人教版数学八年级上册第十一章 三角形 知识归纳
新人教版八年级上册数学知识点归纳及常考题型

问:〔1〕求甲乙两队单独工作完成这一工程各需多少天?
〔2〕在不耽误工期的情况下,你认为哪种施工方案较节省 工程款?
第二十四页,共24页。
教学资料整理
• 仅供参考,
只需增加的一个条件是
.A
D
B
图3
C
第七页,共24页。
考点2.如图2,∠1=∠2,要得到
△ABD≌△ACD,还需从以下条件中补选一个,
则错误的选法是〔 〕
A、AB=AC
B、DB=DC
C、∠ADB=∠ADC D、∠B=∠C
考点3.如右图所示,点A、D、B、F在一
条直线上,AC=EF,AD=FB,要使
△ABC≌△FDE,还需添加一个条件,
第十七页,共24页。
第十五章分式考点归纳
1、分式的判断 P127
考点 1.下列各式中, 1 x+ 1 y, 1 , 1 ,—4xy , x , x
3 2 xy 5 a
x2
是分式有
2、分式方程的判断 P
考点 1:下列属于分式的是(
A. X-2
B. y 2x x 1
) C. 8 6 a3
D. 2X-7=16
新人教版八年级上册数学知识点 归纳及常考题型
第十一章三角形考点归纳
1、判断三边能否组成三角形。P3
考点1.以以下各组线段为边,能组成三角形的是〔
〕
A. 1,2,4
B. 4,6,8 C. 5,6,12 D.2,3,5
2、求第三边的取值范围。P3
考点1.三角形的三边长分别是2 ,5 ,x,则x的取值范围
初二数学知识点归纳

初二数学知识点归纳临近考试了,各科都会整理好知识点复习。
接下来是小编为大家整理的初二数学知识点归纳,希望大家喜欢!初二数学知识点归纳一第十一章三角形一、知识框架:二、知识概念:1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°。
⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。
②边形共有条对角线。
第十二章全等三角形一、知识框架:二、知识概念:1、基本定义:⑴全等形:能够完全重合的两个图形叫做全等形。
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。
初二数学上册(人教版)第十一章三角形11.1知识点总结含同步练习及答案

描述:例题:初二数学上册(人教版)知识点总结含同步练习题及答案第十一章 三角形 11.1 与三角形有关的线段一、学习任务1. 理解三角形及其有关的概念.2. 掌握三角形三边关系,并能够熟练运用这个三角形的三边关系判定已知的三条线段能否构成三角形.3. 知道三角形具有稳定性,并且能够运用到实际问题中去.二、知识清单三角形的相关概念 三角形的三边关系 三角形的稳定性三、知识讲解1.三角形的相关概念三角形由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形(triangle ).按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形.三角形的高从三角形的一个顶点向它的对边画垂线,顶点和垂足之间的线段叫做三角形的高(altitude ).三角形的中线连接三角形的一个顶点和它对边中点的线段叫做三角形的中线(median ).三角形的角平分线三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线(angular bisector ).三角形的重心三角形三条中线的交点叫做三角形重心.三角形的内心三角形三条内角平分线的交点叫做三角形内心.三角形的垂心三角形三边上的三条高所在直线交于一点叫做三角形垂心.三角形的外心三角形三边的垂直平分线的交点叫做三角形外心.三角形的旁心三角形的一条内角平分线与其他两个角的外角平分线交于一点叫做三角形的旁心.一个三角形的三个内角的度数之比为 ,这个三角形是( )2:3:7中阴影部分的面积是_______.1∠DAE线,则 的度数为______.描述:例题:3.三角形的稳定性三角形具有稳定性,有着稳固、坚定、耐压的特点.四、课后作业 (查看更多本章节同步练习题,请到快乐学)(1) ,,;(2) ,,;(3) ,,();(4) ,,().解:(1) 不能;(2) 不能;(3) 能;(4) 不能.(1) 与 的和小于 ,所以不能组成三角形;(2) 与 的和等于 ,所以不能组成三角形;(3) , 均小于 ,而 ,因为 ,所以 ,所以 ,它们可以组成三角形;(4) 最大,而 ,因此不能组成三角形.3610358+3a 2+4a 2+7a 2a ≠03a 5a 8a a >03610358+3a 2+4a 2+7a 2(+3)+(+4)=2+7=(+7)+a 2a 2a 2a 2a 2a ≠0>0a 2(+3)+(+4)>+7a 2a 2a 28a 3a +5a =8a 一个不等边三角形的边长都是整数,且周长是 ,这样的三角形共有多少?分析:已知中的数较少,只知道周长为 ,应该抓住不等边三角形的边长都是整数这一个条件,依据三角形三边关系先确定出最大边的取值范围,则问题迎刃而解.解:设 ,则 ,即 ,所以 .因为 ,, 都是正整数,所以若 ,则其他两边必然为 ,.由于 ,即 ,故线段 ,, 不能组成三角形.当然 更不可能是 或 ,因而有 .当 时,,,不符合条件;当 时,,,符合条件.所以符合条件的三角形只有 个.1212a <b <c a +b +c >2c 2c <12c <6a b c c =3a =1b =21+2=3a +b =c a b c c 124⩽c <6c =4a =2b =3c =5a =3b =41下列图形中具有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形解:C.答案: 1. 如图,在 中, 的对边是A .B .C .D .C △ABF ∠B ()ADAE AF AC2. 如果一个三角形的两边长分别为 和 ,则第三边长可能是 A .B .C .D .24()2468高考不提分,赔付1万元,关注快乐学了解详情。
人教版初中八年级上册数学第十一章三角形知识归纳

第十一章三角形
11.1 与三角形有关的线段【高、中线(重心)、角平分线】
两边之差<第三边<两边之和。
按边分类、三角形的稳定性。
11.2 与三角形有关的角
三角形内角和定理:三角形三个内角的和等于180º。
直角三角形的两个锐角互余。
有两个角互余的三角形是直角三角形。
推论:三角形的外角等于与它不相邻的两个内角的和。
备注:推论和定理一样,可以作为进一步推理的依据。
11.3 多边形及其内角和
多边形:在平面内,由一些线段首尾顺次相接组成的封闭式图形。
对角线:连接多边形不相邻的两个顶点的线段。
正多边形:各个角都相等,各条边都相等的多边形。
n边形内角和等于(n-2)×180º。
多边形的外角和等于360º。
作者留言:
非常感谢!您浏览到此文档。
为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!
良好的学习态度能够更好的提高学习能力。
良好的学习态度应该包括:
1、主动维持学习的兴趣,不断提升学习能力。
2、合理安排学习的时间。
3、诚挚尊重学习的对象,整合知识点。
4、信任自己的学习能力,制定学习复习计划。
5、做题的时候要学会反思、归类、整理出对应的解题思路。
因此,良好的学习态度的养成,应该从养成良好的学习习惯开始。
无论是初学者,还是学有所成者,都应该有一个良好的学习态度,都应该有一个良好的学习习惯。
初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除八年级上册知识点总结第十一章全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:个角的平分线。
1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等。
第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
人教版八年级上册数学课本知识点归纳

人教版八年级上册数学课本知识点归纳第十一章全等三角形一、全等形能够完全重合的两个图形叫做全等形。
二、全等三角形1.全等三角形:能够完全重合的两个三角形叫做全等三角形。
(两个三角形全等,互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角。
)2.全等三角形的符号表示、读法:△ABC与△A′B′C′全等记作△ABC≌△A′B′C′,“≌”读作“全等于”。
(两个三角形全等时,通常把对应顶点的字母写在对应的位置上,这样对应的两个字母为端点的线段是对应边;对应的三个字母表示的角是对应角)。
3.全等三角形的性质:全等三角形的对应边相等,对应角相等。
二、三角形全等的判定:1.三边对应相等的两个三角形全等,简写成“边边边”或“SSS"。
2.两边和他们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.3.两角和他们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。
4.两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”。
5.斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”.(SSA、AAA不能识别两个三角形全等,识别两个三角形全等时,必须有边的参与,如果有两边和一角对应相等时,角必须是两边的夹角.)三、角的平分线的性质1.性质:角平分线上的点到角的两边距离相等。
2.逆定理:在角的内部,到角的两边距离相等的点在角平分线上。
(3.三角形的内心:利用角的平分线的性质定理可以导出:三角形的三个内角的角平分线交于一点,此点叫做三角形的内心,它到三边的距离相等。
)第十二章轴对称一、轴对称1.轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
2.线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线3.轴对称的性质:1。
八年级数学第十一章知识点总结

新人教版八年级数学知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:①概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.②相关的名词:三角形的角(内角)、边、顶点、记法、读法。
③三角形的分类:两种分类方法(边、角)2.三边关系(性质):三角形任意两边的和大于第三边,任意两边的差小于第三边.(重点)数学表达式:3.高:①概念:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.②作法:③性质:④垂心:4.中线:①概念:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.②作法:③性质:④重心:5.角平分线:①概念:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.②作法:③性质:④内心:补充:三角形的内心、外心、垂心、重心、旁心。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.三角形的内角和定理:①内容:三角形的内角和为180°②证明:(掌握证明的过程即可)③应用:8.直角三角形:①概念:②性质:③判定:9.三角形的外角:①概念:②性质:10.三角形的外角和定理:①内容:②证明:(掌握证明的过程即可)③应用:11.多边形:①概念:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.②相关的名词:多边形的角(内角)、边、顶点。
12.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.13.多边形的对角线:①概念:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.②条数公式:14.正多边形:①概念:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.②性质:③判定:15.多边形内角和:①公式:n边形的内角和等于(2)n-·180°n-·180°。
即:W=(2)②推理过程:16.多边形的外角和:①内容:多边形的外角和为360°.②证明:(掌握证明的过程即可)。
人教版八年级数学上册第11章《三角形》全章复习与巩固—知识讲解(提高)含习题答案

1.三角形内角和定理:三角形的内角和为 180°. 推论:1.直角三角形的两个锐角互余 2.有两个角互余的三角形是直角三角形
2.三角形外角性质: (1)三角形的一个外角等于与它不相邻的两个内角的和. (2)三角形的一个外角大于任意一个与它不相邻的内角.
3.三角形的外角和: 三角形的外角和等于 360°.
举一反三:
【变式】已知 a、b、c 是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.
【答案】解:∵a、b、c 是三角形三边长,
∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,
∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,
=b+c-a-b+c+a-c+a+b-a+b-c =2b. 2.如图,O 是△ABC 内一点,连接 OB 和 OC.
类型三、与三角形有关的角
4.已知△ABC 中,AE 平分∠BAC (1)如图 1,若 AD⊥BC 于点 D,∠B=72°,∠C=36°,求∠DAE 的度数; (2)如图 2,P 为 AE 上一个动点(P 不与 A、E 重合,PF⊥BC 于点 F,若∠B>∠C,则
∠EPF=
是否成立,并说明理由.
【思路点拨】 (1)利用三角形内角和定理和已知条件直接计算即可; (2)成立,首先求出∠1 的度数,进而得到∠3 的度数,再根据∠EPF=180°﹣∠2﹣∠3 计 算即可. 【答案与解析】 证明:(1)如图 1,∵∠B=72°,∠C=36°,
解:如图(1),设 AB=x,AD=CD= 1 x . 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年最新
第十一章三角形
11.1 与三角形有关的线段【高、中线(重心)、角平分线】
两边之差<第三边<两边之和。
按边分类、三角形的稳定性。
11.2 与三角形有关的角
三角形内角和定理:三角形三个内角的和等于180º。
直角三角形的两个锐角互余。
有两个角互余的三角形是直角三角形。
推论:三角形的外角等于与它不相邻的两个内角的和。
备注:推论和定理一样,可以作为进一步推理的依据。
11.3 多边形及其内角和
多边形:在平面内,由一些线段首尾顺次相接组成的封闭式图形。
对角线:连接多边形不相邻的两个顶点的线段。
正多边形:各个角都相等,各条边都相等的多边形。
n边形内角和等于(n-2)×180º。
多边形的外角和等于360º。