不等式与不等式组培优专题
【教师卷】初中七年级数学下册第九单元《不等式与不等式组》经典习题(课后培优)(3)

一、选择题1.若a b >,则下列结论不一定成立的是( ) A .a c b c ->- B .22ac ab >C .c a c b -<-D .a c b c +>+ B解析:B 【分析】根据不等式的性质逐一分析四个选项的正误即可得出结论. 【详解】 解:A 、∵a >b , ∴a-c >b-c ,选项A 成立; B 、22ac ab >不一定成立; C 、∵a >b , ∴a b -<-∴c a c b -<-,选项C 成立; D 、∵a >b ,∴a c b c +>+,选项D 成立. 故选:B . 【点睛】本题考查了不等式的性质,牢记不等式的性质是解题的关键. 2.不等式()2533x x ->-的解集为( ) A .4x <- B .4x >C .4x <D .4x >- C解析:C 【分析】根据解一元一次不等式的方法解答即可. 【详解】解:去括号,得2539x x ->-, 移项、合并同类项,得4x ->-, 不等式两边同时除以﹣1,得4x <. 故选:C . 【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.3.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折 C .8折 D .9折B解析:B 【详解】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥7. 即最多打7折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.4.不等式组10,{360x x -≤-<的解集在数轴上表示正确的是( ) A .B .C .D . D解析:D 【解析】 试题分析:10{360x x -≤-<①②,由①得:x≥1,由②得:x <2,在数轴上表示不等式的解集是:,故选D .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.5.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D .C解析:C 【分析】分别解两个不等式,再根据“同大取大,同小取小,大小小大中间找,大大小小无解了”取解集,即可得到答案. 【详解】解:321323251223x x x x ++⎧≤+⎪⎨⎪->-⎩①②,解不等式①得:2x ≥-; 解不等式②得:3x >; 将解集在数轴上表示为:,故选:C . 【点睛】本题考查解一元一次不等式组,掌握不等式组取解集的方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.6.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<- B .74a -≤≤-C .74a -≤<-D .74a -<≤- D解析:D 【分析】先解不等式得出23ax -≤,然后根据不等式只有2个正整数解可知正整数解为1和2,据此列出不等式组求解即可. 【详解】解:32x a +,32x a ∴-,则23ax-, ∵不等式只有2个正整数解, ∴不等式的正整数解为1、2,则2233a-≤<, 解得:74a -<-, 故答案为D . 【点睛】本题主要考查一元一次不等式的整数解,正确求解不等式并根据不等式的整数解的情况列出关于某一字母的不等式组是解答本题的关键.7.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( ) A .23a <B .23a >C .a 为任何实数D .a 为大于0的数A解析:A 【分析】先解方程,再结合题意列出不等式,解之即可得出答案. 【详解】 解:∵3x+3a=2,3又∵方程的解为正数, ∴233a->0, ∴a <23. 故选:A. 【点睛】本题考查一元一次不等式与一元一次方程的综合运用,正确理解一元一次方程解的意义及熟练求解一元一次不等式是解题关键.8.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n =; ③每天最多背诵8首,最少背诵2首,A .10首B .11首C .12首D .13首D解析:D 【分析】根据表格及题意可得第2天、第3天、第4天、第5天的背诵最多的诗词,然后根据不等式的关系可进行求解. 【详解】解:由表格及题可得:∵每天最多背诵8首,最少背诵2首, ∴由第2天、第3天、第4天、第5天可得:128x x +≤①,238x x +≤②,1348x x x ++≤③,248x x +≤④,①+②+④-③得:2316x ≤,23∴123416181333x x x x +++≤+=, ∴7天后,小圆背诵的诗词最多为13首; 故选D . 【点睛】本题主要考查一元一次不等式的应用,熟练掌握不等式的性质与求法是解题的关键. 9.下列是一元一次不等式的是( ) A .21x > B .22x y -<-C .23<D .29x < A解析:A 【分析】根据一元一次不等式的定义对各选项进行逐一分析即可. 【详解】解:A 、21x >中含有一个未知数,并且未知数的最高次数等于1,是一元一次不等式,故本选项正确;B 、22x y -<-中含有两个未知数,故本选项错误;C 、23<中不含有未知数,故本选项错误;D 、29x <中含有一个未知数,但未知数的最高次数等于1,不是一元一次不等式,故本选项错误. 故选:A . 【点睛】本题考查的是一元一次不等式的定义,即含有一个未知数,未知数的最高次数是1的不等式,叫做一元一次不等式.10.若关于 x?的不等式组2x 1x 3x a +<-⎧⎨>⎩无解,则实数 a?的取值范围是( )A .a 4<-B .a 4=-C .a 4?≥-D . a 4>- C解析:C 【分析】先解出第一个不等式的解集,再根据题意确定a 的取值范围即可. 【详解】 解:2x 1x 3x a +<-⎧⎨>⎩①②解①的:x ﹤﹣4, ∵此不等式组无解, ∴a≥﹣4, 故选:C . 【点睛】本题考查一元一次不等式组的解法,熟知不等式组解集应遵循的原则“同大取大,同小取小,大小小大取中间,大大小小无解”是解答的关键.二、填空题11.若0a b c ++=,且a b c >>,以下结论: ①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =; ③22()a b c =+ ④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论是______(填写正确结论的序号).②③⑤【分析】①根据a+b+c=0且a >b >c 推出a >0c <0即可判断;②根据a+b+c=0求出a=-(b+c )又ax+b+c=0时ax=-(b+c )方程两边都除以a 即可判断;③根据a=-(b+c )解析:②③⑤ 【分析】①根据a +b +c =0,且a >b >c 推出a >0,c <0,即可判断;②根据a +b +c =0求出a =-(b +c ),又ax +b +c =0时ax =-(b +c ),方程两边都除以a 即可判断;③根据a =-(b +c )两边平方即可判断;④分为两种情况:当b >0,a >0,c <0时,去掉绝对值符号得出a a +b b +c c -+abc abc-,求出结果,当b <0,a >0,c <0时,去掉绝对值符号得出a a +b b -+c c -+abc abc,求出结果,即可判断;⑤求出AB =a -b =-b -c -b =-2b -c =-3b +b -c ,BC =b -c ,根据b <0利用不等式的性质即可判断. 【详解】解:(1)∵a +b +c =0,且a >b >c , ∴a >0,c <0, ∴①错误; ∵a +b +c =0,a >b >c , ∴a >0,a =-(b +c ), ∵ax +b +c =0, ∴ax =-(b +c ), ∴x =1, ∴②正确; ∵a =-(b +c ),∴两边平方得:a 2=(b +c )2,∴③正确;∵a>0,c<0,∴分为两种情况:当b>0时,aa+bb+cc+abcabc=aa+bb+cc-+abcabc-=1+1+(-1)+(-1)=0;当b<0时,aa+bb+cc+abcabc=aa+bb-+cc-+abcabc=1+(-1)+(-1)+1=0;∴④错误;∵a+b+c=0,且a>b>c,b<0,∴a>0,c<0,a=-b-c,∴AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,∵b<0,∴-3b>0,∴-3b+b-c>b-c,∴AB>BC,∴⑤正确;即正确的结论有②③⑤.故答案为:②③⑤.【点睛】本题考查了比较两线段的长,数轴,有理数的加法、除法、乘方,一元一次方程的解,绝对值等知识点的综合运用,题目比较典型,但是一道比较容易出错的题目.12.对任意四个整数a、b、c、d定义新运算:a bc dad bc=-,若1<241xx-<12,则x的取值范围是____.【分析】根据新定义列不等式组并求解集即可【详解】解:由题意得:1<2x-(-4)x<12即1<6x<12解得故答案为【点睛】本题主要考查了新定义运用解不等式组等知识点正确理解新运算法则是解答本题的关键解析:12 6x<<【分析】根据新定义列不等式组并求解集即可.【详解】解:由题意得:1<2x-(-4)x<12,即1<6x<12,解得126x<<.故答案为12 6x<<.【点睛】本题主要考查了新定义运用、解不等式组等知识点,正确理解新运算法则是解答本题的关键.13.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.-2【分析】根据一元一次方程的定义列出关于m 的方程组求解即可【详解】解:∵∴解得m=-2故答案为-2【点睛】本题主要考查了一元一次方程的定义和不等式组的解法根据一元一次方程的定义列出关于m 的方程组成解析:-2 【分析】根据一元一次方程的定义列出关于m 的方程组求解即可. 【详解】解:∵||1(2)3m m x --=∴2011m m -≠⎧⎨-=⎩,解得m=-2.故答案为-2. 【点睛】本题主要考查了一元一次方程的定义和不等式组的解法,根据一元一次方程的定义列出关于m 的方程组成为解答本题的关键.14.若不等式2(x+3)>1的最小整数解是方程2x-ax=3的解,则a 的值为__________________.5【解析】解不等式2(x+3)>1得x >-则最小整数解是-2把x=-2代入方程得-4+2a=3解得:a=35点睛:本题考查了不等式的解法和方程的解的定义正确解不等式求出解集是解答本题的关键解不等式应解析:5 【解析】解不等式2(x+3)>1得x >-52,则最小整数解是-2,把x=-2代入方程得-4+2a=3,解得:a=3.5.点睛:本题考查了不等式的解法和方程的解的定义,正确解不等式求出解集是解答本题的关键.解不等式应根据不等式的基本性质. 15.己知不等式组1x x a≤⎧⎨≤⎩的解集是1x ≤,则a 的取值范围是______.a≥1【分析】已知不等式组的解集为再根据不等式组解集的口诀:同大取大得到a 的范围【详解】解:∵一元一次不等式组的解集为∴a≥1故答案为:a≥1【点睛】本题考查了一元一次不等式组解集的求法将不等式组解解析:a≥1 【分析】已知不等式组的解集为1x ≤,再根据不等式组解集的口诀:同大取大,得到a 的范围. 【详解】解:∵一元一次不等式组1x x a ≤⎧⎨≤⎩的解集为1x ≤,∴a≥1,故答案为:a≥1. 【点睛】本题考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求a 的范围.16.关于x 的不等式组0821x m x -≥⎧⎨->⎩有3个整数解,则m 的取值范围是______.0<m≤1【分析】不等式组整理后表示出不等式组的解集由不等式组有3个整数解确定出m 的范围即可【详解】解:不等式组整理得:解得:由不等式组有3个整数解即整数解为123则m 的取值范围是0<m≤1故答案为解析:0<m≤1 【分析】不等式组整理后,表示出不等式组的解集,由不等式组有3个整数解,确定出m 的范围即可. 【详解】解:不等式组整理得:72x m x ≥⎧⎪⎨<⎪⎩,解得:72m x ≤<, 由不等式组有3个整数解,即整数解为1,2,3, 则m 的取值范围是0<m≤1. 故答案为:0<m≤1. 【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 17.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌解析:35m <-【分析】首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可. 【详解】25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++,解得12mx -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键. 18.若不等式组30x ax >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键 解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可. 【详解】30x ax >⎧⎨-≤⎩30x -≤ 3x ≤∵不等式组只有三个正整数解 ∴01a ≤<故答案为:01a ≤<. 【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键.19.不等式组()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩的解集为______【分析】先求出每个不等式的解集再求出不等式组的解集即可【详解】解不等式得:解不等式得:不等式组的解集为故答案为【点睛】本题考查了解一元一次不等式组能根据不等式的解集根据同大取大同小取小大小小大中间找解析:1x 3-<<【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩①②, 解不等式①得:x<3,解不等式②得:x 1>-,∴不等式组的解集为1x 3-<<,故答案为1x<3-<.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集根据“同大取大,同小取小,大小小大中间找,大大小小无解了”找出不等式组的解集是解此题的关键.20.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x ☆m>1的解集在数轴上表示出来如图所示.则m 的值是________ .-2【分析】根据新运算法则得到不等式3通过解不等式即可求的取值范围结合图象可以求得的值【详解】∵☆∴根据图示知已知不等式的解集是∴故答案为:【点睛】本题主要考查了数轴上表示不等式的解集及解不等式本题解析:-2【分析】根据新运算法则得到不等式31x m +>,通过解不等式即可求m 的取值范围,结合图象可以求得m 的值.【详解】∵x ☆ 31m x m =+>,∴13m x ->, 根据图示知,已知不等式的解集是1x >,∴113m -=, 故答案为:2m =-.【点睛】本题主要考查了数轴上表示不等式的解集及解不等式,本题的关键是理解新的运算方法.三、解答题21.(1)解方程组:43220x y x y +=⎧⎨+=⎩ (2)解不等式组:3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩ 解析:(1)12x y =-⎧⎨=⎩;(2)25x ≤<. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)43220x y x y +=⎧⎨+=⎩①②, 由①2-⨯②得:322y y -=,解得2y =,将2y =代入②得:220x +=,解得1x =-,则方程组的解为12x y =-⎧⎨=⎩; (2)3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩①②, 解不等式①得:5x <,解不等式②得:2x ≥,则不等式组的解为25x ≤<.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.22.解不等式或不等式组,并把解集在数轴上表示出来.(1)432136x x -+>-;(2)2(1)0210x x +<⎧⎨-⎩. 解析:(1) 2.4x <,数轴见解析;(2)1x <-,数轴见解析【分析】(1)根据去分母、去括号、移项、合并、系数化为1求出不等式的解集即可;(2)分别解两个不等式得到1x <-和12x,然后根据同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解确定不等式组的解集,再用数轴表示解集.【详解】解:(1)去分母得:2(4)326x x ->+-, 82326x x ->+-,23268x x -->--,512x ->-,2.4x <,在数轴上表示为:;(2)()210210x x ⎧+<⎨-⎩①②,解不等式①得:1x <-, 解不等式②得:12x, 所以不等式组的解集是1x <-, 在数轴上表示为:.【点睛】本题考查了解一元一次不等式(组):求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集. 23.解不等式(组),并在数轴上表示解集: (1)解不等式:4x 1x 13-->; (2)解不等式组:3x x 2,12x x 1.3-≥⎧⎪+⎨>-⎪⎩ 解析:(1)x 4>,在数轴上表示不等式的解集如图见解析;(2)1x 4≤<;在数轴上表示不等式组的解集如图见解析.【分析】(1)去分母,移项,合并同类项,最后在数轴上表示出不等式的解集即可;(2)分别求出各不等式的解集,再求出其公共解集,最后在数轴上表示出不等式的解集即可.【详解】解:(1)解不等式:4x1x1 3-->去分母,得:4x13x3-->,移项,得:4x3x31->+,合并同类项,得:x4>.在数轴上表示不等式的解集如下:(2)3x x2, 12xx1, 3-≥⎧⎪⎨+>-⎪⎩①②解不等式①得:x1≥,解不等式②得:x4<,所以不等式组的解集为1x4≤<.在数轴上表示不等式组的解集如下:【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.某校购买了A型课桌椅100套和B型课桌椅150套供学生使用,共付款53000元.已知每套A型课桌椅比每套B型课桌椅多花30元.(1)求该校购买每套A型课桌椅和每套B型课桌椅的钱数.(2)因学生人数增加,该校需再购买A、B型课桌椅共100套,只有资金22000元,求最多能购买A型课桌椅的套数.解析:(1)该校购买每套A型课桌椅需230元,购买每套B型课桌椅需200元.(2)最多能购买A型课桌椅66套.【分析】(1)设该校购买每套B型课桌椅需x元,则购买每套A型课桌椅需(x+30)元,根据购买A型课桌椅100套和B型课桌椅150套共需53000元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设可以购买A 型课桌椅m 套,则购买B 型课桌椅(100-m )套,根据总价=单价×数量结合总价不超过22000元,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,再取其中的最大整数值即可得出结论.【详解】解:(1)设该校购买每套B 型课桌椅需x 元,则购买每套A 型课桌椅需(30)x +元, 依题意得:100(30)15053000x x ++=,解得:200x =,30230x ∴+=.答:该校购买每套A 型课桌椅需230元,购买每套B 型课桌椅需200元.(2)设可以购买A 型课桌椅m 套,则购买B 型课桌椅(100)m -套,依题意得:230200(100)22000m m +-, 解得:2003m. 又m 为整数,m ∴可以取的最大值为66.答:最多能购买A 型课桌椅66套.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.25.解不等式,并把不等式的解集在数轴上表示出来.(1)6327x x ->-;(2)21123x x -+-≤. 解析:(1)1x >-,在数轴上表示见解析;(2)2x ≥,在数轴上表示见解析【分析】(1)先按照移项、合并同类项和系数化为1的步骤求出不等式的解集,进一步即可将不等式的解集在数轴上进行表示;(2)先按照去分母、去括号、移项、合并同类项和系数化为1的步骤求出不等式的解集,进一步即可将不等式的解集在数轴上进行表示.【详解】解:(1)移项,得6237x x ->-,合并同类项,得44x >-,系数化为1,得1x >-;不等式的解集在数轴上表示如下:(2)去分母,得()()63221x x --≤+,去括号,得63622x x -+≤+,移项,32266x x --≤--,合并同类项,得510x --≤,系数化为1,得2x ≥.不等式的解集在数轴上表示如下:【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是解题的关键.26.若关于x 的方程23244x m m x -=-+的解不小于7183m --,求m 的取值范围. 解析:14m ≥- 【分析】先解方程2x−3m =2m−4x +4求得x ,然后再根据方程的解不小于7183m --列出关于m 的不等式组,最后求解即可.【详解】解:解方程23244x m m x -=-+ 得546m x +=由题意得5471683m m +-≥-,解得14m ≥- 所以m 的取值范围为14m ≥-. 【点睛】本题主要考查了解一元一次方程和解不等式组,掌握一元一次方程和一元一次不等式组的解法成为解答本题的关键.27.(1)解方程组26m n m n =⎧⎨+=⎩ (2)解不等式组26015a a +<⎧⎨-≤⎩(3)计算:()33532a a a a ⋅⋅+ (4)计算:()()34++x x解析:(1)42n m =⎧⎨=⎩;(2)-43a ≤<-;(3)99a ;(4)2712x x ++; 【分析】(1)根据代入消元法解方程组即可;(2)解不等式组即可;(3)根据幂的运算性质计算即可;(4)根据多项式乘以多项式计算即可;【详解】(1)26m n m n =⎧⎨+=⎩, 把2=m n 代入6+=m n 中,得到:26m m +=,解得:2m =,∴4n =,∴方程组的解为42n m =⎧⎨=⎩. (2)26015a a +<⎧⎨-≤⎩, 由260a +<得:3a <-,由15-≤a 得:4a ≥-,∴不等式组的解集为:-43a ≤<-.(3)原式99989a a a =+=. (4)原式224312712x x x x x =+++=++.【点睛】本题主要考查了二元一次方程组求解,不等式组求解,整式乘法的应用,准确计算是解题的关键. 28.解不等式组:()324112x x x ⎧+≥+⎪⎨-<⎪⎩. 解析:﹣1≤x <3.【分析】先分别求出各不等式的解集,再求出其公共解集.【详解】 解:不等式组3(2)4?11? 2x x x +≥+⎧⎪⎨-<⎪⎩①②, 由①得:x ≥﹣1,由②得:x <3,故不等式组的解集是:﹣1≤x <3.【点睛】本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。
不等式复习专题培优训练【含答案】

三、不等式(组)一、学习目标1、一元一次不等式(组)的解法.2、一元一次不等式(组)的整数解.3、一元一次不等式(组)的实际应用题二、知识要点1、不等式的概念;2、不等式的解集3、用数轴表示不等式的方法4、不等式的基本性质5、一元一次不等式的概念及解法6、一元一次不等式组的概念及解法7、一元一次不等式(组)的实际应用题三、考点再现1、不等式x 8x 25-≤-的负整数解是_________________.2、(2009泸州)关于x 的方程的解为正实数,则k 的取值范围是x kx 21=-3、(08山东日照)在平面直角坐标系中,若点P(m -3,m +1)在第二象限,则m 的取值范围为 ( )A 、 -1<m <3B 、 m >3C 、 m <-1D 、 m >-1 4、(2009恩施市)如果一元一次不等式组的解集为.则的取值范围是( )3x x a>⎧⎨>⎩3x >a A . B . C . D .3a>a ≥3a ≤33a <5、(08永州) 如图,a 、b 、c 分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是( )A a >c >bB b >a >cC a >b >cD c >a >b6、(08湖北咸宁)直线与直线在同一平面直角坐标系中的图象如:1l b x k y +=11:2l x k y 22=图所示,则关于的不等式的解集为 ;x b x k x k +>12四、典例剖析考查目标一:一元一次不等式(组)的解法.例1.(2009年内蒙古包头)解不等式:x 121x ≥+-,并把解集表示在数轴上.解:去分母得:x221x ≥+-移项,合并同类项得:1x -≥-系数化为1,得:1x ≤解集在数轴上表示为:评注:熟练掌握不等式的基本性质是正确的解一元一次不等式的基础.解不等式的一般步骤与解方程的步骤相同.但要特别注意“不等式两边同乘以(或除以)一个负数时,必须改变不等号的方向”,这是一个难点和易错点.例2.(2009恩施市)若不等式组⎩⎨⎧>->-0x 2b 2a x 的解集是1x 1<<-,则=_______.2009()a b +解:解原不等式组得 ⎪⎩⎪⎨⎧<+>2bx a 2x 因为不等式组的解集为:1x 1<<-⎩⎨⎧=-=∴⎪⎩⎪⎨⎧=-=+∴2b 3a ,12b 12a 200920091()(32)a b ==-+-+评注:一元一次不等式组的解集的求法是:(1)先分别求出各不等式的解集;(2)再利用数轴求出多个解集的公共部分就是这个不等式组的解集,若各不等式的解集没有公共部分,则这个不等式组无解.考查目标二:一元一次不等式(组)的整数解.例3. (2009年崇左)解不等式组⎪⎩⎪⎨⎧+<-≤-②①)1x (42x 121x ,并写出不等式组的正整数解.解:解不等式①得:3x ≤ 解不等式②得:2x->3,2,13x 2不等式组的正整数解是不等式组的解集是∴≤<-∴评注:求一元一次不等式(组)的整数解的一般步骤是:先求出一元一次不等式(组)的解集,再确定适合解集范围的整数解、正整数解、非负整数解(自然数解)等特殊解,有时借助于数轴会更直观.考查目标三:一元一次不等式(组)的实际应用题例4(2009年湖北十堰)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A 、B 两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:型号占地面积(单位:m 2/个 )使用农户数(单位:户/个)造价(单位: 万元/个)A 15182B20303已知可供建造沼气池的占地面积不超过365m 2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.解: (1) 设建造A 型沼气池 x 个,则建造B 型沼气池(20-x )个依题意得: ()()⎩⎨⎧≥-+≤-+492203018365202015x x x x解得:7≤ x ≤ 9∵ x 为整数 ∴ x = 7,8 ,9 ,∴满足条件的方案有三种.(2)设建造A 型沼气池 x 个时,总费用为y 万元,则: y = 2x + 3( 20-x) = -x+ 60∵-1< 0,∴y 随x 增大而减小,当x=9 时,y 的值最小,此时y= 51( 万元 )∴此时方案为:建造A 型沼气池9个,建造B 型沼气池11个. ∴方案三最省钱.评注:一元一次不等式(组)在实际生活中有着广泛的应用,解此类实际问题时,需从题目中捕捉不等关系,用不等式(组)将它们表示出来,通过解不等式(组)找出符合题意的解.五、达标训练(一)选择题1.(2009临沂中考) 若,则下列式子错误的是( )x y >A . B . C .D .33x y ->-33xy ->-32x y +>+33x y >2.(2009年四川泸州)不等式组 的解集是 ( )2131x x -<⎧⎨≥-⎩A. B. C. D .无解2x<1-≥x 12x -≤<3. (2010南宁)不等式组的正整数解有:24,241x x x x +⎧⎨+<-⎩≤(A)1个 (B)2个 (C)3个 (D)4个4.(2010年福建模拟)关于x 的不等式22≤+-a x 的解集如图所示,那么a 的值是…( )A.-4 B.-2C.0 D.25、(2009湖北省荆门市)若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .B .C .D .1a>-1a -≥1a ≤1a <6.(2009年山东日照)不等式组 的解集在数轴上表示正确的是( )⎪⎩⎪⎨⎧≥--+2321123x ,x x >ABC-310D7.已知(x+3)2+=0中,y 为负数,则m 的取值范围是m y x ++3A.mB.mB.m B.m <9 CD.mD.m D.m <-98.观察图像,可以得出不等式组 的解集是⎩⎨⎧>+->+015.0013x x A.x <B.-<x <0C.0<x <2D.-<x <2313131(二)填空题1(2010潍坊)已知不等式,则的最小)2(2643-+≤+x x 1+x 值等于——2.(2009年杭州)已知关于的方程的解是正数,则m 的取值范围为________x 322=-+x mx 3.已知二次函数和直线)0(21≠++=a c bx ax y )0(2≠+=k b kx y 如图,则当时,;______x 21y y >4.(2009武汉).如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 . 5、(2009长沙)已知关于的不等式组只有四个整数解,则的取值范围是x 0521x a x -⎧⎨->⎩≥,.6.(2009年烟台市)如果不等式组的解集是,那么的值为 .2223xa xb ⎧+⎪⎨⎪-<⎩≥01x <≤a b +(三)解答题1、(2009年天津市)解不等式组,并在数轴上把解集表示出来.⎪⎩⎪⎨⎧-<--≥+-)2(x8)1x (31)1(x 323x 2、当关于、的二元一次方程组的解为正数,为负数,则求此时的取x y ⎩⎨⎧-=--=+my x m y x 432522x y m 值范围?3、(2009年青岛市)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率)100%=⨯利润成本4、( 2009年威海)响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?六、学习感悟三、不等式答案考点再现:1、-3,-2,-1;2、K >2;3、A; 4、C; 5、C; 6、x <-1. 达标训练:(一)选择题1、B;2、C;3、C;4、c;5、A;6、A;7、B;8、D.(二)填空题1、=1;2、m >-6;3、-5<x <1;4、-1<x <2;5、-3<a≤-2;6、1;7、a >4.(三)解答题1、-2<x≤3; 2、m <-1.3、解:(1)设A 、B 两种纪念品的进价分别为x 元、y 元。
人教版数学七年级下《不等式与不等式组》培优训练题(附答案详解)

人教版数学七年级下《不等式与不等式组》培优训练题(附答案详解)1.若关于x的不等式3x-2m≥0的负整数解为-1,-2,则m的取值范围是()A。
-6≤m<-2B。
-6<-2C。
-2≤m<-3D。
-2<-3解析:将-1,-2代入不等式得到3x-2m≥0,解得m≤3/2.又因为m是负整数,所以m的取值范围为-6≤m<-2,选A。
2.已知{x+2y=4k。
2x+y=2k+1.且-1<x-y<1,则k的取值范围是()A。
-1<k<1/2B。
-1/2<k<1C。
-1<k<1/2D。
-1/2<k<1解析:将两个方程相加得到3x+3y=6k+1,即x+y=2k+1/3.将x-y-1代入得到2x>-1,即x>-1/2.将x+y=2k+1/3代入得到-2/3<k<1/3,即-1<k<1/2.选A。
3.若关于x的不等式(a-1)x<3(a-1)的解都能使不等式x<5-a 成立,则a取值范围是()A。
a<1或a≥2B。
a≤2C。
1<a≤2D。
a=2解析:将(a-1)x<3(a-1)化简得到x<3.将x<5-a代入得到a<2.综合可得a<1或a≥2,选A。
4.某校举行的足球赛的计分规则为:胜一场得3分,平一场不得分,负一场倒扣2分。
一个队共进行14场比赛,且比赛中没有出现平局,如果得分不少于20分,那么该队最多只能负()A。
3场B。
4场C。
5场D。
6场解析:设该队赢了x场,则负了14-x场。
得分不少于20分,即3x-2(14-x)≥20,解得x≥7.最多只能负3场,选A。
5.已知x>y,则下列不等式成立的是()A。
-2x>-2yB。
4x>3yC。
5-x>5-yD。
x-2>y-3解析:将x>y代入选项中得到-2x>-2y,4x>3y,x-y>0,x-y>-1,只有B成立。
初中培优竞赛含详细解析 第8讲 不等式与不等式组

分析:因为 ,所以
解这个不等式得 ,则 .所以由 得
答案: .
技巧:先求参数范围,再解含参数的一元一次不等式.
易错点:解这类含参数的不等式问题时容易忽视参数的取值范围而致错.
三、解答题
7、(3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、解答题、不等式、不等式组)
分析:因为 所以 又因为 ,所以 即
答案: .
技巧:比较大小可以用作差法或者作商法——作差法是比较两式的差与0的大小,而作商法是比较两式的商与1的大小(分母的符号必须确定).
易错点:在应用作商法比较大小的时候容易忽视分母的符号问题而致错.
5、(4、5)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、填空题、不等式、不等式组)
求Байду номын сангаас等式 的解.
分析:含有绝对值的不等式,可以通过分类讨论的办法去掉绝对值再来求解,最后综合.
详解:若 ,且 ,则不等式为 ;若 且 ,则不等式为 ,矛盾.故不等式的解是
技巧:分类讨论是解绝对值不等式的常用方法.
易错点:分类讨论之后容易忘记综合而致错.
8、(4、5)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、解答题、不等式、不等式组)
第8讲不等式与不等式组
一、选择题
1、(2、3)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、选择题、不等式、不等式组)
元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是()
D.与a和b的大小无关
分析:因为甲买鱼用了3a+2b元,卖给了乙得到 元,则由不等式 成立,可以解得
答案:A .
技巧:根据题意列出不等式,然后化简,是解这类题的一般思路.
不等式与不等式组培优专题

知识点:一、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。
不等式的所有,叫做这个不等式的解集。
不等式组中各个不等式的叫做不等式组的解集。
2.求不等式(组)的解集的过程叫做解不等式(组)。
二、不等式(组)的类型及解法1、一元一次不等式:(1)概念:含有未知数并且含未知数的项的次数是的不等式,叫做一元一次不等式。
(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。
2、一元一次不等式组:(1)概念:含有的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
(2)解法:先求出各不等式的解集,再确定解集的。
注:求不等式组的解集一般借助数轴求解较方便。
三、不等式与不等式的性质1、不等式:用不等号表示的式子。
(表不等关系的常用符号:手,v,〉)。
2、不等式的性质:(1) ______________________________________________。
用字母表示为:(2)。
用字母表示为:(3)。
用字母表示为:2.等腰三角形腰和底边长分别为xcm和ycm,周长小于20,则x和y必须满足的不等式组为。
3.某种商品的价格第一年上升了10%,第二年下降了(m-5)%(m〉5)后,仍不低于原价,则m的值应为。
a、b、4.已知ABC的三边,且a2-9+,碎=0,则第三边c的取值范围是।。
10.若不等式组j x)2m+1解集为x>—1,则m的值为I x>m+211.若不等式组j x—0-0有5个整数解,则a的取值范围13-2x>-1是。
j2x-1112、若不等式组J^->x-1的解集为x<2,则k的取值范围是x-k<013.若不等式j x<m+1无解,则m的取值范围[x>2m-1是。
17、某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.18、中百超市和广联超市以同样的价格出售同样的商品,为了吸引顾客,两家超市都实行会员卡制度:在中百超市累计购买500元商品后,发给中百会员卡,再购买的商品按原价的85%收费;在广联超市购买300元的商品后,发给广联会员卡,再购买的商品按原价的90%收费.讨论顾客怎样选择超市购物能获得最大优惠19、解方程I x-11+1x+21=5.由绝对值的几何意义知,该方程表示求在数轴上与1和一2的距离之和为5的点对应的x的值.在数轴上,1和一2的距离为3,满足方程的x对应点在1的右边或一2的左边,若乂对应点在1的右边,由图(17)可以看出卜牛=2;同理,若乂对应点在一2的左边,可得乂=—3,故原方程的解是船2或x=—3参考阅读材料,解答下列问题:(1)方程I x+3I=4的解为(2)解不等式I x-31+1x+4129;(3)若|x-3I-1x+4l Wa对任意的乂都成立,求a的取值范围注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。
西南师范大学附属中学七年级数学下册第九章【不等式与不等式组】经典练习题(专题培优)

一、选择题1.已知关于x 的不等式组521x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤32.不等式组1322<4x x ->⎧⎨-⎩的解集是( )A .4x >B .1x >-C .14x -<<D .1x <-3.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种4.不等式组20240x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .5.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D .6.不等式()2x 13x -≥的解集是( ) A .x 2≥B .x 2≤C .x 2≥-D .x 2≤-7.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( )A .23a <B .23a >C .a 为任何实数D .a 为大于0的数 8.若0a <,则关于x 的不等式221ax x -<+的解集为( )A .32x a <- B .32x a >- C .32x a>- D .32x a<- 9.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n =; ③每天最多背诵8首,最少背诵2首,7天后,小圆背诵的诗词最多为( ) A .10首B .11首C .12首D .13首10.若线段4、4、m 能构成三角形,且使关于x 的不等式组23834x m x m >-⎧⎨-+≥-⎩有解的所有整数m 的和为( ) A .6B .1C .2D .311.若01x <<,则下列选项正确的是( ) A .21x x x<< B .21x x x<<C .21x x x<<D .21x x x<< 二、填空题12.已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解为正数,求a 的取值范围是_______.13.关于x 的不等式组0321x a x -≥⎧⎨->⎩有3个整数解,则a 的取值范围是________.14.在平面直角坐标系 xOy 中,点(,)P a b 的“变换点”Q 的坐标定义如下:当a b 时,Q点坐标为(,)b a -;当a b <时,Q 点坐标为(,)a b -. (1)(2,3)-的变换点坐标是_____________.(2)若(,0.52)a a -+的变换点坐标是(,)m n ,则m 的最大值是_____________.15.若关于x 的不等式组0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是:__________.16.若不等式2(x+3)>1的最小整数解是方程2x-ax=3的解,则a 的值为__________________. 17.若不等式(2﹣a )x >2的解集是x <22a-,则a 的取值范围是_____. 18.令a 、b 两个数中较大数记作{}max ,a b 如{}max 2,33=,已知k 为正整数且使不等式{}max 21,33k k +-+≤成立,则关于x 方程21136x k x---=的解是_____________. 19.定义一种法则“⊗”如下:()()a a b a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______.20.已知a >b ,则15a +c _____15b +c (填“>”“<”或“=”).21.关于x 、y 的二元一次方程组3234x y ax y a +=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________.三、解答题22.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折. (1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和()10a a >个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花费用;(3)在(2)的条件下,计算a 为何值时,两家商场所花费用相同;(4)在(3)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?(直接写出方案)23.用一张面积为2400cm 的正方形纸片,沿着边的方向裁出一个长宽之比为3:2的长方形纸片(裁剪方式见示意图)该长方形纸片的面积可能是2300cm 吗?请通过计算说明.24.解不等式组:124(3)21223x x x x --≥⎧⎪-⎨+>⎪⎩.25.解下列不等式(组) (1)5261x x -<+;(2)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩.一、选择题1.定义一种新运算“a ☆b ”的含义为:当a ≥b 时,a ☆b =a +b ;当a <b 时,a ☆b =a ﹣b .例如:3☆(﹣4)=3+(﹣4)=﹣1,(-6)☆111(6)6222=--=-,则方程(3x ﹣7)☆(3﹣2x )=2的解为x=( ) A .1B .125C .6或125D .62.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤3.已知实数a 、b ,下列命题结论正确的是( ) A .若a b >,则 22a b > B .若a b >,则22a b > C .若a b >,则22a b >D .若33a b >,则22a b >4.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .105.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( )A .4个B .5个C .6个D .无数个6.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x ﹣2]=﹣1,则x 的取值范围为( ) A .0<x ≤1B .0≤x <1C .1<x ≤2D .1≤x <27.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是 A .m ≥2B .m >2C .m <2D .m ≤28.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .68m <<B .67≤<mC .67m ≤≤D .67m <≤9.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .10.若不等式组11x x m ->⎧⎨<⎩无解,那么m 的取值范围是( )A .2m >B .2m <C .2m ≥D .2m ≤11.如果a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .0a b +>B .0ab <C .0b a -<D .0ab> 二、填空题12.关于x 的不等式组x 5x a≤⎧⎨>⎩无解,则a 的取值范围是________. 13.为了方便同学们进行丰富阅读,南开中学图书馆订购了A ,B ,C 三类新书,共900本,其中A 类数量是B 类数量的4倍,C 类数量不超过A 类数量的5528倍,且A 类数量不超过400本.新书开始借阅后,深受同学欢迎,图书管理员提供了两种方案来增订这三类书若干本(两种方案增订的图书总量相同),方案一:按2:3:5的比例增订A ,B ,C 三类书;方案二:按4:1:5的比例增订A ,B ,C 三类书,经计算,若按方案一增订,则增订后A ,B 两类书总数量之比为7:2,那么按方案二增订时,增订后A ,C 两类书总数量之比为______.14.关于x 的不等式组0321x a x -≥⎧⎨->⎩有3个整数解,则a 的取值范围是________.15.已知点()6,29P m m --关于x 轴对称的点在第三象限,则m 的整数解是______. 16.点()1,2P x x -+不可能在第__________象限. 17.关于x 的不等式组0821x m x -≥⎧⎨->⎩有3个整数解,则m 的取值范围是______.18.关于x 的不等式132x a x -≤⎧⎨-<⎩有5个整数解,则a 的取值范围是______.19.若a b >0,cb<0,则ac________0. 20.已知a >b ,则15a +c _____15b +c (填“>”“<”或“=”). 21.若关于x 的不等式2x ﹣m≥1的解集如图所示,则m =_____.三、解答题22.已知点()39,210A m m --,分别根据下列条件解决问题: (1)点A 在x 轴上,求m 的值;(2)点A 在第四象限,且m 为整数,求点A 的坐标.23.解关于x 的不等式组:231123x x x x <+⎧⎪⎨<+⎪⎩24.已知,点O 是数轴的原点,点A 、点B 是数轴上不重合的两个点,且点A 在点B 的左边,点M 是线段AB 的中点.在上述条件下,解决问题:(1)如果点A 表示的数是4,点B 表示的数是6,那么点M 表示的数是 ;(2)如果点A 表示的数是-3,点M 表示的数是2,那么点B 表示的数是 ;(3)如果点A 表示的数是a ,点B 表示的数是b ,那么点M 表示的数是 ;(用含a ,b 的代数式表示) ,所以AM =BM .因此得到关于x 的方程:x -a =b -x .你能解出这个方程吗?(4)如果点A 表示的数是-2,点C 表示的数是3,点B 是线段OC 上的一点,点M 表示的数为m ,则m 的取值范围是 ;(5)如果点E 表示的数是1,点F 表示的数是x ,点A 从点E 出发,以每分钟1个单位长度的速度向右运动,点B 从点F 出发,以每分钟3个单位长度的速度向右运动,设运动时间为t (t >0).①当x=5时,如果EM=6,那么t的值是;②当t≤3时,如果EM≤9,求x的取值范围.25.解不等式(组):(1)24123x x ---≤;(2)63(4) 23253x xx x-≥-⎧⎪⎨++>⎪⎩①②.一、选择题1.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a >B .3a ≤C .3a <D .3a ≥2.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )A .x <1B .x >1C .x <0D .x >03.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折 C .8折D .9折4.若|65|56x x -=-,则x 的取值范围是( ) A .56x >B .56x <C .56x ≥D .56x ≤5.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数6.若0a <,则关于x 的不等式221ax x -<+的解集为( ) A .32x a <- B .32x a >- C .32x a>- D .32x a<- 7.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤78.关于x 的不等式620x x a -≤⎧⎨≤⎩有解,则a 的取值范围是( )A .a <3B .a≤3C .a≥3D .a >39.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .10.不等式组32153x x ->⎧⎨-<-⎩的解集在数轴上的表示是( )A .B .C .D .11.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-15327-,π-,22中,有3个有理数,2个无理数C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7二、填空题12.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个). 13.已知点()2,3P a a -在第四象限,那么a 的取值范围是________.14.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____. 15.“x 的4倍与1的差不大于3”用不等式表示为 ________________ .16.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________. 17.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________. 18.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.19.不等式组213122x x ->⎧⎪⎨-≤⎪⎩的解集是__________. 20.不等式2x+9>3(x+4)的最大整数解是_____.21.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________. 三、解答题22.解下列方程(方程组)或不等式(组).(1)[]{}3213(21)35x x ---+=(2)2(53)3(12)x x x +≤--(3)解方程214163x x --=- (4)解方程组2538x y x y +=⎧⎨-=⎩(代入法解) (5)372(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩(6)0.35340.532m n m nm n m n+-⎧-=⎪⎪⎨+-⎪+=⎪⎩23.某木板加工厂将购进的A型、B型两种木板加工成C型,D型两种木板出售,已知一块A型木板的进价比一块B型木板的进价多10元,且购买2块A型木板和3块B型木板共花费220元.(1)A型木板与B型木板的进价各是多少元?(2)根据市场需求,该木板加工厂决定用不超过8780元购进A型木板、B型木板共200块,若一块A型木板可制成2块C型木板、1块D型木板;一块B型木板可制成1块C型木板、2块D型木板,且生产出来的C型木板数量不少于D型木板的数量的11 13.①该木板加工厂有几种进货方案?②若C型木板每块售价30元,D型木板每块售价25元,且生产出来的C型木板、D型木板全部售出,哪一种方案获得的利润最大,求出最大利润是多少?24.不等式组231,12(2)xx x-≥-⎧⎨-≥-+⎩.25.解不等式组:()324112x xx⎧+≥+⎪⎨-<⎪⎩.。
上海建平中学西校七年级数学下册第九单元《不等式与不等式组》知识点(专题培优)

一、选择题1.如果a b >,可知下面哪个不等式一定成立( ) A .a b ->-B .11a b< C .2a b b +> D .2a ab >2.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( )A .B .C .D .3.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D .4.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a --5.若a b >,则下列不等式中,不成立的是( ) A .33a b ->- B .33a b ->- C .33a b > D .22a b -+<-+6.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数 答错题数得分 A20 0 100 B18 2 88 C14 6 64 D15570E9 11 34下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数7.若a >b ,则下列式子正确的是( ) A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b8.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( )A .a <-2B .a ≤-2C .a >-2D .a ≥-29.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB .1a +C .1-aD .1a-10.若m n <,则下列各式中正确的是( ) A .33m n +>+B .33m n ->-C .33m n ->-D .33m n > 11.不等式组32153x x ->⎧⎨-<-⎩的解集在数轴上的表示是( )A .B .C .D .12.若线段4、4、m 能构成三角形,且使关于x 的不等式组23834x m x m >-⎧⎨-+≥-⎩有解的所有整数m 的和为( ) A .6 B .1 C .2 D .3 13.如果a >b ,那么下列不等式不成立...的是( ) A .0a b -> B .33a b ->- C .1133a b > D .33a b ->-14.已知a<b ,则下列四个不等式中,不正确的是( )A .a+2<b+2B .22ac bc <C .1122a b < D .-2a-1-2b-1>15.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( )A .x y >B .44x y ->-C .33x y ->-D .22x y > 二、填空题16.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元.17.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.18.若不等式a x cx c b+>⎧⎨≥-⎩的解为x≥-b+c ,则a ,b 的大小关系一定满足:a___b .19.若干名学生住宿舍,每间住 4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____20.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.21.已知a2a <+<a 的值为____________. 22.若a b >0,cb<0,则ac________0. 23.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘_____个.24.已知a >b ,则15a +c _____15b +c (填“>”“<”或“=”).25.不等式组()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩的解集为______26.如果不等式组2{223xa xb +≥-<的解集是01x ≤<,那么+a b 的值为 .三、解答题27.我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数n ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数n 为“七巧数”.例如:3254是“七巧数”,因为347+=,257+=,所以3254是“七巧数”; 1456不是“七巧数”,因为167+=,但457+≠,所以1456不是“七巧数”.(1)若一个“七巧数”的千位数字为a ,则其个位数字可表示为______(用含a 的代数式表示);(2)最大的“七巧数”是______,最小的“七巧数”是______;(3)若m 是一个“七巧数”,且m 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数”m .28.某木板加工厂将购进的A 型、B 型两种木板加工成C 型,D 型两种木板出售,已知一块A 型木板的进价比一块B 型木板的进价多10元,且购买2块A 型木板和3块B 型木板共花费220元.(1)A 型木板与B 型木板的进价各是多少元?(2)根据市场需求,该木板加工厂决定用不超过8780元购进A 型木板、B 型木板共200块,若一块A 型木板可制成2块C 型木板、1块D 型木板;一块B 型木板可制成1块C 型木板、2块D 型木板,且生产出来的C 型木板数量不少于D 型木板的数量的1113. ①该木板加工厂有几种进货方案?②若C 型木板每块售价30元,D 型木板每块售价25元,且生产出来的C 型木板、D 型木板全部售出,哪一种方案获得的利润最大,求出最大利润是多少? 29.解下列不等式:(1)()()212531x x -+<-+(2)解不等式组 ()32421152x x x x ⎧--≥⎪⎨-+<⎪⎩30.解方程或不等式(组)(1)2(21)1690x --=.(2)211143x x +-+. (3)421223x x x x+⎧-<⎪⎨⎪-⎩。
不等式与不等式组培优专项

不等式与不等式组培优专项不等式性质及相关概念1.(2014·梅州)若x>y,则下列式子中错误的是( D )A.x-3>y-3 B.>C.x+3>y+3 D.-3x>-3y2.(2012·攀枝花)下列说法中,错误的是( C )A.不等式x<2的正整数解只有一个 B.-2是不等式2x-1<0的一个解C.不等式-3x>9的解集是x>-3 D.不等式x<10的整数解有无数个3.已知关于x的不等式(1-a)x>2的解集为x<,则a的取值范围是__a>1__.解不等式(组)4.(2014·邵阳)不等式组的解集在数轴上表示正确的是( B )5.(12分)(1)(2014·宁波)解不等式:5(x-2)-2(x+1)>3;解得x>5(2)解不等式组:解不等式①,得x>-;解不等式②,得x≤1;所以不等式组的解集是-<x≤1含参数的一元一次不等式组的解集6.(2014·潍坊)若不等式组无解,则实数a的取值范围是( D )A.a≥-1 B.a<-1 C.a≤1 D.a≤-17.(2012·菏泽)若不等式组的解集是x>3,则m的取值范围是__m≤3__.8.若关于x的不等式组有实数根,则a的取值范围是__a<4__.10.(10分)(2014·呼和浩特)已知实数a是不等于3的常数,解不等式组并依据a的取值情况写出其解集.解①得:x≤3,解②得:x<a,∵实数a是不等于3的常数,∴当a>3时,不等式组的解集为x≤3;当a<3时,不等式组的解集为x<a11.(10分)(2014·巴中)定义新运算:对于任意实数a,b都有aΔb=ab-a -b+1,等式右边是通常的加法、减法及乘法运算,例如:2Δ4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3Δx的值大于5而小于9,求x的取值范围.解:3Δx=3x-3-x+1=2x-2,根据题意得:解得:<x<12.(10分)(2012·湛江)先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2-4>0,解:∵x2-4=(x+2)(x-2)∴x2-4>0可化为(x+2)(x-2)>0,由有理数乘法法则“两数相乘,同号得正”,得①②解不等式组①得x>2,解不等式组②得x<-2.∴(x+2)(x-2)>0的解集为x>2或x<-2,即一元二次不等式x2-4>0的解集为x>2或x<-2.(1)一元二次不等式x2-16>0的解集为____;(2)分式不等式>0的解集为____;(3)解一元二次不等式2x2-3x<0.解:(1)∵x2-16=(x+4)(x-4),∴x2-16>0可化为(x+4)(x-4)>0.由有理数的乘法法则“两数相乘,同号得正”,得①②解不等式组①,得x>4,解不等式组②,得x<-4,∴(x+4)(x-4)>0的解集为x>4或x<-4,即一元二次不等式x2-16>0的解集为x>4或x<-4 (2)∵>0,∴或解得:x>3或x<1 (3)∵2x2-3x=x(2x-3),∴2x2-3x<0可化为x(2x-3)<0.由有理数的乘法法则“两数相乘,同号得正,异号得负”,得①②解不等式组①,得0<x<,解不等式组②,无解,∴不等式2x2-3x<0解集为0<x<一元一次不等式组的应用13.把若干颗花生分给若干只猴子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式与不等式组培优专题
知识点:
一、不等式(组)的解、解集、解不等式
1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。
不等式的所有,叫做这个不等式的解集。
不等式组中各个不等式的叫做不等式组的解集。
2.求不等式(组)的解集的过程叫做解不等式(组)。
二、不等式(组)的类型及解法
1、一元一次不等式:
(l)概念:含有未知数并且含未知数的项的次数是的不等式,叫做一元一次不等式。
(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。
2、一元一次不等式组:
(l)概念:含有的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
(2)解法:先求出各不等式的解集,再确定解集的。
注:求不等式组的解集一般借助数轴求解较方便。
三、不等式与不等式的性质
1、不等式:用不等号表示的式子。
(表不等关系的常用符号:≠,<,>)。
2、不等式的性质:
(l ) 。
用字母表示为: 。
(2) 。
用字母表示为: 。
(3) 。
用字母表示为: 。
注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、
就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像
应用等式的性质那样随便,以防出错。
3、任意两个实数a ,b 的大小关系(三种):
(1)a – b >0⇔ a >b
(2)a – b =0⇔a =b
(3)a –b <0⇔a <b
4、(1)a >b >0⇔b a > (2)a >b >0⇔22b a <
培优专题:
1.若不等式组2x x a ≤⎧⎨≥⎩
有解,则a 的取值范围是 。
2.等腰三角形腰和底边长分别为
xcm 和ycm ,周长小于20,则x 和y 必须满
足的不等式组为 。
3.某种商品的价格第一年上升了10%,第二年下降了(m-5)%(5m >)后,仍不低于原价,则m 的值应为 。
4.已知ABC V 的三边a b 、、c
,且2-9a ,则第三边c 的取值范围是 。
5.已知关于x 的方程:3(x-2a)+a=x-1的解适合不等式2(5)8x a -≥,则a 的取值范围是 。
6.若关于,x y 的二元一次方程组3133
x y a x y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围是 。
7.若不等式组x-a 03-2x>-1≥⎧⎨⎩有5个整数解,则a 的取范围是___ ____
8.已知x 满足不等关系1325
x ->,则化简23x ++= 。
9.关于x 的不等式组⎪⎩⎪⎨⎧≤+≥+b x a a b x 23
223的解集为25≤≤-x ,则a = 、b = 。
10.若不等式组⎩⎨⎧+>+>2
12m x m x 解集为x >-1,则m 的值为 。
11.若不等式组⎩
⎨⎧->-≥-1230x a x 有5个整数解,则a 的取值范围是 。
12、若不等式组⎪⎩⎪⎨⎧<-->-0
1312k x x x 的解集为x <2,则k 的取值范围是_____________
13.若不等式⎩⎨⎧>+<1
-2m x 1m x 无解,则m 的取值范围是 。
14、 关于x 的不等式组⎩⎨⎧<->+2
5332b x a x 的解集为-1<x <1,则ab____________。
15.若不等式组2123
x a x b -<⎧⎨->⎩的解集为11x -<<,求代数式(a+1)(b-1)的值。
16.若方程组313x y x y a
+=⎧⎨-=⎩的解,x y 的值都不大于1,求a 的取值范围。
17、某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,
则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.
(1)求该校八年级学生参加社会实践活动的人数;
(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.
18、中百超市和广联超市以同样的价格出售同样的商品,为了吸引顾客,两家
超市都实行会员卡制度:在中百超市累计购买500元商品后,发给中百会员卡,再购买的商品按原价的85%收费;在广联超市购买300元的商品后,发给广联会员卡,再购买的商品按原价的90%收费.讨论顾客怎样选择超市购物能获得最大优惠?
19、 解方程|1||2|5x x -++=.由绝对值的几何意义知,该方程表示求在数轴
上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图(17)可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是
参考阅读材料,解答下列问题: 0 2
-2 1
(1)方程|3|4x +=的解为
(2)解不等式|3||4|x x -++≥9;
(3)若|3||4|x x --+≤a 对任意的x 都成立,求a 的取值范围。