⎭ππcos cos sin sin sin coscos sin 33x x x x ϕϕ=+++1cos cos sin sin 22x x ϕϕ⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭,若1sin 02ϕ+=,则cos 2ϕ=±,所以()0f x =或()f x x =,显然不满足()f x 的最大值为2,所以1sin 02ϕ+≠,则()()f x x θ=+,(其中3cos 2tan 1sin 2ϕθϕ+=+),依题意可得2213sin cos 422ϕϕ⎛⎛⎫+++= ⎪ ⎝⎭⎝⎭,即sin 2ϕϕ+=,所以πsin 13ϕ⎛⎫+= ⎪⎝⎭,所以ππ2π,Z 32k k ϕ+=+∈,解得πZ π2,6k k ϕ=+∈.故答案为:π6(答案不唯一,满足πZ π2,6k k ϕ=+∈即可)14.如图,正方形ABCD 和矩形ABEF 所在的平面互相垂直,点P 在正方形ABCD 及其内部运动,点Q 在矩形ABEF 及其内部运动.设2AB =,AF =,若PA PE ⊥,当四面体PAQE 体积最大时,则该四面体的内切球半径为___________.【答案】222-或84352362+-【解析】【分析】先确定P 点的轨迹,确定四面体P AQE -体积最大时,P ,Q 点的位置,再利用体积法求内切球半径.【详解】如图:因为平面ABCD ⊥平面ABEF ,平面ABCD ⋂平面ABEF AB =,BE ⊂平面ABEF ,且BE AB ⊥,所以BE ⊥平面ABCD .AP ⊂平面ABCD ,所以BE AP ⊥,又⊥PE AP ,,PE BE ⊂平面PBE ,所以AP ⊥平面PBE ,PB ⊂平面PBE ,所以AP PB ⊥.又P 在正方形ABCD 及其内部,所以P 点轨迹是如图所示的以AB 为直径的半圆,作PH AB ⊥于H ,则PH 是三棱锥P AQE -的高.所以当AQE 的面积和PH 都取得最大值时,四面体PAQE 的体积最大.此时Q 点应该与B 或F 重合,P 为正方形ABCD 的中心.如图:当Q 点与B 重合,P 为正方形ABCD 的中心时:13P AQE AQE V S PH -=⋅ 1213=23=,2AQE S = 1PEQ S = ,1PAQ S = ,APE V 中,因为AP PE ⊥,2AP =,2PE =,所以2APE S = .设内切球半径为r ,由()13P AQE AQE APE APB PQE V S S S S r -=+++⋅ 得:2222222r ==+.如图:当Q 点与F 重合,P 为正方形ABCD 的中心时:13P AQE AQE V S PH -=⋅ 1213=23=,2AQE S = 3PEQ S = ,1PAQ S = ,2APE S = .设内切球半径为r ,由()13P AQE AQE APE APB PQE V S S S S r -=+++⋅ 得:22231r =++84352362+--=.综上可知,当四面体PAQE 的体积最大时,其内切球半径为:222-或84352362+-.故答案为:222或84352362+-【点睛】关键点点睛:根据PA PE ⊥得到P 点在以AE 为直径的球面上,又P 点在正方形ABCD 及其内部,所以P 点轨迹就是球面与平面ABCD 的交线上,即以AB 为直径的半圆上.明确P 点轨迹是解决问题的关键.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()()1ln f x x kx =-.(1)若曲线()f x 在e x =处的切线与直线y x =垂直,求k 的值;(2)讨论()f x 的单调性.【答案】(1)1k =(2)答案见解析【解析】【分析】(1)对函数求导,结合题意有,()()e ln e 1f k ='-=-,即可求解k 值;(2)对函数求导,分0k >和0k <两种情况讨论,根据导数的正负判断原函数的单调性.【小问1详解】因为()()1ln f x x kx =-,0k ≠,所以()()ln f x kx =-',曲线()f x 在e x =处的切线与y x =垂直,所以()()e ln e 1f k ='-=-,得1k =;【小问2详解】由()()1ln f x x kx =-得()()ln f x kx =-',当0k >时,()f x 的定义域为()0,∞+,令()0f x '=得1x k=,当10,x k ⎛⎫∈ ⎪⎝⎭时,()0f x '>,当1,x k ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '<所以()f x 在10,k ⎛⎫ ⎪⎝⎭上单调递增,在1,k ∞⎛⎫+ ⎪⎝⎭上单调递减;当0k <时,()f x 的定义域为(),0∞-,令()0f x '=得1x k=当1,x k ∞⎛⎫∈- ⎪⎝⎭时,()0f x '<,当1,0x k ⎛⎫∈ ⎪⎝⎭时,()0f x '>所以()f x 在1,k ∞⎛⎫- ⎪⎝⎭上单调递减,在1,0k ⎛⎫ ⎪⎝⎭上单调递增.综上所述:当0k >时,()f x 在10,k ⎛⎫ ⎪⎝⎭上单调递增,在1,k ∞⎛⎫+ ⎪⎝⎭上单调递减;当0k <时,()f x 在1,k ∞⎛⎫- ⎪⎝⎭上单调递减,在1,0k ⎛⎫ ⎪⎝⎭上单调递增.16.如图,在四棱台1111ABCD A B C D -中,底面ABCD 为正方形,1ABC 为等边三角形,E 为AB 的中点.(1)证明:111C D B E ⊥;(2)若1124BC B C ==,1B E =,求直线1BC 与平面11CDD C 所成角的余弦值.【答案】(1)证明见解析(2)3【解析】【分析】(1)连接1EC ,可得1AB C E ⊥,由已知得11AB B C ⊥,所以得AB ⊥平面11B C E ,可得11C D ⊥平面11B C E ,则可得111C D B E ⊥;(2)以点E 为坐标原点,建立如图所示的空间直角坐标系,求出1BC的坐标及平面11CDD C 的一个法向量n的坐标,由1BC 和n夹角的余弦值的绝对值即为直线1BC 与平面11CDD C 所成角正弦值,由向量夹角的余弦公式算出,再算出直线1BC 与平面11CDD C 所成角的余弦值.【小问1详解】连接1EC ,因为1ABC 为等边三角形,所以1AB C E ⊥,因为ABCD 为正方形,所以AB BC⊥在四棱台1111ABCD A B C D -中,11//BC B C ,所以11AB B C ⊥,又1111111,,B C C E C B C C E ⋂=⊂平面11B C E ,所以AB ⊥平面11B C E ,因为11//AB C D ,所以11C D ⊥平面11B C E ,因为1B E ⊂平面11B C E ,所以111C D B E ⊥;.【小问2详解】因为底面ABCD 为正方形,1ABC 为等边三角形,所以4AB BC ==,所以1C E =因为1B E =,112B C =,所以2221111C B B E C E +=,所以111B E B C ⊥,又由(1)111C D B E ⊥,且11111C D B C C = ,1111,C D B C ⊂平面1111D C B A ,所以1B E ⊥平面1111D C B A ,即1B E ⊥平面ABCD ,取CD 的中点F ,连接EF ,以点E 为坐标原点,以EB ,EF,1EB 分别为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系,()2,0,0B ,()2,4,0C,(10,2,C ,()2,4,0D -,所以(12,2,BC =-,(12,2,CC =-- ,()4,0,0CD =-,设(),,n x y z = 是平面11CDD C 的一个法向量,所以100n CC n CD ⎧⋅=⎪⎨⋅=⎪⎩,即22040x y x ⎧-+-+=⎪⎨=⎪⎩,得()n = ,直线1BC 与平面11CDD C所成角正弦值为113BC n BC n⋅==⋅,则直线1BC 与平面11CDD C3=.17.已知数列{}n a 满足12a =,1nn n a a d q +-=⋅,*n ∈N .(1)若1q =,{}n a 为递增数列,且2,5a ,73a +成等比数列,求d ;(2)若1d =,12q =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式.【答案】(1)12d =(2)()1171332nnn a --=+⋅【解析】【分析】(1)利用数列{}n a 为单调递增数列,得到1n n a a d +-=,再根据2,5a ,73a +成等比数列,得到28230d d +-=,即可求出的值.(2)由数列{}21n a -是递增数列得出21210n n a a +-->,可得()()2122210n n n n a a a a +--+->,但2211122n n -<,可得212221n n n n a a a a +--<-.可得()221221211122nn n n n a a ----⎛⎫-==⎪⎝⎭;由数列{}2n a 是递减数列得出2120n n a a +-<,可得()1112n n n naa ++--=,再利用累加法可求出数列{}n a 的通项公式.【小问1详解】因为12a =,且{}n a 为递增数列,所以1n n a a d +-=,所以{}n a 为等差数列,因为2,5a ,73a +成等比数列,所以()()2114263a d a d +=++,整理得28230d d +-=,得12d =,34d =-,因为{}n a 为递增数列,所以12d =.【小问2详解】由于{}21n a -是递增数列,因而21210n n a a +-->,于是()()2122210n n n n a a a a +--+->①但2211122n n -<,所以212221n n n n a a a a +--<-.②又①,②知,2210n n a a -->,因此()221221211122nn n n n a a ----⎛⎫-==⎪⎝⎭③因为{}2n a 是递减数列,同理可得2120n n a a +-<,故()21221221122n nn n n a a ++-⎛⎫-=-=⎪⎝⎭,④由③,④即知,()1112n n n na a ++--=,于是()()()121321nn n a a a a a a a a -=+-+-++- ()1211111112221222212n nn --⎛⎫-- ⎪-⎝⎭=+-++=++ ()1171332nn --=+⋅,故数列{}n a 的通项公式为()1171332nnn a --=+⋅.【点睛】思路点睛:本题可从以下方面解题.(1)数列{}n a 为等差数列,利用等差数列的性质即可;(2)根据数列{}21n a -是递增数列得,21210n n a a +-->,数列{}2n a 是递减数列得,2120n n a a +-<,综合数列{}21n a -和{}2n a 即可得()1112n n n naa ++--=,最后利用累加法可求出数列{}n a 的通项公式.18.已知椭圆C :()222210x y a b a b+=>>的上顶点为A ,左焦点为F ,点4,3b B ⎛⎫- ⎪⎝⎭为C 上一点,且以AB为直径的圆经过点F .(1)求C 的方程;(2)过点()5,0G -的直线l 交C 于D ,E 两点,线段DE 上存在点M 满足DM GE DG EM ⋅=⋅,过G与l 垂直的直线交y 轴于点N ,求GMN 面积的最小值.【答案】(1)221189x y +=(2)7【解析】【分析】(1)根据已知条件和椭圆中,,a b c 的关系,求出,,a b c 的值,可得椭圆的标准方程.(2)设直线l :()5y k x =+,再设()11,D x y ,()22,E x y ,()00,M x y ,把直线方程代入椭圆方程,消去y ,得到关于x 的一元二次方程,根据一元二次方程根与系数的关系,表示出12x x +,12x x ,并用,,120x x x 表示条件DM GE DG EM ⋅=⋅,整理得0x 为定值;再结合弦长公式表示出GM ,利用两点间的距离公式求GN ,表示出GMN 的面积,利用基本(均值)不等式求最值.【小问1详解】由题意知()0,A b ,(),0F c -,因为点4,3b B ⎛⎫- ⎪⎝⎭在椭圆C 上,所以2221619b a b+=⇒218a =,由以AB 为直径的圆经过点F ,知0FA FB ⋅= ,得22403b c c -+=①,又222b c a +=②,由①②得3c =,3b =,所以C 的方程为:221189x y +=.【小问2详解】如图:由题意,直线l 斜率存在且不为0,设直线l 的方程为()5y k x =+,且()11,D x y ,()22,E x y ,()00,M x y ,将()5y k x =+代入221189x y +=,整理可得()2222122050180kxk x k +++-=,()()()2222Δ2041250180kk k =-+->,解得77k -<<,由根与系数的关系可得21222012k x x k +=-+,2122501812k x x k -=+,根据DM GE DG EM = ,得01120255x x x x x x -+=-+,解得()22221212021225018202525121218201051012k k x x x x k k x k x x k ⎛⎫-+-⎪++++⎝⎭===-++-++,设与直线l 垂直的直线方程为()15y x k=-+,令0x =,则5y k =-,即50,N k ⎛⎫- ⎪⎝⎭,故GN ==,()1855GM =--=,记GMN 面积为S ,则12S GM GN =⨯==7272==,当且仅当1k =±时取等号,所以GMN 面积的最小值为7.【点睛】方法点睛:圆锥曲线求取值范围的问题,常见的解决方法有:(1)转化为二次函数,利用二次函数在给定区间上的值域求范围;(2)转化为不等式,利用基本(均值)不等式求最值;(3)转化为三角函数,利用三角函数的有界性求取值范围;(4)转化为其它函数的值域问题,通过分析函数的单调性求值域.19.设点集(){}{}23*1,,,,|0,1,1,n n i M a a a a a i n i =∈≤≤∈N L,从集合n M 中任取两个不同的点()123,,,,n A a a a a ,()123,,,,n B b b b b ,定义A ,B 两点间的距离()1,ni i i d A B a b ==-∑.(1)求3M 中(),2d A B =的点对的个数;(2)从集合n M 中任取两个不同的点A ,B ,用随机变量X 表示他们之间的距离(),d A B ,①求X 的分布列与期望;②证明:当n 足够大时,()24D X n <.(注:当n 足够大时,20n -≈)【答案】(1)12对(2)①分布列见解析,()()212n nE X -=-;②证明见解析【解析】【分析】(1)根据题意分析可知:A ,B 有两个位置的坐标不相等,另一个相等,进而可得结果;(2)①分析可知X k =的随机变量,在坐标()123,,,,n a a a a 与()123,,,,n b b b b 中有k 个坐标值不同,即i i a b ≠,剩下n k -个坐标值满足i i a b =,进而可求分布列,结合组合数性质可求期望;②根据方差公式()()21nk kk D X P X E X =⎡⎤=⋅-⎣⎦∑整理可得()()2121C C C 214n n n n n n D X ⎡⎤<+++⎢⎥-⎣⎦L ,结合组合数性质分析证明.【小问1详解】当3n =时,若(),2d A B =,可知A ,B 有两个位置的坐标不相等,另一个位置的坐标相等,所以共有122322C A A 12=对.【小问2详解】①由题意可知,n M 中元素的个数为2n 个,对于X k =的随机变量,在坐标()123,,,,n a a a a 与()123,,,,n b b b b 中有k 个坐标值不同,即i i a b ≠,剩下n k -个坐标值满足i i a b =,此时所对应情况数为12C 2C 22k k n k k n nn --⋅=⋅种.所以()122C 2C C 21n k n k n n n P X k -⋅===-,故X 的分布列为:X12⋅⋅⋅nP1C 21n n-2C 21n n-⋅⋅⋅C 21n nn-数学期望()1212C C C C C C 12120212121212121n nn n n n nn n n n n n n E X n n =⨯+⨯++⨯=⨯⨯+⨯+------L L ,当2k n ≤≤时,则()()()()()2!!C 2C 2!!2!2!k n k n nn n k n k k n k k n k n k k -++-+=⨯+-+⨯--+-()()()()()()()!!!111!!1!2!1!1!n n n n k k k n k n k k n k k =+=-++----+--+-()()1!C 1!1!k n n n n n k k -⋅==-+-,且1C 0C C nn n n n n n +==⋅=⋅,则()()11C C C 011212121n n n nn n n n E X n n -=+⨯+-⨯++⨯---L ,两式相加得()()01222C C C C 2121n nn n n n n n n n E X ⋅=++++=--L ,所以()()212n nE X -=-;②当n 足够大时,()2n E X ≈,由方差定义()()21nk k k D X P X E X =⎡⎤=⋅-⎣⎦∑22212C C C 12212212212n n n n n n n n n n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭L222121C 1C 2C 21222n n n n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=⋅-+⋅-++⋅-⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L 222121C 1C 2C 21222n n n n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=⋅-+⋅-++-⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L ()()()21212221C C C C 1C 22214n n n n n n n n n n ⎧=+++-+-+⎨-⎩ ()()()()}23212C 33C 11C n n n n n n n n n n n n -⎡⎤-++---⋅+-⋅⎣⎦因为k n ≤,则()()()20n k n k n k k n ---⋅=-≤,当且仅当0k =或k n =时,等号成立,则()()()2221211C C C 212142144n n n n n n n n n n D X ⎡⎤⎡⎤<+++=-=⎢⎥⎢⎥--⎣⎦⎣⎦L ,所以()24D X n <.【点睛】关键点点睛:(2)①利用倒序相加法结合()21C 2C C kn k k n nn k n k n -+-+-+=分析求解;②根据方差公式结合()()20n k n k n ---⋅≤分析证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各地高考数学模拟考试试卷
参考公式:如果事件A 、B 互斥,那么P(A +B)=P(A)+P(B)
如果事件A 、B 相互独立,那么P(A ·B)=P(A)·P(B)
如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中恰好发生k
次的概率:P n (k)=C n k P k (1-P)n -k
球的表面积公式:S =4πR 2(其中R 表示球的半径)
球的体积公式:V 球=43
πR 3(其中R 表示球的半径) 第I 卷(选择题共40分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项
中,选出符合题目要求的一项.
1、在复平面内,复数 21i
+ 对应的点与原点的距离是( ) A. 1
B. C.2
D.
2、在△ABC 中,若 BC a CA b AB c === ,,且 a b b c c a == , 则△ABC
的形状是
A.锐角三角形
B.直角三角形
C.等腰直角三角形
D.等边三角形
3、函数=)(x f 1log +x a (0<a<1)的图像大致为下图的( )
A
B
C D
x
4、 “0=a ”是“函数),0()(2+∞+=在区间ax x x f 上是增函数”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件 5、已知圆()2212x y +-=上任一点P (),x y ,其坐标均使得不等式x y m ++≥0恒成立,
则实数m 的取值范围是( )
A.[)1,+∞
B.(],1-∞
C.[)3,-+∞
D.(],3-∞-
6、已知函数()f x 的定义域是R ,且()2
x k k p p ? Z ,函数()f x 满足()()f x f x p =+,当(, )22x p p ?时,()2s i n f x x x =+, 设(1),a f =-, (2), (3)b f c f =-=-则 ( )
A. c b a <<
B. b c a <<
C. a c b <<
D. c a b <<
7、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是 ( )
A 10种
B 20种
C 30种
D 60种
8、椭圆)0(122
22>>=+b a b
y a x 的中心、右焦点、右顶点、右准线与x 轴的交点依次为O 、F 、A 、H ,则|
|||OH FA 的最大值为 ( ) A .21 B .31 C .41 D .1
9、在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====其中若10,≤≤≤+=μλμλ且,C 点所有可能的位置区域用阴影表示正确的是
( )
10、设a ∈R ,函数()e e x x f x a -=+⋅的导函数是()f x ',且()f x '是奇函数 . 若曲线
()y f x =的一条切线的斜率是32
,则切点的横坐标为( ) A. ln 22- B.ln 2- C.ln 22
D. ln 2
11、设集合{} 0 1 2 3 4 5, , , , , S A A A A A A =,在S 上定义运算“⊕”为:i j k A A A ⊕=,其中k 为i + j 被4除的余数 , ,0,1,2,3,4,5i j =.则满足关系式20()x x A A ⊕⊕=的 ()x x S ∈的个数为
A.1
B.2
C.3
D.4
12、已知双曲线22
122:1(0,0)x y C a b a b
-=>>的左、右焦点分别为1F 、2F ,抛物线2C 的顶点在原点,它的准线与双曲线1C 的左准线重合,若双曲线1C 与抛物线2C 的交点P 满足212PF F F ⊥,则双曲线1C 的离心率为
A B C D .第II 卷(共90分)
二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.
13、若 2313lim 23x x ax x →++=+,则
a =______________.若()()23*12311,n n x a x a x a x x n +=+++++∈N ,且12:1:3a a =,则=n __________.
14、已知A B C ,,三点在球心为O ,半径为3的球面上,且几何体O ABC -为正四面体,
那么A B ,两点的球面距离为__________;点O 到平面ABC 的距离为__________ .
15、在正项等比数列}{n a 中,a 3a 7=4,则数列{n a 2log }的前9项之和为 .
16、设坐标平面内有一个质点从原点出发,沿x 轴跳动,每次向正方向或负方向跳1个单位,若经过5次跳动质点落在点(3,0)处(允许重复过此点),则质点不同的运动方法共有___________种(用数字作答);若经过m 次跳动质点落在点(n ,0)处(允许重复过此点),其中m n ≥,且m n -为偶数,则质点不同的运动方法共有_______种.
三、解答题:本大题共6小题,共74分.解答应写出文字说明,演算步骤或证明过
程.
17、 (本小题满分12分)
已知x R ∈,向量2(cos ,1),3sin 2)OA a x OB a x a ==
- ,()f x OA OB =⋅ ,
0a ≠. (Ⅰ)求函数)(x f 解析式,并求当a >0时,)(x f 的单调递增区间;
(Ⅱ)当]2,0[π
∈x 时,)(x f 的最大值为5,求a 的值.
18、 (本小题满分12分)盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得1-分 . 现从盒内任取3个球.
(Ⅰ)求取出的3个球颜色互不相同的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设ξ为取出的3个球中白色球的个数,求ξ的分布列和数学期望.
19、 (本小题满分12分)
如图,在直三棱柱ABC —A 1B 1C 1中,∠BAC =90°,
AB =BB 1,直线B 1C 与平面ABC 成30°角.
(I)求证:平面B 1AC ⊥平面ABB 1A 1;
(II)求直线A 1C 与平面B 1AC 所成角的正弦值;
(III)求二面角B —B 1C —A 的大小.
20、(本小题满分12分)
已知数列}{n a ,其前n 项和S n 满足λλ(121+=+n n S S 是大于0的常数),且a 1=1,a 3=4.
(I)求λ的值;
(II)求数列}{n a 的通项公式a n ;
(III)设数列}{n na 的前n 项和为T n ,试比较2
n T 与S n 的大小.
21、 (本小题共12分)在平面直角坐标系xOy 中,已知点A (-1, 0)、B (1, 0), 动点C 满足
条件:△ABC 的周长为2+ 记动点C 的轨迹为曲线W .
(Ⅰ)求W 的方程;
(Ⅱ)经过点(0, 且斜率为k 的直线l 与曲线W 有两个不同的交点P 和Q , 求k 的取值范围;
(Ⅲ)已知点M ),N (0, 1),在(Ⅱ)的条件下,是否存在常数k ,使得向量OP OQ + 与MN 共线?如果存在,求出k 的值;如果不存在,请说明理由.
22、 (本小题共14分)
一个函数()f x ,如果对任意一个三角形,只要它的三边长,,a b c 都在()f x 的定义域内,就有()()(),,f a f b f c 也是某个三角形的三边长,则称()f x 为“保三角形函数”.
(I)判断()1f x =,()2f x x =,()23f x x =中,哪些是“保三角形函数”,哪些不是,并说明理由;
(II)如果()g x 是定义在R 上的周期函数,且值域为()0,+∞,证明()g x 不是“保三
角形函数”;
(III)若函数()sin F x x =,x ∈()0,A 是“保三角形函数”,求A 的最大值.
(可以利用公式sin sin 2sin
cos 22
x y x y x y +-+=) 23.(本小题满分14分)
已知函数].1,1[,)(3-∈-=x cx ax x f (I)若a =4,c =3,求证:对任意]1,1[-∈x ,恒有1|)(|≤x f ;
(II)若对任意]1,1[-∈x ,恒有1|)(|≤x f ,求证:|a |≤4.
24. (本题满分14分)
根据定义在集合A 上的函数y =)(x f ,构造一个数列发生器,其工作原理如下: ①输入数据A x ∈0,计算出)(01x f x =;
②若A x ∉0,则数列发生器结束工作;
若A x ∈0,则输出1x ,并将1x 反馈回输入端,再计算出)(12x f x =。

并依此规律继续下去。

现在有{}10<<=x x A ,x m mx x f -+=1)(()
*∈N m 。

(1)求证:对任意A x ∈0,此数列发生器都可以产生一个无穷数列{}n x ;
(2)若210=x ,记n n x a 1=()
*∈N n ,求数列{}n a 的通项公式; (3)在(2)的条件下,证明
3141≤<m x ()
*∈N m 。

相关文档
最新文档