八年级数学上册 第十一章《三角形》11.1 与三角形有关的线段 11.1.2 三角形的高、中线与角平

合集下载

人教版数学八年级上册第十一章三角形第一课《与三角形有关的线段》

人教版数学八年级上册第十一章三角形第一课《与三角形有关的线段》
如果6厘米长的边为腰,设底边长为x 厘米,则2×6 + x = 20,解得x = 8.
由以上讨论可知,其他两边的长分别为7 厘米,7 厘米或6 厘米,8 厘米.
课堂小结
边、顶点、内角
A
概念
(直角、 锐角、钝
c
b

按角分 角)三角

分类 形B
a
C
形 按边分
性质
三角形两边的和大于第三边. 三角形两边的差小于第三边.
等腰三角形的周长为20厘米. (1)若已知腰长是底长的2倍,求各边的长; (2)若已知一边长为6厘米,求其他两边的长.
解:(1)设底边长为x厘米,则腰长为2x 厘米. x + 2x + 2x = 20, 解得 x = 4.
所以三边长分别为4cm,8cm,8cm.
(2)如果6 厘米长的边为底边,设腰长为x 厘米,则6 + 2x = 20,解得x = 7;
所以,三角形的特征有: (1)三条线段;(2)不在同一直线上;(3)首尾顺次连接.
探究新知
①边:组成三角形的每条线段叫做三角形的边.
②顶点:每两条线段的交点叫做三角形的顶点.
③内角:相邻两边组成的角.
顶点A

边c
边b
顶点B
角 边a
角 顶点C
探究新知
三角形的表示: 三角形用符号“△”表示.
记作“△ ABC”读作“三角形ABC”.
课堂检测
基础巩固题
1. 如图,图中直角三角形共有( C )
A.1个 B.2个
C.3个
D.4个
2. 下列各组数中,能作为一个三角形三边边长的是
( C)
A.1,1,2
B.1,2,4

初中数学人教版八年级上册第十一章三角形11.1与三角形有关的线段11.1.2三角形的高中线与角平分线教案新

初中数学人教版八年级上册第十一章三角形11.1与三角形有关的线段11.1.2三角形的高中线与角平分线教案新

初中数学人教版八年级上册实用资料11.1.2三角形的高、中线与角平分线◇教学目标◇【知识与技能】1.了解三角形的高、中线、角平分线的概念;2.会用工具准确画出三角形的高、中线、角平分线.【过程与方法】1.让学生经历画三角形的高、中线、角平分线过程,理解三角形的高、中线、角平分线的特点以及符号语言和图形语言的表达方法;2.培养学生观察、分析、作图、解决问题的能力.【情感、态度与价值观】培养学生敢于实践操作、勇于发现、大胆探索、合作创新的精神.◇教学重难点◇【教学重点】三角形的高线、中线、角平分线的概念及画法.【教学难点】探究三角形的三条高线、三条角平分线、三条中线都交于一点的过程.◇教学过程◇一、情境导入有一块三角形的地,小明的爸爸想种花草,妈妈想种菜.于是想平分三角形的面积,一半种花草,一半种菜,不知如何作,小明说,这还不好办,做一边的中线就行了,聪明的你,能帮他们家把这块地分成面积相等的两部分吗?知道小明这样做的原因吗?二、合作探究探究点1三角形的高典例1如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E,AD,BE相交于点F,连接CF.(1)在△ABC中,AC边上的高为,BC边上的高为;(2)在△ABD中,AD边上的高为;(3)在△BCE中,CE边上的高为;(4)在△BCF中,BC边上的高为;(5)在△ABF中,AF边上的高为,BF边上的高为.[解析]三角形的高即从三角形的一个顶点向它的对边所在直线引垂线,顶点和垂足间的线段.[答案](1)BE;AD(2)BD(3)BE(4)FD(5)BD;AE【归纳提升】锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.变式训练下列尺规作图,能判断AD是△ABC边上的高的是()[答案] D探究点2中线的特性典例2三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形[解析]根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等.[答案] B【技巧点拨】三角形的中线把三角形分为两个等底同高的三角形,这两个三角形的面积相等.探究点3三角形的角平分线典例3如图,CD,BE分别是△ABC的角平分线,它们相交于点I,则:(1)∠ACD=∠=∠ACB,∠ABC=∠ABE.(2)BI是∠的平分线,CI是∠的平分线.(3)若∠ABC=60°,∠ACB=80°,则∠BIC=度.(4)你能画出△ABC的第三条角平分线吗?[解析](1)BCD;;2.(2)ABC;ACB.(3)110°.(4)连接AI并延长,即为∠BAC的角平分线.探究点4三角形的中线与周长典例4如图,AD是△ABC的中线,且AB=10 cm,AC=6 cm,求△ABD与△ACD的周长之差.[解析]∵AD为中线,∴BD=CD,∴△ABD与△ACD的周长之差=(AB+AD+BD)-(AC+AD+CD)=AB-AC,∵AB=10,AC=6,∴△ABD与△ACD的周长之差=10-6=4 cm.变式训练在△ABC中,AB=AC,AD是中线,△ABC的周长为34 cm,△ABD的周长为30 cm,求AD的长.[解析]由题意得AB+AC+BC=34,AB+AD+BD=30,∵AB=AC,BD=BC,∴②×2得2AB+2AD+BC=60,③③-①得2AD=26,∴AD=13 cm.三、板书设计三角形的高、中线与角平分线三角形的高、中线与角平分线◇教学反思◇通过本课时的教学要让学生认识三角形的三条重要线段的概念、图形和它们的相关特性,如三角形的中线把三角形分为面积相等的两部分,三角形的三条高线、三条中线、三条角平分线都相交于一点的性质,应逐步加强学生几何语言的表达能力.。

人教版初中数学第十一章三角形知识点复习过程

人教版初中数学第十一章三角形知识点复习过程
【答案】C
【解析】
试题分析:因为在三角形中,它的中线、角平分线一定在三角形的内部,而钝角三角形的高有的在三角形的外部.
人教版初中数学第十一章三角形知识点
第十一章三角形
11.1与三角形有关的线段
11.1.1三角形的边
1.关于三角形的概念及其按角的分类
定义:由不在同一直线上的三条线段首尾顺次相接所组三类:锐角三角形、直角三角形、钝角三角形.
②三角形按边分为两类:等腰三角形和不等边三角形.
考点:三角形三边关系
例5.一个三角形的三条边长分别为1、2、x,则x的取值范围是()
A、1≤x≤3 B、1<x≤3 C、1≤x<3 D、1<x<3
【答案】D.
【解析】
试题分析:已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可以求出第三边长的范围.
试题解析:根据题意得:2-1<x<2+1
B.三条中线的交点
C.三边垂直平分线的交点
D.三条内角平分线的交点
【答案】C
【解析】
试题分析:如图,根据题意可知:由OA=OB,可得点A在线段AB的垂直平分线上;由OB=OC,可得O在线段BC上;同理可由OA=OC,可得O在线段AC的垂直平分线上;因此可知到三角形三个顶点的距离相等的点,是这个三角形的三边的垂直平分线的交点.
即:1<x<3
故选D.
考点:三角形三边关系.
例6.如图,在△ABC中,AD、BF、CE相交于O点,则图中的三角形的个数是()
A.7个B.10个C.15个D.16个
【答案】D
【解析】根据三角形的概念,最小的有6个,2个组成一个的有3个,三个组成一个的有6个,最大的有一个,则有6+3+6+1=16个

八年级数学上册知识点总结(第11.12章)

八年级数学上册知识点总结(第11.12章)

第十一章三角形11.1 与三角形有关的线段第1课时三角形的边1. 三角形的概念:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

2.三角形按边分类①三角形的任意两边之和大于第三边。

②三角形的任意两边之差小于第三边。

(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。

**已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b要求会的题型:①数三角形的个数方法:分类,不要重复或者多余。

②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可③给出多条线段的长度,要求从中选择三条线段能够组成三角形方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。

④已知三角形两边的长度分别为a,b,求第三边长度的范围方法:第三边长度的范围:|a-b|<c<a+b⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。

第2课时三角形的高、中线与角平分线1. 三角形的高:从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD 叫做△ABC的边BC上的高。

三角形的三条高的交于一点,这一点叫做“三角形的垂心”。

122. 三角形的中线:连接△ABC 的顶点A 和它所对的对边BC 的中点D ,所得的线段AD 叫做△ABC 的边BC 上的中线。

三角形三条中线的交于一点,这一点叫做“三角形的重心”。

三角形的中线可以将三角形分为面积相等的两个小三角形。

3. 三角形的角平分线:∠A 的平分线与对边BC 交于点D ,那么线段AD 叫做三角形的角平分线。

要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。

与三角形有关的线段(课件)八年级数学上册(人教版)

与三角形有关的线段(课件)八年级数学上册(人教版)
1
1
AD×BC= BP×AC.
2
2
24
代入数值,可解得BP= .
5
【点睛】面积法的应用:若涉及两条高求长度,一般需结合面积(但不求出
面积),利用三角形面积的两种不同表示方法列等式求解.
如图所示,AD,CE是△ABC的两条高,AB=6cm,BC=12cm,CE=9cm.
(1)求△ABC的面积;
(2)求AD的长.
第十一章 三角形
11.1 与三角形有关的线段
(11.1.1-11.1.3)
情景引入
在我们日常生活中经常能看到三角形的影子.
减速慢行
注意儿童
前方村庄
11.1.1 三角形的边
三角形的概念
问题1:观察下面三角形的形成过程,说一说什么叫三
角形?
A
定义:由不在同一条直线上的三条
线段首尾顺次相接所组成的图形叫
解:
1
2
1
2
(1)由题意得:△ = AB×CE= ×6×9=27cm2 .
1
2
(2)∵△ = BC×AD,

1
27=
2
×12×AD
解得AD=4.5cm.
思考 已知D是BC的中点,试问△ABD的面积与△ADC的面积有何
关系?
连接△ABC的顶点A和它所对的边BC的
中点D,所得线段AD叫做△ABC的边BC
把一条线段分成两条相等的线段的点.
3.角平分线的定义:
一条射线把一个角分成两个相等的角,这条射线叫做这个角
的平分线.
思考 你还记得“过一点画已知直线的垂线”吗?
A
B
思考 如何求△ABC的面积?
D
从△ABC的顶点A向它所对的边BC所在直线画垂线,垂足为D,所

2024年人教版八年级上册第十一章 三角形与三角形有关的线段

2024年人教版八年级上册第十一章 三角形与三角形有关的线段

11.1.1三角形的边课时目标1.结合具体的实例,进一步认识三角形的概念及其基本要素,发展学生的抽象能力.2.会用符号、字母表示三角形,学生通过观察、推理、归纳,能从不同角度对三角形进行分类,锻炼学生的探究能力,增强学生的合作意识.3.理解三角形两边的和大于第三边与两边的差小于第三边的性质,并会初步应用这些性质解决相关的计算和推理问题,发展应用意识.学习重点三角形三边关系的探究和应用.学习难点三角形三边关系的应用.课时活动设计情境引入教师出示图片,并提出问题:(1)从古埃及的金字塔到现代建筑物,从巨大的钢架桥到微小的分子结构,都有什么样的形状?(2)在我们的生活中有没有这样的形状呢?教师引导学生观察图片,小组交流后回答问题.设计意图:由实际例子引出,抽象出三角形,通过学生自主探究、合作交流,发现日常生活中的三角形,让学生感悟数学来源于生活,并应用于生活的辩证思想,引导学生产生强烈的求知欲,为下面探究新知识打下基础.探究新知探究1三角形及其有关概念我们已经知道三角形是由三条线段组成的.教师引导学生观察上面的五幅图,并回答下面的问题.(1)判断上面各图是否是由三条线段首尾顺次相接所组成的图形.(2)上图中哪些是三角形?三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.其中三条线段必须满足以下条件:①不在一条直线上;②首尾顺次相接.阅读教材第2页第一部分至思考,结合下图并回答以下问题:(1)三角形有几条边,几个内角,几个顶点?(2)三角形ABC用符号表示为什么?(3)三角形ABC的边AB,AC和BC可用小写字母分别表示为什么?解:(1)三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边组成的角,叫做三角形的内角;相邻两边的公共端点是三角形的顶点.(2)三角形ABC用符号表示为△ABC.(3)三角形的三边,如图,顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C所对的边AB用c表示.探究2三角形的分类问题1:小学中已经学过,如何将三角形进行分类?解:按照三个内角的大小,可将三角形分为锐角三角形、直角三角形和钝角三角形.问题2:如何将三角形按边的关系进行分类?教师提出问题,学生举手回答.教师提示分类的标准是什么.解:以“有几条边相等”分类,可将三角形分为有两边相等、有三边相等和三边都不相等.三角形等边三角形等腰三角形(不等边)三角形总结:在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的角叫做底角.等边三角形是特殊的等腰三角形,即底边和腰相等的等腰三角形.师生共同归纳三角形的分类方法.按不同的标准分类,可以有不同的分法:1.三角形按边的相等关系分类如下:三角形三边都不相等的三角形等腰三角形底边和腰不相等的等腰三角形底边和腰相等的等边三角形2.三角形按角分类如下:三角形直角三角形斜三角形锐角三角形钝角三角形探究3三角形的三边关系如图是一个△ABC,假设有一只小狗从点A出发,沿三角形的边到点C吃香肠.(1)小狗有几条路线可以选择?(2)各条路线的长有什么关系?教师提出问题,学生观察后进行讨论,思考问题并回答.解:(1)小狗从点A出发沿三角形的边到点C吃到香肠有如下路线:①从A→C,即线段AC的长;②从A→B→C,即AB+BC的长.(2)两条路线长度不一样,从A→C路线最短.教师进一步提出问题:这条路线为什么是最短的?解:两点之间,线段最短.师生共同归纳,可得AB+BC>AC.①同理可得AC+BC>AB.②AB+AC>BC.③即三角形两边的和大于第三边.问题:(1)将不等式①②③移项,你能得到怎样的不等式?(2)通过得到的不等式,你有什么发现?解:(1)由不等式①②③移项,可得BC>AC-AB,BC>AB-AC,AC>BC-AB,AC>AB-BC,AB>AC-BC,AB>BC-AC.(2)三角形中,任意两边的差小于第三边.师生共同归纳:一般地,三角形两边的和大于第三边,三角形两边的差小于第三边.设计意图:通过问题串,教师引导学生自主探究三角形及其相关概念.设置有趣的问题,激发学生的求知欲.通过经历观察、推理、归纳合作探究三角形的三边关系的这个过程,锻炼学生的探究能力,增强学生的合作意识.典例精讲例用一条长为18cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边的长是4cm的等腰三角形吗?为什么?解:(1)设底边长为x cm,则腰长为2x cm.x+2x+2x=18.解得x=3.6.所以,三边长分别为3.6cm,7.2cm,7.2cm.(2)因为长为4cm的边可能是腰,也可能是底边,所以需要分情况讨论.如果4cm长的边为底边,设腰长为x cm,则4+2x=18.解得x=7.如果4cm长的边为腰,设底边长为x cm,则2×4+x=18.解得x=10.因为4+4<10,不符合三角形两边的和大于第三边,所以不能围成腰长是4cm 的等腰三角形.由以上讨论可知,可以围成底边长是4cm的等腰三角形.设计意图:通过例题,使学生更加理解构成三角形的条件,体会分类讨论的数学思想.巩固练习1.以下列各组数值为长度的线段中,能组成三角形的是(D)A.2,4,7B.3,3,6C.5,8,2D.4,5,62.若三角形的三边长分别是4,9,a,则a的值可能是(D)A.3B.4C.5D.63.已知等腰三角形ABC,其中有两边长是3和5,则此三角形的周长为11或13.设计意图:这个环节充分发挥了学生的主观能动性,是对本节课学习内容的巩固和内化.课堂小结教师和学生一起回顾本节课所学主要内容:1.三角形的有关概念(边、角、顶点),会用符号表示一个三角形.2.三角形的分类.3.通过实践了解三角形三边的不等关系.设计意图:培养学生的概括能力,使知识形成体系,并渗透数学思想方法.课堂8分钟.1.教材第4页练习第1,2题.2.七彩作业.11.1.1三角形的边1.三角形及其有关概念.2.三角形的分类:(1)按角分类:(2)按边分类:三角形直角三角形锐角三角形钝角三角形三角形三边都不相等的三角形等腰三角形底边和腰不相等的等腰三角形底边和腰相等的等边三角形3.三角形的三边关系:任意两边的和大于第三边,任意两边的差小于第三边.教学反思11.1.2三角形的高、中线与角平分线课时目标1.通过经历画图的实践过程,认识三角形的高、中线与角平分线,会运用它们解决一些应用问题,感受数学语言的准确性,提高学生的观察能力和语言表达能力,发展推理能力.2.会用工具画出三角形的高、中线与角平分线,通过画图了解三角形的三条高(及所在直线)交于一点.通过类比探究三角形的三条中线,三角形的三条角平分线都交于一点.3.以学生实践为主,在已学内容的基础上进行更深一步的探究,从而发现新的结论,以此提高学生的观察能力和语言表达能力,发展推理能力.学习重点掌握三角形的高、中线及角平分线的概念及画法.学习难点1.钝角三角形高的画法.2.探究三角形的三条高、三条中线、三条角平分线都各交于一点的过程.课时活动设计复习导入1.如图1,P为线段AB右上方一点,过点P作线段AB的垂线.2.如图2,如果C是线段AB的中点,那么你能得到什么结论?3.如图3,如果OC是∠AOB的平分线,那么你能得到什么结论?设计意图:通过复习旧知,温故知新.回顾前面所学的垂线、线段的中点和角平分线等,为下面探究三角形的高、中线、角平分线打下基础,降低教学难度,提高课堂效率.探究新知探究1三角形的高教师提问,学生回答:(1)如何求三角形的面积?解:三角形的面积=12×三角形的底边长×底边上的高.(2)什么是三角形的高,怎样画三角形的高?解:从三角形的一个顶点向它所对的边所在直线画垂线,顶点和垂足之间的线段叫做三角形的高.如图,AD是△ABC的边BC上的高,即AD⊥BC,垂足为D.想一想:一个三角形有几条高?解:三条.学生在纸上画一个锐角三角形、一个直角三角形和一个钝角三角形.学生动手操作,观察并回答问题:(1)分别画出每个三角形的三条高.(2)观察每个三角形的三条高之间有怎样的位置关系?(3)观察三条高是否交于一点,是在三角形的内部还是外部?学生自主探究,合作交流,然后归纳结果.归纳总结:三角形的三条高(或高所在的直线)相交于一点,锐角三角形三条高的交点在三角形的内部,直角三角形三条高的交点在三角形的直角顶点,钝角三角形三条高的交点在三角形的外部.注意:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.探究2三角形的中线如图,如果D是线段BC的中点,那么线段AD就叫做△ABC的边BC上的中线,即BD=CD=12BC.类比三角形的高的概念,试说明什么叫三角形的中线?结论:三角形中,连接一个顶点和它所对边的中点的线段,叫做中线.想一想:一个三角形有几条中线?学生在纸上分别画出一个锐角三角形、一个直角三角形和一个钝角三角形.学生动手操作,观察并回答问题:(1)分别画出每个三角形的三条中线.(2)观察三角形的三条中线有何特点?(3)如图,在△ABC中,AD是△ABC的中线,AE是△ABC的高.试判断△ABD和△ACD的面积有什么关系?为什么?教师引导学生自主探究,合作交流,然后归纳结果.归纳总结:三角形的三条中线都在三角形的内部,且它们相交于一点,交点叫重心.三角形的一条中线将三角形的面积分成相等的两部分.探究3三角形的角平分线如图,在△ABC中,画∠A的角平分线AD,交∠A所对的边BC于点D,所得线段AD叫做△ABC的角平分线,即∠1=∠2=12∠BAC.类比三角形的高的概念,试说明什么叫三角形的角平分线?结论:三角形的一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段,叫做角平分线.想一想:一个三角形有几条角平分线?学生在纸上分别画出一个锐角三角形、一个直角三角形和一个钝角三角形.学生动手操作,观察并回答问题:(1)分别画出每个三角形的三条角平分线.(2)观察三角形的三条角平分线有何特点?学生自主探究,合作交流,然后归纳结果.归纳总结:无论是锐角三角形还是直角三角形或钝角三角形,它们的三条角平分线都在三角形的内部,且交于一点.三角形的高、中线、角平分线都是线段.设计意图:为了突出重点,突破难点,学生自主探究,动手画图,经历猜想、验证、合作交流的过程,理解并掌握三角形的高的概念及性质,通过类比的方法,探究三角形的中线及角平分线的概念及其性质.引导学生从简单的数学问题入手,层层深入,让学生体会思考和解决数学问题的步骤.培养学生的语言表达能力、探究能力和合作精神.典例精讲例1如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,且AD=4.若点P在边AC上移动,则BP的最小值为多少?解:由题意,得当BP⊥AC时,BP有最小值.=12BC·AD=12BP·AC,AB=AC=5,BC=6,AD=4,∵S△ABC12×4×6=12×5×BP.∴BP=245.∴BP的最小值为245.方法归纳:利用面积相等作桥梁(但不求面积),求三角形的高或底,这种解题方法通常称“面积法”.例2如图,在△ABC中,AC=5cm,AD是△ABC的中线.若△ABD的周长比△ADC的周长大2cm,则BA的值为多少?解:△ABD的周长=AB+BD+AD,△ADC的周长=AD+DC+AC.∵AD是△ABC的中线,∴BD=DC.又∵△ABD的周长比△ADC的周长大2cm,AC=5cm,∴(AB+BD+AD)-(AD+DC+AC)=AB-AC=2cm.∴AB=7cm.方法归纳:三角形任何一边上的中线把三角形分成的两个小三角形周长之差等于原三角形长边与短边之差.例3如图,在△ABC中,E是BC边上的一点,EC=2BE,D是AC的中点,若S△ABC=12,则S△ADF-S△BEF的值是多少?=S△ADB-S△AFB,S△BEF=S△ABE-S△AFB.解:∵S△ADF-S△BEF=S△ADB-S△AFB-S△ABE+S△AFB=S△ADB-S△ABE.∴S△ADF又∵D是AC的中点,EC=2BE.=12S△ABC=6,S△ABE=13S△ABC=4.∴S△ADB-S△BEF=S△ADB-S△ABE=6-4=2.∴S△ADF方法归纳:三角形的中线将三角形分成面积相等的两部分:高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.设计意图:通过例题讲解,巩固及应用新知,使学生熟练应用三角形的三线解决有关问题,让学生体会知识的不同考法,提高自身的解题能力.巩固练习1.下列说法正确的是(B)A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线2.下列图形中,能够表示AD是△ABC的BC边上的高的是(D)3.如图,在△ABC中,AD为中线,BE为角平分线,则在以下等式中:①∠BAD=∠CAD;②∠ABE=∠CBE;③BD=DC;④AE=EC.正确的是②③.4.如图,在△ABC中,CD是中线,已知BC-AC=5cm,△DBC的周长为25cm,求△ADC的周长.解:∵CD是△ABC的中线,∴BD=AD.∵△DBC的周长=BC+BD+CD=25cm,则BD+CD=25-BC.∴△ADC的周长=AD+CD+AC=BD+CD+AC=25-BC+AC=25-(BC-AC)=25-5=20(cm).设计意图:当堂检测,及时反馈学习效果.课堂小结1.谈谈你对三角形的高、中线、角平分线的认识.2.教师引导学生归纳三角形的高、中线、角平分线的相关性质.设计意图:引导学生回顾知识产生和发展的过程,学会总结反思,培养学生的归纳概括能力.课堂8分钟.1.教材第5页练习第1,2题.2.七彩作业.11.1.2三角形的高、中线与角平分线三角形的高、中线、角平分线三角形的高三条高所在直线交于一点面积法三角形的中线三条中线交于一点(内部)中线平分三角形面积三角形的角平分线三条角平分线交于一点(内部)教学反思11.1.3三角形的稳定性课时目标1.通过观察、猜想、探究、合作等活动,让学生了解三角形具有稳定性,四边形具有不稳定性,锻炼学生动手能力,培养学生的合作精神.2.了解三角形的稳定性和四边形的不稳定性在实际生活中的应用,体会数学与生活的紧密联系,锻炼学生的探究能力.学习重点了解三角形稳定性及应用.学习难点了解三角形稳定性及应用.课时活动设计情境导入盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,如图所示,为什么要这样做呢?设计意图:从实际生活现象入手,提出问题,引发学生思考,让学生进一步体会数学与生活的紧密联系,数学来源于生活,又应用于生活.探究新知探究1三角形的稳定性学生动手操作并观察:1.将三根木条用钉子钉成一个三角形木架(如图1),然后扭动它,它的形状会改变吗?2.将四根木条用钉子钉成一个四边形木架(如图2),然后扭动它,它的形状会改变吗?3.从上面的操作过程中,你能得出什么结论?学生交流,教师归纳.总结:三角形木架的形状不会改变,四边形木架的形状会改变.这就是说,三角形具有稳定性,而四边形没有稳定性.只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做三角形的稳定性.4.三角形的稳定性有广泛的应用,你能举一些例子吗?学生自主交流.探究2四边形的不稳定性1.在四边形的木架上再钉一根木条,将它的一对不相邻的顶点连接起来(如图),然后扭动它,它的形状会改变吗?为什么?通过上述操作,学生自主探究,师生共同交流发现:斜钉一根木条的四边形木架的形状不会改变.这是因为斜钉一根木条后,四边形变成了两个三角形,由于三角形有稳定性,所以斜钉一根木条的四边形木架不会改变形状.同样,窗框在未安装好之前斜钉一根木条也不会变形.2.想一想:四边形的不稳定性是我们常常需要克服的,那么四边形的不稳定性在生活中有没有应用价值呢?如果有,你能举出实例吗?设计意图:本环节让学生通过动手操作,根据实际举例子,运用新知解决生活中的问题,进一步体会数学与生活的紧密联系,锻炼了学生的探究能力以及增强了学生的合作意识.典例精讲例下列图形中哪些具有稳定性?解:图形①③⑤具有稳定性.设计意图:通过例题讲解,巩固和应用所学知识,使学生熟练掌握三角形的稳定性.巩固训练如图,钉子架容易转动,怎样做可以使它稳定?请在图中画一画.解:如图所示.设计意图:本环节通过解决实际生活中的问题对课内所学知识进行巩固练习,让学生体会到知识的不同考法,提高自身的解题能力,当堂训练,复习巩固,查漏补缺.课堂小结三角形具有稳定性,四边形没有稳定性.它们都有一定的实用价值.设计意图:复习巩固本节课的知识,学会总结反思.课堂8分钟.1.教材第8,9页习题11.1第5,10题.2.七彩作业.教学反思。

人教版八年级上册数学第十一章三角形全章课件

人教版八年级上册数学第十一章三角形全章课件

B
D
A DC
C
锐角三角形的三条高
每人画一个锐角三角形. (1) 你能画出这个三角形的三条高吗? (2) 这三条高之间有怎样的位置关系?
将你的结果与同伴进行交流.
锐角三角形的三条高是
B
在三角形的内部还是外部?
A
F
OE
C D
锐角三角形的三条高交于同一点. 锐角三角形的三条高都在三角形的内部.
直角三角形的三条高
(2)它们所在的直线交于一点吗? D
将你的结果与同伴进行交流.
钝角三角形的三条高不相交于 一点. 钝角三角形的三条高所在直线 交于一点.
O
F
B
C
E
从三角形中的一个顶点向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形这边的高.
三角形的三条高的特性:
•锐角三角形 •直角三角形 •钝角三角形
E,F为AB上一点,CF⊥AD于H,判断下列说法哪些是正确的,
哪些是错误的. A
①AD是△ABE的角平分线( × )
②BE是△ ABD边AD上的中线( × ) ③BE是△ ABC边AC上的中线( × ) F
12 E G
④CH是△ ACD边AD上的高( √ ) B
H
D
C
三角形的高、中线与角平分线都是线段.
3.(滨州中考)若某三角形的两边长分别为3和4,则下列
长度的线段能作为其第三边的是(
)
A.1
B.5
C.7
D.9
【解析】选B.设第三边为x,则1<x<7.
4.若△ABC的三边为a,b,c,则化简︱a+b-c︱+︱ba-c︱的结果是( ). A. 2a-2b B.2a+2b+2c C. 2a D. 2a-2c

人教版八年级数学上册知识点(1-3章)

人教版八年级数学上册知识点(1-3章)

人教版八年级上册数学知识点整理与复习第十一章三角形11.1 与三角形有关的线段知识点1 三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

顶点是A,B,C的三角形,记作“ABC”,读作“三角形ABC”。

1.以“是否有边相等”将三角形分为:三边都不相等的三角形和等腰三角形。

注意:等边三角形是特殊的等腰三角形。

2. 三角形三边的关系(判断能不能组成三角形的依据):(1)三角形两边的和大于第三边;(2)三角形两边的差小于第三边。

知识点2 三角形中的主要线段(高、中线和角平分线)(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

三角形三条中线的交点叫做三角形的重心。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高。

知识点3 三角形的稳定性三角形具有稳定性,而四边形没有稳定性。

11.2 与三角形有关的角知识点1 三角形内角和定理180°。

推论:①直角三角形的两个锐角互余;②有两个角互余的三角形是直角三角形知识点2 三角形的外角三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

三角形的外角和定理:三角形的外角等于与它不相邻的两个内角的和。

11.3 多边形及其内角和知识点1 多边形的定义及相关概念在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形其中,三角形是最简单的多边形。

n条线段组成,那么这个多边形就叫做n边形。

n边形有n 个内角。

多边形的分类:可分为凸多边形和凹多边形。

画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(左:凸多边形;右:凹多边形)知识点2 多边形的对角线不相邻的两个顶点的线段,叫做多边形的对角线。

(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档