人教版八年级八年级上册 第十一章 三角形 11.1与三角形有关的线段练习题

合集下载

人教版 八年级数学上册 11.1 与三角形有关的线段 同步训练 (含答案)

人教版 八年级数学上册 11.1 与三角形有关的线段 同步训练 (含答案)

2020-2021 八年级数学上册11.1 与三角形有关的线段同步训练(含答案)一、选择题(本大题共10道小题)1. 如图所示,在△ABC中,D,E,F是BC边上的三点,且∠1=∠2=∠3=∠4,则AE是哪个三角形的角平分线()A.△ABE B.△ADFC.△ABC D.△ABC,△ADF2. 如图,在△ABC中,AC边上的高是()图A.线段DA B.线段BAC.线段BC D.线段BD3. 若a、b、c为△ABC的三边长,且满足|a-4|+b-2=0,则c的值可以为()A. 5B. 6C. 7D. 84. 若三角形的两边长分别为3和6,则它的第三边长可以为()A.3 B.4C.9 D.105. 如图,为估计池塘岸边A,B两地之间的距离,小明在池塘的一侧选取一点O,测得OA=10米,OB=8米,那么A,B两地之间的距离可能是()A.2米B.15米C.18米D.28米6. 下列关于三角形的分类,有如图K-1-4所示的甲、乙两种分法,则()A.甲、乙两种分法均正确B.甲分法正确,乙分法错误C.甲分法错误,乙分法正确D.甲、乙两种分法均错误7. 有长度分别为4 cm,5 cm,9 cm,13 cm的四根木条,以其中三根为边,制作一个三角形框架,那么这个三角形框架的周长可能是()A.18 cm B.26 cm C.27 cm D.28 cm8. 将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形9. 下列长度的三条线段能组成钝角三角形的是()A. 3,4,4B. 3,4,5C. 3,4,6D. 3,4,710. 试通过画图来判断,下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形二、填空题(本大题共6道小题)11. 如图,以点A为顶点的三角形有________个,它们分别是_______________.12. 如图,D是△ABC的边BC上的一点,则在△ABC中,∠C所对的边是________;在△ACD中,∠C所对的边是________.13. 如图,AD为△ABC的角平分线,DE∥AB交AC于点E.若∠BAC=100°,则∠ADE=________°.14. 若一个等腰三角形两边的长分别为2 cm,5 cm,则它的周长为________cm.15. 设三角形三边之长分别为3,7,1+a,则a的取值范围为__________.16. 如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为________.三、解答题(本大题共4道小题)17. 等面积法如图,BE,CF均是△ABC的中线,且BE=CF,AM⊥CF于点M,AN⊥BE于点N.求证:AM=AN.18. 在平面内,分别用相同的3根、5根、6根……火柴首尾顺次相接,能搭成什么形状的三角形呢?通过尝试,列表如下:(1)4根火柴能搭成三角形吗?(2)12根火柴能搭成几种不同形状的三角形?请画出它们的示意图.(提示:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形)19. 数学活动课上,老师让同学们用长度分别是20 cm,90 cm,100 cm的三根木棒搭一个三角形的木架,小明不小心把100 cm的木棒折去了35 cm,他发现:用折断后剩下的木棒与另两根木棒怎么也搭不成三角形.(1)你知道为什么吗?(2)100 cm长的木棒至少折去多长后剩余的部分就不能与另两根木棒搭成三角形?20. 观察探究观察并探求下列各问题.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC________AB+AC(填“>”“<”或“=”);(2)将(1)中的点P移到△ABC内,如图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由;(3)将(2)中的点P变为两个点P1,P2,如图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.2020-2021 八年级数学上册11.1 与三角形有关的线段同步训练(含答案)-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】D3. 【答案】A【解析】∵|a-4|≥0,b-2≥0,∴a=4,b=2,∵三角形的两边之和大于第三边,两边之差小于第三边,故c的取值范围为:2<c<6,故本题选A.4. 【答案】B5. 【答案】B[解析] 设A,B两地之间的距离为x米.依据题意,得10-8<x <10+8,即2<x<18,所以A,B两地之间的距离可能是15米.6. 【答案】C7. 【答案】C8. 【答案】C[解析] 如图①,沿虚线剪开即可得到两个直角三角形.如图②,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图③,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.9. 【答案】C【解析】①∵32+42=52,∴三条线段3、4、5组成直角三角形,∴B选项不正确;②当把斜边5变成7时,3+4=7,不满足三角形两边之和大于第三边,不能构成三角形,∴D选项不正确;③当把斜边5稍微变小一点为4时,三条线段为3、4、4组成锐角三角形,∴A选项不正确;④当把斜边5稍微变大一点为6时,三条线段为3、4、6组成钝角三角形,∴C选项正确.10. 【答案】D[解析] 等腰直角三角形既是直角三角形,也是等腰三角形,故选项A错误;等边三角形既是等腰三角形,也是锐角三角形,故选项B错误;顶角是120°的等腰三角形,既是钝角三角形,也是等腰三角形,故选项C错误;因为一个等边三角形的三个角都是60°,所以等边三角形是锐角三角形.故选项D正确.二、填空题(本大题共6道小题)11. 【答案】4△ABC,△ADC,△ABE,△ADE12. 【答案】AB AD13. 【答案】50[解析] ∵AD为△ABC的角平分线,∠BAC=100°,∴∠BAD=∠CAD=12×100°=50°.∵DE∥AB,∴∠ADE=∠BAD=50°.14. 【答案】12[解析] 分两种情况讨论:①当腰长为5 cm时,三边长分别为5 cm,5 cm,2 cm,满足三角形三边关系,周长=5+5+2=12(cm).②当腰长为2 cm 时,三边长分别为5 cm ,2 cm ,2 cm.∵2+2=4<5, ∴5 cm ,2 cm ,2 cm 不满足三角形的三边关系. 综上,它的周长为12 cm.15. 【答案】3<a <9[解析] 由题意,得7-3<1+a <7+3,解得3<a <9.16. 【答案】13【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC+CD +BD =BC +AD +BD =BC +BA =6+7=13.三、解答题(本大题共4道小题)17. 【答案】83证明:∵BE ,CF 均是△ABC 的中线,∴S △ABE =S △ACF =12S △ABC .∵BE =CF ,AM ⊥CF 于点M ,AN ⊥BE 于点N , ∴12AM·CF =12AN·BE. ∴AM =AN.18. 【答案】解:(1)4根火柴不能搭成三角形.(2)12根火柴能搭成3种不同形状的三角形. 示意图如下:19. 【答案】解:(1)把100 cm 的木棒折去了35 cm 后还剩余65 cm. ∵20+65<90,∴20 cm,65 cm,90 cm长的三根木棒不能构成三角形.(2)设折去x cm后剩余的部分不能与另两根木棒搭成三角形.根据题意,得20+(100-x)≤90,解得x≤30,∴100 cm长的木棒至少折去30 cm后剩余的部分就不能与另两根木棒搭成三角形.20. 【答案】解:(1)<(2)△BPC的周长<△ABC的周长.理由:如图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM.在△PMC中,PC<PM+MC.两式相加,得BP+PC<AB+AC,∴△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由:如图②,分别延长BP1,CP2交于点M.由(2)知,BM+CM<AB+AC.又∵P1P2<P1M+P2M,∴BP1+P1P2+P2C<BM+CM<AB+AC.∴四边形BP1P2C的周长<△ABC的周长.。

八年级上册数学第十一章三角形11.1与三角形有关的线段配套练习

八年级上册数学第十一章三角形11.1与三角形有关的线段配套练习

八年级上册数学第十一章三角形11.1与三角形有关的线段配套练习题一、选择题(本大题共8小题,共24.0分)1.已知三条线段的长度比如下: ①2:3:4; ②1:2:3; ③2:4:6; ④3:3:6; ⑤6:6:10; ⑥6:8:10,其中能构成三角形的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.【解答】解: ①设三条线段的长分别为2x,3x,4x,则2x+3x>4x,故能构成三角形; ②设三条线段的长分别为x,2x,3x,则x+2x=3x,故不能构成三角形; ③设三条线段的长分别为2x,4x,6x,则2x+4x=6x,故不能构成三角形; ④设三条线段的长分别为3x,3x,6x,则3x+3x=6x,故不能构成三角形; ⑤设三条线段的长分别为6x,6x,10x,则6x+6x>10x,故能构成三角形; ⑥设三条线段的长分别为6x,8x,10x,则6x+8x>10x,故能构成三角形.故选C.2.已知三角形的两边长分别为3cm和4cm,则该三角形第三边的长不可能是()A. 1cmB. 3cmC. 5cmD. 6cm【答案】A【解析】解:∵三角形的两边长分别为3cm和4cm,∴1<第三边的长<7,故该三角形第三边的长不可能是1cm.故选:A.直接利用三角形三边关系得出第三边长的取值范围进而得出答案.此题主要考查了三角形三边关系,正确得出第三边长的取值范围是解题关键.3.如图,AD,BE,CF依次是△ABC的高、中线和角平分线,下列各式中错误的是()A. AE=CEB. ∠ADC=90∘C. ∠CAD=∠CBED. ∠ACB=2∠ACF【答案】C【解析】略4.下列说法正确的是()A. 所有的等腰三角形都是锐角三角形B. 等边三角形属于等腰三角形C. 不存在既是钝角三角形又是等腰三角形的三角形D. 一个三角形里有两个锐角,则一定是锐角三角形【答案】B【解析】解:A、错误,内角为30°,30°,120°的等腰三角形是钝角三角形;B、正确,等边三角形属于等腰三角形;C、错误,内角为30°,30°,120°的三角形既是钝角三角形又是等腰三角形的三角形;D、错误,内角为30°,30°,120°的三角形有两个锐角,是钝角三角形.故选:B.根据锐角三角形、钝角三角形、等腰三角形的定义一一判断即可.本题考查三角形的一个概念,解题的关键是搞清楚锐角三角形、钝角三角形、等腰三角形的定义,属于基础题,中考常考题型.5.画△ABC中AB边上的高,下列画法中正确的是()A. B.C. D.【答案】C【解析】略6.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了使它更加稳固,需要在窗框上钉一根木条,这根木条不应钉在()A. A,C两点之间B. E,G两点之间C. B,F两点之间D. G,H两点之间【答案】B【解析】选项A,C,D中都构成了三角形,增加了稳定性;选项B中,木条钉在E,G两点之间,没有构成三角形.故选B.7.将一张三角形纸片剪开分成两个三角形,这两个三角形不可能()A. 都是直角三角形B. 都是钝角三角形C. 都是锐角三角形D. 是一个直角三角形和一个钝角三角形【答案】C【解析】【分析】本题主要考查了三角形的分类,理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.分三种情况讨论,即可得到这两个三角形不可能都是锐角三角形.【解答】解:如图,沿三角形一边上的高剪开即可得到两个直角三角形.,如图,钝角三角形沿虚线剪开即可得到两个钝角三角形.,如图,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.,因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.故选C.8.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()A. 4个B. 5个C. 6个D. 7个【答案】A【解析】【分析】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.依据△ABC的周长为22,△ABM的周长比△ACM的周长大2,可得2<BC<11,再根据△ABC的三边长均为整数,即可得到BC=4,6,8,10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22−BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=22−BC−22=10−12BC,为整数,∴BC边长为偶数,∴BC=4,6,8,10,故选:A.二、填空题(本大题共2小题,共6.0分)9.三角形的三条中线相交于一点,这个点一定在三角形的________,这个点叫做三角形的__________.【答案】内部;重心【解析】略10.如图,在△ABC中,D是BC边上一点,E是AD边上一点.(1)以AC为边的三角形共有个,它们是;(2)∠1是△和△的内角;(3)在△ACE中,∠CAE的对边是.【答案】3△ACE,△ACD,△ACBBCECDECE【解析】略三、解答题(本大题共5小题,共40.0分)11.在如图所示的方格纸中,每个小正方形的边长均为1,点A,点B,点C均在小正方形的顶点上.(1)画出△ABC中BC边上的高AD;(2)画出△ABC中AC边上的中线BE;(3)直接写出△ABE的面积为.【答案】解:(1)如图所示,线段AD即为所求.(2)如图所示,线段BE即为所求.(3)4.【解析】(3)解:∵S△ABC=12BC⋅AD=12×4×4=8,∴△ABE的面积=12S△ABC=4.12.已知a、b、c为△ABC的三边长,且b、c满足(b−5)2+(c−7)2=0,a为方程|a−3|=2的解,求△ABC的周长,并判断△ABC的形状.【答案】解:∵(b −5)2+(c −7)2=0,∴{b −5=0,c −7=0,解得{b =5,c =7,∵a 为方程|a −3|=2的解,∴a =5或1,当a =1,b =5,c =7时,三边长分别为1,5,7,1+5<7,不能组成三角形,故a =1不符合题意;当a =5,b =5,c =7时,三边长分别为5,5,7,5+5>7,能组成三角形,故a =5符合题意,∴△ABC 的周长=5+5+7=17.∵a =b =5,∴△ABC 是等腰三角形.【解析】要注意检验三边长能否构成三角形.13. 若△ABC 的三边长分别为m −2,2m +1,8.(1)求m 的取值范围;(2)若△ABC 的三边均为整数,求△ABC 的周长.【答案】解:(1)根据三角形的三边关系,{2m +1−(m −2)<82m +1+m −2>8, 解得:3<m <5;(2)因为△ABC 的三边均为整数,且3<m <5,所以m =4.所以,△ABC 的周长为:(m −2)+(2m +1)+8=3m +7=3×4+7=19.【解析】(1)直接利用三角形三边关系得出不等式组求出答案;(2)利用m 的取值范围得出m 的值,进而得出答案.此题主要考查了三角形三边关系,正确得出不等式组是解题关键.14.如图,已知P是△ABC内一点.求证:PA+PB+PC>1(AB+BC+AC).2【答案】证明:在△ABP中,PA+PB>AB; ①在△PBC中,PB+PC>BC; ②在△PAC中,PA+PC>AC. ③ ①+ ②+ ③,得2(PA+PB+PC)>AB+BC+AC,(AB+BC+AC).即PA+PB+PC>12【解析】见答案15.在平面内,分别用3根、5根、6根⋯⋯火柴棒首尾顺次相接,能搭成什么形状的三角形呢?通过尝试,列表如下:火柴棒根数356示意图形状等边三角形等腰三角形等边三角形(1)用4根火柴棒能搭成三角形吗?(2)用8根、12根火柴棒分别能搭成几种不同形状的三角形?并画出它们的示意图.【答案】解:(1)用4根火柴棒不能搭成三角形.(2)用8根火柴棒能搭成一种三角形,示意图如图 ①所示;用12根火柴棒能搭成三种不同形状的三角形,即:(4,4,4),(5,5,2),(3,4,5),示意图如图 ②所示.【解析】见答案。

2023-2024学年八年级上学期数学:与三形有关的线段(附答案解析)

2023-2024学年八年级上学期数学:与三形有关的线段(附答案解析)

2023-2024学年八年级上数学:第十一章三角形
11.1
与三角形有关的线段
一、选择题
1.下列各组数中,不可能是同一个三角形的三边长的是()
A.3,4,5B.5,7,7C.6,8,10D.5,7,12 2.劳动课上,小莉要用三根木棒首尾相接钉一个三角形框架,现有两根木棒长分别为4cm,5cm,则第三根木棒的长可取()
A.1cm B.4cm C.9cm D.10cm
3.已知三角形的三边长分别为3、5、x,则x的取值范围为()
A.8
x<<
x<<D.28
x>C.08
x<B.2
4.如图所示,工人师傅在砌门时,通常用木条BD固定长方形门框ABCD,使其不变形,这样做的数学根据是()
A.两点确定一条直线B.两点之间,线段最短
C.同角的余角相等D.三角形具有稳定性
5.若三角形的两边长分别为4和7,则该三角形的周长可能为()
A.9B.14C.18D.22
6.下列说法中,正确的是()
第1页(共12页)。

人教版数学八年级上册 11.1 与三角形有关的线段同步练习(不含答案)

人教版数学八年级上册 11.1 与三角形有关的线段同步练习(不含答案)

11.1与三角形有关的线段一、选择题1.下列三组数能构成三角形的三边的是()A.13,12,20 B.5,5,11 C.8,7,15 D.3,8,42.若线段AM,AN分别是△ABC的BC边上的高线和中线,则( )A.AM>AN B.AM≥ANC.AM<AN D.AM≤AN3.四根长度分别为3,4,6,x,x(为正整数)的木棒,从中任取三根.首尾顺次相接都能组成一个三角形,则().A.组成的三角形中周长最小为9 B.组成的三角形中周长最小为10 C.组成的三角形中周长最大为19 D.组成的三角形中周长最大为16 4.如图,以BC为边的三角形有()个.A.3个B.4个C.5个D.6个5.如图,用四个螺丝将四根不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3,4,5,7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为( )A.6 B.7 C.8 D.96.在如图的方格纸中,每个小方格都是边长为1的止方形,点A、B是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C使△ABC的面积为2个平方单位,则满足条件的格点C的个数是A.5B.4C.3D.27.四根长度分别为 3、4、6、x (x 为正整数)的木棒,从中任取三根,首尾顺次相接都能组成一个三角形,则( )A .组成的三角形中周长最小为 9B .组成的三角形中周长最小为 10C .组成的三角形中周长最大为 18D .组成的三角形中周长最大为 168.已知三角形两边的长分别是4和10,则此三角形第三边的长不可能是( )A .6B .7C .9.5D .109.下列长度的四根木棒中,能与长为4cm ,9cm 的两根木棒围成一个三角形的是( )A .4cmB .5cmC .9cmD .14cm10.如图,在△ABC 中,过点B 作PB ⊥BC 于B ,交AC 于P ,过点C 作CQ ⊥AB ,交AB 延长线于Q ,则△ABC 的高是( )A .线段PB B .线段BC C .线段CQD .线段AQ11. 如图,为估计池塘岸边A ,B 的距离,小方在池塘的一侧选取一点O ,测得OA =15米,OB =10米,A ,B 间的距离不可能是( )A.20米B.15米C.10米D.5米12.一个三角形的两边长为3和7,第三边长为偶数,则第三边为( )A .6B .6或8C .4D .4或613.下列长度的三条线段,不能组成三角形的是( )A .3,8,4B .4,9,6C .15,20,8D .9,15,8O A B14.如图,过△ABC的顶点A作BC边上的高,以下作法正确的是( )15.如果三角形的一个角的平分线也是中线,则该三角形是()A.直角三角形B.锐角三角形C.等腰三角形D.任意三角形二、填空题16.已知等腰三角形的两边分别为4cm和7cm,则这个三角形的周长为________.17.已知三角形三边长分别是、、,且为整数,那么的值是________.18.如图,在△ABC中,AB边上的高是线段________,BC边上的高是线段________;在△BCF中,CF边上的高是线段________;CE可看作______________________的高(△ABC除外).19.如图,六根木条钉成一个六边形框架,要使框架稳固且不活动,至少还需要添________根木条.20.如图,以AD为边的三角形是,以∠C为一个内角的三角形是,△AED的三个内角是.21.如图,A,B,C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积_______.三、解答题22.若△ABC中两边长之比为2:3,三边都是整数且周长为18cm,求各边的长.23.一个等腰三角形的腰长是底边长的2倍,且其周长为30,则三边分别是多少?24.如图,在△ABC中,AB=5厘米,BC=3厘米,BM为中线,则△ABM与△BCM 的周长的差是多少厘米?25.已知,三角形三边的比是3:4:5,且最大边长与最小边长的差是4,求这个三角形的三条边的长.26.如图,在△ABC中,AB=AC,AC上的中线把三角形的周长分为18cm和24cm两个部分,求三角形各边长.27.某海军在南海某海域进行实弹演习,岛礁A的周围方圆10•千米内的区域为危险区域,有一艘渔船误入离A岛4千米的B处(如图),为了尽快驶离危险区域,该船应沿什么方向航行?为什么?。

人教版八年级上册数学:11.1 与三角形有关的线段 练习卷

人教版八年级上册数学:11.1 与三角形有关的线段  练习卷

人教版八年级上册数学:11.1 与三角形有关的线段练习卷与三角形有关的线段一、填空题:1、如图,在△ABC中,已知点D、E、F分别是边BC、AD、CE 上的中点,且S△ABC=4,则S△BFF=_______2、△ABC的三边长分别为,则__.3、三角形的三边长分别为5,1+2x,8,则x的取值范围是 .4、在△ABC中,点D,E分别在AB,AC上,且CD与BE相交于点F,已知△BDF的面积为6,△BCF的面积为9,△CEF的面积为6,则四边形ADFE的面积为 .5、如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点 P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点 P1、P2、P3、…、P2019,把△ABC分成个互不重叠的小三角形.6、如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△FCE的面积为S2,若S△ABC=6,则S1-S2的值为_________.二、选择题:7、如图AD⊥BC于点D,那么图中以AD为高的三角形有个()A.2条B.3条C.4条 D.5条13、已知一个三角形的两边长分别是2和7,第三边为偶数,则此三角形的周长是()A.15B.16C.17D.15或1714、现有3cm,4cm,7cm, cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A.1个B.2个C.3个D.4个15、下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部16、一个三角形的两边长为3和7,第三边长为偶数,则第三边为()A.6B.6或8 C.4 D.4或617、画△ABC的边AB上的高,下列画法中,正确的是()A. B. C. D.18、设△ABC的面积为1,如图①将边BC、AC分别2等份,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等份,BE1、AD1相交于点O,△AOB的面积记为S2;……,依此类推,则S5的值为()A. B. C. D.三、解答题:19、如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C′(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为 .20、已知a、b、c是三角形的三边长,①化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;②若a+b=11,b+c=9,a+c=10,求这个三角形的各边.21、如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC 的周长分成12cm和15cm两部分,求△ABC各边的长.22、已知△ABC的面积是60,请完成下列问题:(1)如图1,若AD是△ABC的BC边上的中线,则△ABD的面积_______△ACD的面积(填“>”“<”或“=”)(2)如图2,若CD、BE分别是△ABC的AB、AC边上的中线,求四边形ADOE的面积可以用如下方法:连接AO,由AD=DB得:S△ADO=S△BDO,同理:S△CEO=S△AEO,设S△ADO=x,S△CEO=y,则S△BDO=x,S△AEO=y由题意得:S△ABE=S△ABC=30,S△ADC=S△ABC=30,可列方程组为:,解得_______,通过解这个方程组可得四边形ADOE的面积为_______.(3)如图3,AD:DB=1:3,CE:AE=1:2,请你计算四边形ADOE的面积,并说明理由.23、如图1,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC=∠CFE;(3)如图3,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,△ABC、△CEF、△ADF的面积分别为S△ABC、S△CEF、S △ADF,且S△ABC=36,则S△CEF﹣S△ADF= .(仅填结果)参考答案1、答案为:12、答案为:3、答案为:1<x<6.4、答案为:24.5、答案为:4035.6、答案为:17、D8、A9、C10、A11、C12、C。

人教版八年级数学上册 第11章《三角形》 同步练习及答案(11.1)

人教版八年级数学上册 第11章《三角形》 同步练习及答案(11.1)

第11章《三角形》同步练习(§11.1 与三角形有关的线段A)班级学号姓名得分1、填空题:(1)由____________三条线段______所组成的图形叫做三角形.组成三角形的线段叫做______;相邻两边的公共端点叫做______,相邻两边所组成的角叫做______,简称______.(2)如图所示,顶点是A、B、C的三角形,记作______,读作______.其中,顶点A所对的边______还可用______表示;顶点B所对的边______还可用______表示;顶点C 所对的边______还可用______表示.(3)由“连接两点的线中,线段最短”这一性质可以得到三角形的三边有这样的性质______________________________.由它还可推出:三角形两边的差____________.(4)对于△ABC,若a≥b,则a+b______c同时a-b______c;又可写成______<c<______.(5)若一个三角形的两边长分别为4cm和5cm,则第三边x的长度的取值范围是____________,其中x可以取的整数值为____________.2.已知:如图,试回答下列问题:(1)图中有______个三角形,它们分别是______________________________________.(2)以线段AD为公共边的三角形是_________________________________________.(3)线段CE所在的三角形是______,CE边所对的角是________________________.(4)△ABC、△ACD、△ADE这三个三角形的面积之比等于______∶______∶______.3.选择题:(1)下列各组线段能组成一个三角形的是( ).(A)3cm,3cm,6cm (B)2cm,3cm,6cm(C)5cm,8cm,12cm (D)4cm,7cm,11cm(2)现有两根木条,它们的长分别为50cm,35cm,如果要钉一个三角形木架,那么下列四根木条中应选取( ).(A)0.85m长的木条(B)0.15m长的木条(C)1m长的木条(D)0.5m长的木条(3)从长度分别为10cm、20cm、30cm、40cm的四根木条中,任取三根可组成三角形的个数是( ).(A)1个(B)2个(C)3个(D)4个(4)若三角形的两边长分别为3和5,则其周长l的取值范围是( ).(A)6<l<15 (B)6<l<16(C)11<l<13 (D)10<l<164.(1)一个等腰三角形的周长为18,若腰长的3倍比底边的2倍多6,求各边长.(2)已知等腰三角形的一边等于8cm,一边等于6cm,求它的周长.(3)一个等腰三角形的周长为30cm,一边长为6cm,求其它两边的长.(4)有两边相等的三角形的周长为12cm,一边与另一边的差是3cm,求三边的长.5.(1)若三角形三条边的长分别是7,10,x,求x的范围.(2)若三边分别为2,x-1,3,求x的范围.(3)若三角形两边长为7和10,求最长边x的范围.(4)等腰三角形腰长为2,求周长l的范围.(5)等腰三角形的腰长是整数,周长是10,求它的各边长.6.已知:如图,△ABC中,AB=AC,D是AB边上一点.(1)通过度量AB 、CD 、DB 的长度,确定AB 与)(21DB CD 的大小关系.(2)试用你所学的知识来说明这个不等关系是成立的.7.已知:如图,P 是△ABC 内一点.请想一个办法说明AB +AC >PB +PC .8.如图,D 、E 是△ABC 内的两点,求证:AB +AC >BD +DE +EC .第11章《三角形》同步练习(§11.1 与三角形有关的线段B )班级 学号 姓名 得分1.填空题:(1)从三角形一个顶点向它的对边画______,以______和______为端点的线段叫做三角形这边上的高.如图,若CD 是△ABC 中AB 边上的高,则∠ADC ______∠BDC =______,C 点到对边AB 的距离是______的长.(2)连结三角形的一个顶点和它______的______叫做三角形这边上的中线. 如右图,若BE 是△ABC 中AC 边上的中线,则AE ______.______21EC(3)三角形一个角的______与这个角的对边相交,以这个角的______和______为端点的线段叫做三角形的角平分线.一个角的平分线与三角形的角平分线的区别是________________________________ ______________________________________. 如图,若AD 是△ABC 的角平分线,则∠BAD ______∠CAD =21______或∠BAC =2______=2______.2.已知:△GEF ,分别画出此三角形的高GH ,中线EM ,角平分线FN .3.(1)分别画出△ABC 的三条高AD 、BE 、CF .(∠A为锐角) (∠A为直角) (∠A为钝角)(2)这三条高AD、BE、CF所在的直线有怎样的位置关系?4.(1)分别画出△ABC的三条中线AD、BE、CF.(2)这三条中线AD、BE、CF有怎样的位置关系?(3)设中线AD与BE相交于M点,分别量一量线段BM和ME、线段AM和MD的长,从中你能发现什么结论?5.(1)分别画出△ABC的三条角平分线AD、BE、CF.(2)这三条角平分线AD、BE、CF有怎样的位置关系?(3)设△ABC的角平分线BE、CF交于N点,请量一量点N到△ABC三边的距离,从中你能发现什么结论?6.已知:△ABC中,AB=AC,BD是AC边上的中线,如果D点把三角形ABC的周长分为12cm和15cm两部分,求此三角形各边的长.7.(1)如果将一个三角形的三边的长确定,那么这个三角形的形状和大小就不会改变了,三角形的这个性质叫做________________________.(2)四边形是否具有这种性质?8.将一个三角形剖分成若干个面积相等的小三角形,称为该三角形的等积三角形的剖分(以下两问要求各画三个示意图)(1)已知一个任意三角形,并其剖分成3个等积的三角形.(2)已知一个任意三角形,将其剖分成4个等积的三角形.9.不等边△ABC的两条高长度分别为4和12,若第三条高的长也是整数,试求它的长.参考答案(§11.1 与三角形有关的线段A )1.(1)不在同一直线上的,首尾顺次相接,三角形的边,三角形的顶点,三角形的内角,三角形的角.(2)△ABC ,三角形ABC ,BC ,a ;AC ,b ;AB ,c (3)三角形两边之和大于第三边,小于第三边. (4)>,<,a -b ,a +b(5)1cm <x <9cm ,2cm 、3cm 、4cm 、5cm 、6cm 、7cm 、8cm . 2.(1)六,△ABC 、△ABD 、△ABE 、△ACD 、△ACE 、△ADE . (2)△ABD 、△ACD 、△ADE . (3)△ACE ,∠CAE . (4)BC :CD :DE .3.(1)C ,(2)D ,(3)A ,(4)D4.(1)6,6,6;(2)20cm ,22cm ;(3)12cm ,12cm ;(4)5cm ,5cm ,2cm . 5.(1)3<x <17;(2)2<x <6;(3)10≤x <17;(4)4<e <8; (5)3,3,4或4,4,2 6.(1))(21DB CD AB +>. (2)提示:对于△ADC ,∵AD +AC >DC , ∴(AD +DB )+AC >CD +DB , 即AB +AC >CD +DB .又∵AB =AC ,∴2AB >CD +DB . 从而AB >21(CD +DB ). 7.提示:延长BP 交AC 于D .∵在△ABD 中,AB +AD >BD =BP +PD ,① 在△DPC 中,DP +DC >PC ,② 由①、②,∴AB +(AD +DC )+DP >BP +PC +DP . 即AB +AC >PB +PC .8.证明:延长BP 交AC 于D ,延长CE 交BD 于F . 在△ABD 中,AB +AD >BD . ① 在△FDC 中,FD +DC >FC . ② 在△PEF 中,PF +FE >PE . ③①+②+③得AB +AD +FD +DC +PF +FE >BD +FC +PE , 即:AB +AC +PF +FD +FE >BP +PF +FD +FE +EC +PE ,所以AB +AC >BP +PE +EC .(§11.1 与三角形有关的线段B )1.(1)垂线,顶点、垂足,=,90°,高CD 的长. (2)所对的边的中点、线段,=,AC(3)平分线,顶点、交点,一个角的平分线是射线,而三角形的角平分线是线段. =,∠BAC ,∠BAD ,∠DAC 2.略.3.(1)略,(2)三条高所在直线交于一点.4.(1)略,(2)三条中线交于一点,(3)BM =2ME .5.(1)略,(2)三条角平分线交于一点,(3)点N 到△ABC 三边的距离相等. 6.提示:有两种情况,分别运用方程思想,设未知数求解.⎩⎨⎧===,11,8BC AC AB 或⎩⎨⎧===.7,10BC AC AB 7.(1)三角形的稳定性,(2)不具有稳定性. 8.(1)(2)下列各图是答案的一部分:9.它的长为5,或4.提示:设S △ABC =S ,第三条高为h ,则△ABC 的三边长可表示为:hSS S 212242、、,列不等式得:12242212242SS h S S S +<<- ∴3<h <6.。

人教版数学 八年级上册11.1与三角形有关的线段 练习 (含答案)

人教版数学 八年级上册11.1与三角形有关的线段 练习 (含答案)

11.1与三角形有关的线段一.选择题1.已知三角形两边的长分别为1cm、5cm,则第三边的长可以为()A.3cm B.4cm C.5cm D.6cm2.下列各组图形中,表示AD是△ABC中BC边的高的图形为()A.B.C.D.3.如图,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中正确的是()A.△ABC中,AD是BC边上的高B.△ABC中,GC是BC边上的高C.△GBC中,CF是BC边上的高D.△GBC中,GC是BG边上的高4.下列说法正确的是()A.三角形的角平分线是射线B.过三角形的顶点,且过对边中点的直线是三角形的一条中线C.锐角三角形的三条高交于一点D.三角形的高、中线、角平分线一定在三角形的内部5.若AD是△ABC的中线,则下列结论正确的是()A.AD⊥BC B.BD=CD C.∠BAD=∠CAD D.AD=BC 6.下列各组长度的三条线段能组成三角形的是()A.4cm,5cm,9cm B.4cm,4cm,8cmC.5cm,6cm,7cm D.3cm,5cm,10cm7.如果a、b、c分别是三角形的三条边,那么化简|a﹣c+b|+|b+c﹣a|的结果是()A.﹣2c B.2b C.2a﹣2c D.b﹣c8.如图,在△ABC中,AB=2020,AC=2018,AD为中线,则△ABD与△ACD的周长之差为()A.1B.2C.3D.49.如图,△ABC的BC边上的高是()A.BE B.AF C.CD D.CF10.设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A.3<a<6B.﹣5<a<﹣2C.﹣2<a<5D.a<﹣5或a>2二.填空题11.如图,根据“两点之间线段最短”,可以判定AC+BC AB(填“>”“<”或“=”).12.从长度分别为3cm,4cm,5cm,6cm,9cm的线段中任意取3条,能构成的三角形个数为.13.△ABC的两边长分别是2和7,且第三边为奇数,则第三边长为.14.如图,AD是△ABC的一条中线,若BD=3,则BC=.15.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形个.三.解答题16.在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.17.已知a=m2+n2,b=m2,c=mn,且m>n>0.(1)比较a,b,c的大小;(2)请说明以a,b,c为边长的三角形一定存在.18.如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE的周长相等.(1)求线段AE的长.(2)若图中所有线段长度的和是53cm,求BC+DE的值.参考答案一.选择题1.解:设第三边的长为xcm,则5﹣1<x<1+5,即4<x<6.故选:C.2.解:△ABC的高AD是过顶点A与BC垂直的线段,只有D选项符合.故选:D.3.解:∵AD⊥BC于点D,∴△ABC中,AD是BC边上的高,故A选项正确,B选项错误;∵CF⊥AB于点F,∴△GBC中,CF是BG边上的高,故C选项错误,D选项错误.故选:A.4.解:A.三角形的角平分线是线段,故A不符合题意;B.三角形的中线是线段,故B不符合题意;C.锐角三角形的三条高交于一点说法正确,故C符合题意;D.锐角三角形的三条高都在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.故D不符合题意;故选:C.5.解:∵AD是△ABC的中线,∴BD=DC,故选:B.6.解:根据三角形的三边关系,A、4+5=9,不能组成三角形,不符合题意;B、4+4=8,不能够组成三角形,不符合题意;C、5+6>7,能组成三角形,符合题意;D、3+5=8<10,不能组成三角形,不符合题意.故选:C.7.解:∵a、b、c分别是三角形的三条边,∴a﹣c+b>0,b+c﹣a>0,∴|a﹣c+b|+|b+c﹣a|=a﹣c+b+b+c﹣a=2b.故选:B.8.解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2020﹣2018=2,故选:B.9.解:△ABC的BC边上的高是AF,故选:B.10.解:由题意得:8﹣3<1﹣2a<8+3,解得:﹣5<a<﹣2,故选:B.二.填空题11.解:如图,根据“两点之间线段最短”,可以判定AC+BC>AB,故答案为:>.12.解:其中的任意三条组合有:3cm、4cm、5cm;3cm、4cm、6cm;3cm、4cm、9cm;3cm、5cm、6cm;3cm、5cm、9cm;3cm、6cm、9cm;4cm、5cm、6cm;4cm、5cm、9cm;4cm、6cm、9cm;5cm、6cm、9cm十种情况.根据三角形的三边关系,其中的3cm、4cm、5cm;3cm、4cm、6cm;3cm、5cm、6cm;4cm、5cm、6cm;4cm、6cm、9cm;5cm、6cm、9cm能搭成三角形.故答案为:6.13.解:∵7﹣2=5,7+2=9,∴5<第三边<9,∵第三边为奇数,∴第三边长为7.故答案为:7.14.解:∵AD是△ABC的一条中线,BD=3,∴BC=2BD=2×3=6.故答案为:6.15.解:第n个图形中,三角形的个数是1+4(n﹣1)=4n﹣3.所以当n=6时,原式=21,故答案为:21.三.解答题16.解:∵在△ABC中,AB=3,AC=7,∴第三边BC的取值范围是:4<BC<10,∴符合条件的偶数是6或8,∴当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.∴△ABC的周长为16或18.17.解:(1)∵a=m2+n2,b=m2,c=mn,且m>n>0,∴m2+n2>m2>mn,∴a>b>c;(2)∵m>n>0,∴mn>n2,∴m2+mn>m2+n2,∴a,b,c为边长的三角形一定存在.18.解:(1)∵三角形BDE与四边形ACDE的周长相等,∴BD+DE+BE=AC+AE+CD+DE,∵BD=DC,∴BE=AE+AC,设AE=x cm,则BE=(10﹣x)cm,由题意得,10﹣x=x+6.解得,x=2,∴AE=2cm;(2)图中共有8条线段,它们的和为:AE+EB+AB+AC+DE+BD+CD+BC=2AB+AC+2BC+DE,由题意得,2AB+AC+2BC+DE=53,∴2BC+DE=53﹣(2AB+AC)=53﹣(2×10+6)=27,∴BC+DE=(cm).。

人教版数学八年级上册 第十一章 三角形 11.1 与三角形有关的线段 11.1.1 三角形的边 同步训练题

人教版数学八年级上册 第十一章 三角形  11.1 与三角形有关的线段  11.1.1 三角形的边 同步训练题

第十一章三角形 11.1 与三角形有关的线段 11.1.1 三角形的边一、单项选择题1.用木棒钉成一个三角架,两根小棒分别是7cm和10cm,第三根小棒可取()cmA. 20B. 3C. 11D. 22.下列三条线段,不能组成三角形的是()A. 3 4 6 B . 8 9 15 C. 20 18 5 D. 16 30 143.已知等腰三角形一边等于5cm,一边等于10cm,另一边应等于()cmA. 5B. 10C. 5或10D. 124.一个三角形的两边分别是5cm和11cm,第三边的长是一个偶数,则第三边的长是()cmA. 2B. 4C. 6D. 85. 如图,共有三角形的个数是()A.3 B.4 C.5 D.66.小李有2根木棒,长度分别为10cm和15cm,要组成一个三角形(木棒的首尾分别相连接),还需在下列4根木棒中选取()cm长的木棒A.4 B.5 C.20 D.257.如图,x的值可能是()A.14 B.13 C.12 D.11二、填空题8. 已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围。

若x是奇数,则x的值是;若x是偶数,则x的值是。

9. 一个等腰三角形的一边是2cm,另一边是9cm ,则这个三角形的周长是cm10. 一个等腰三角形的一边是5cm,另一边是7cm ,则这个三角形的周长是cm11. 等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为__________.12.三角形两边为3cm,7cm,且第三边为奇数,则三角形的最大周长是__________ cm.13.三角形的三边长分别为5,1+2x,8,则x的取值范围是____________.三、解答题14. 已知等腰三角形的周长为16cm,若其中一边长为4cm,求另外两边长.15.已知a、b、c为△ABC的三边,化简|a+b-c|+|a-b-c|-|a-b+c|.16.有一条长为21cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么底边长是多少?(2)能围成一边长为5cm的等腰三角形吗?说明理由.(AB+BC+AC).17..如图所示,已知P是△ABC内一点,试说明PA+PB+PC>12答案:一、1---7 CDBDD CA二、8. 1cm<x<7cm 3cm或5cm 2cm,4cm或6cm9. 910. 17或1911. 11或1312. 1913. 1<x<6三、14. 解:如果腰长为4cm,则底边长为16-4-4=8cm.三边长为4cm,4cm,8cm,不符合三角形三边关系定理.这样的三边不能围成三角形,所以应该是底边长为4cm.所以腰长为(16-4)÷2=6cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理,所以另外两边长都为6cm.15. 解:|a+b-c|+|a-b-c|-|b-a-c|=(a+b-c)+(-a+b+c)+(b-a-c)=a+b-c-a+b+c-a+b-c=-a+3b-c.16. 解:(1)设底边长为xcm,则腰长为3xcm,根据题意得,x+3x+3x=21,解得x=3cm;(2)若5cm为底时,腰长=1(21-5)=8cm,三角形的三边分别为5cm、8cm、28cm,能围成三角形,若5cm为腰时,底边=21-5×2=11,三角形的三边分别为5cm、5cm、11cm,∵5+5=10<11,∴不能围成三角形,综上所述,能围成一个底边是5cm,腰长是8cm的等腰三角形.17.证明:在△ABP中:AP+BP>AB.同理:BP+PC>BC,AP+PC>AC.以上三式分(AB+BC+AC).别相加得到:2(PA+PB+PC)>AB+BC+AC,即PA+PB+PC>12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.1.1三角形的边
1.小明的家在如图所示的街道中的A 处,
B 处是小明所在的学校,小明上学走 路最近,
理由是 .
2. 2以下列各组线段为边,能组成三角形的是( )
A.1cm ,2cm ,4cm
B. 2cm ,3cm ,5cm
C.5cm ,6cm ,12cm
D. 4cm ,6cm ,8cm
3.已知三角形的三边长分别为4,5,x ,则x 不可能是( )
A3 B.5 C.7 D.9
4.已知等腰三角形的两边分别为2和5,则它的周长为( )
A.12或 9
B.12
C.9
D.7 5. 任选长为13cm 、10cm 、7cm 、5cm 的四条线段中的
三条线段为边,可以组成三角形的个数是( )
A.1个
B.2个
C.3个
D.4个
6. 11.如图所示,图中共有 个三角形, 它们分别为 .
7. 如图所示,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图中,互不重叠的三角形共有 个(用含n 的代数式表示)
8. 一个三角形中有两边相等,其周长为10,其中一边为3,则其他两边长分别为 .
9. 一个等腰三角形的周长为21cm ,一边长为5cm ,求其他两边长.
11.1.2三角形的高、中线与角平分线
1.三角形的角平分线、高和中线均为( )
A.直线
B.射线
C.线段
D.以上说法都不正确
2.如果三角形三条高的交点是三角形的一个顶点,那么这个三角形是( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D. 以上说法都不正确
3.下图中AE 是△ABC 的高线,作图正确的是( )
4、如图所示,已知在△ABC 中,∠BAC =70°,AC=6cm ,AD 是△ABC 的角平分线,则∠BAD= 。

BE 是△ABC 的中线,则AE=CE= cm ,CF 是△ABC 的高, 则∠ =∠ =90°.
5.古代有一位商人有一块三角形土地,土地的一边靠水渠,如图所示,现在他想把这块土地分给他的三个儿子,为使土地灌溉方便,想使每个儿子分得的土地都有一边和水渠相邻.试问应如何分割这块土地?请你说明理由.
6.某农场有一块三角形土地,准备分成面积相等的4块,分别承包给
4位农户,请你设计两种不同的分配方案(在已给的图形中直接画出图,保留作图痕迹,不写画法).

3课时 三角形的稳定性
1.下列图形中具有稳定性的是 ( )
A .梯形
B .长方形
C .三角形
D .正方形
2.大桥钢架、索道支架、人字梁等为了坚固,都采用三角形结构,这是根据 .
3.生活中的活动铁门是利用平行四边形的 .、
4.在下列多边形上画一些线段,使之稳定:
5.举出生活中利用三角形的稳定性的例子:
________________________________________________________________
举出生活中利用四边形的不稳定性的例子:
第6题图
________________________________________________________________
6.如图,在△ABC 中,D 为BC 边上一点,∠1=∠2,G 为AD 的中点,延长BG 交AC 于E ,F 为AB 上一点,CF ⊥AD 于H .下面判断:①AD 是△AB E 的角平分线;②BE 是△ABD 的边AD 上的中线;③CH 是△A CD 的边AD 上的高;④A H 是△AC F 的角平分线和高.其中
正确的有 ( ) A .1个 B .2个 C .3个 D .4个
7.如图,已知△ABC ,先画出△ABC 的中线AM ,再分别画出△ABM 、△ACM 的高BE 、CF ,试探究BE 与CF 的位置关系怎样?大小关系呢?(不妨量量看)能说明为什么吗?
A C H F G
(第6题) B D
1 2 E A (第7题) C B。

相关文档
最新文档