矩形的判定和性质教学设计第一课时
初中数学北师大版九年级上册《12矩形的性质与判定第一课时》教学设计

矩形的性质和判定教学设计第一课时:矩形的性质教材分析:本节是九年级的第一章第二节的内容,这个年龄段的学生已经具备自主探究和合作学习的能力,他们喜欢动手,喜欢思考一些有挑战性的问题,喜欢向别人展示自己的成果。
部分学生对学习数学有较强的兴趣,具有一定的探究数学问题的能力和数学活动的经验,逻辑推理能力较强。
但大部分学生要把解题的整个过程表述完整、清楚比较困难。
教学目标:【知识与技能】(1) 掌握矩形的的定义,理解矩形与平行四边形的关系。
(2)理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;(3)会初步运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力.【过程与方法】(1)经历探索矩形的概念和性质的过程,发展学生合情推理的意识;(2)通过灵活运用矩形的性质解决有关问题,掌握几何思维方法,并渗透运动联系、从量变到质变的观点.【情感态度与价值观】(1)在观察、测量、猜想、归纳、推理的过程中,体验数学活动充满探索性和创造性,感受证明的必要性,培养严谨的推理能力,体会逻辑推理的思维价值。
(2) 通过小组合作展示活动,培养学生的合作精神和学习自信心。
(3)从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想。
教学重难点:【教学重点】掌握矩形的性质。
【教学难点】运用综合法证明矩形的性质。
课前准备:多媒体,平行四边形教具,矩形纸片教学过程:一.创设情景,导入新课活动内容:1、观察图形,都是一种特殊的平行四边形,说一说他们的特殊之处2、探究矩形的定义利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,让学生注意观察。
在演示过程中让学生思考:(1)在运动过程中四边形还是平行四边形吗?(2)在运动过程中四边形不变的是什么?(3)在运动过程中四边形改变的是什么?不变:对边仍保持相等,对边仍分别平行,所以仍然是平行四边形变:角的大小(4)角的大小改变过程中有特殊值吗?这时的平行四边形是什么图形。
矩形的性质和判定公开课教案

矩形的性质和判定公开课教案第一章:矩形的定义和性质1.1 矩形的定义介绍矩形的定义:矩形是一个四边形,其中所有内角都是直角。
通过图形和实际例子来说明矩形的特征。
1.2 矩形的性质矩形的对边相等:解释并证明矩形的对边长度相等。
矩形的对角相等:解释并证明矩形的对角线相等。
矩形的对边平行:解释并证明矩形的对边互相平行。
第二章:矩形的判定2.1 判定一个四边形为矩形的条件介绍判定一个四边形为矩形的条件:所有内角都是直角。
通过图形和证明来说明如何判断一个四边形是矩形。
2.2 判定矩形的特殊情况介绍特殊情况下矩形的判定:正方形和长方形。
解释正方形和长方形的性质,并说明它们是矩形的特殊情况。
第三章:矩形的对称性3.1 矩形的轴对称性介绍矩形的轴对称性:矩形关于其对角线对称。
通过图形和实际例子来说明矩形的轴对称性。
3.2 矩形的中心对称性介绍矩形的中心对称性:矩形关于其中心对称。
通过图形和实际例子来说明矩形的中心对称性。
第四章:矩形的面积和周长4.1 矩形的面积介绍矩形的面积公式:面积= 长×宽。
通过例题和练习来说明如何计算矩形的面积。
4.2 矩形的周长介绍矩形的周长公式:周长= 2 ×(长+ 宽)。
通过例题和练习来说明如何计算矩形的周长。
第五章:矩形的应用5.1 矩形在几何图形中的应用介绍矩形在几何图形中的应用:例如,矩形可以用来构造平行四边形和其他多边形。
通过例题和练习来说明矩形在几何图形中的应用。
5.2 矩形在日常生活中的应用介绍矩形在日常生活中的应用:例如,矩形可以用来设计图形、计算面积等。
通过实际例子来说明矩形在日常生活中的应用。
第六章:矩形的对角线性质6.1 矩形对角线的长度介绍矩形对角线的长度性质:矩形的对角线相等。
通过图形和证明来说明矩形对角线的长度性质。
6.2 矩形对角线的交点介绍矩形对角线的交点性质:矩形的对角线交于一点,即对角线的中点重合。
通过图形和证明来说明矩形对角线的交点性质。
2_矩形的性质与判定_第1课时_教案1

第一章特别平行四边形2.矩形的性质与判断(一)一、学生知识状况剖析学生的知识技术基础:矩形的性质一课,是在学生掌握了三角形全等的证明、平行四边形的性质和判断,菱形的性质和判断以及具备了基本的推理能力的基础上安排的,是学习正方形的基础,学完本节课后,学生应掌握矩形的性质,会应用性质进行推理解题。
学生的活动经验基础:本节是九年级的第一章第二节的内容,这个年纪段的学生已经具备自主研究和合作学习的能力,他们喜爱着手,喜爱思虑一些有挑战性的问题,喜爱向他人展现自己的成就。
部分学生对学习数学有较强的兴趣,拥有必定的研究数学识题的能力和数学活动的经验,逻辑推理能力较强。
但大多数学生要把解题的整个过程表述完好、清楚比较困难。
二、教课任务剖析《矩形的性质与判断》一课属于初中平面几何要点知识。
本节是在学习了平行四边形的性质与判断以及菱形的基础上,在掌握了证明平行四边形有关内容及特别平行四边形的一般研究方法以后学习的,它既是平行四边形的延长,又为后边正方形的学习供给知识、方法的支持,为进一步研究其余图形确立基础。
依照新课标要求,《矩形的性质》不可以只逗留在知识教课上,而是要把经历研究图形的基天性质的过程,发展学生的基本的推理技术放在首要地点。
矩形是的平行四边形中的一种特别图形,在生活中有着宽泛的应用,所以课本好多地方以图片形式体现了矩形的“原型”,旨在唤起学生的生活经验,促使数学学习。
所以本节课的教课目的是:1.知识与技术 :(1)掌握矩形的的定义,理解矩形与平行四边形的关系。
(2)理解并掌握矩形的性质定理 ; 会用矩形的性质定理进行推导证明 ;(3)会初步运用矩形的定义、性质来解决有关问题,进一步培育学生的剖析能力.2.过程与方法:(1)经历研究矩形的看法和性质的过程,发展学生合情推理的意识;(2)经过灵巧运用矩形的性质解决有关问题,掌握几何思想方法,并浸透运动联系、从量变到质变的看法.3.感情态度与价值观:(1)在察看、丈量、猜想、归纳、推理的过程中,体验数学活动充满研究性和创建性,感觉证明的必需性,培育谨慎的推理能力,领会逻辑推理的思想价值。
《矩形的性质与判定》第1课时示范课教学设计【数学九年级上册北师大】

《矩形的性质与判定》教学设计第1课时一、教学目标1.理解矩形的概念,了解它与平行四边形之间的关系.2.经历矩形性质定理和直角三角形性质定理的探索过程,进一步发展合情推理能力.3.能够用综合法证明矩形的性质定理和直角三角形性质定理,进一步发展演绎推理能力.4.体会探索与证明过程中所蕴含的抽象、推理等数学思想.二、教学重难点重点:理解矩形的概念,掌握矩形的性质定理和直角三角形性质定理.难点:探究证明矩形的性质定理和直角三角形性质定理.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计而给出矩形的定义.问题:下面几幅图片中都含有一些平行四边形,观察这些平行四边形,你能发现它们有什么样的共同特征?预设答案:每幅图片中的平行四边形都有直角.思考:平行四边形的变化过程,当有一个角是直角时,会产生什么图形?预设答案:有一个角是直角的平行四边形.追问:你能给这样的图形下个定义吗?预设答案:有一个角是直角的平行四边形叫做矩形.(矩形的定义)师强调:按照矩形的定义必须满足:有一个角是直角且四边形是平行四边形.【试一试】矩形是生活中常见的图形,你能举出一些生活中的例子吗?教师动画演示从实例中抽象出矩形,一方面加深对矩形的理解,另一方面强调矩形也是特殊的平行四边形.【想一想】矩形是特殊的平行四边形,它具有平行四边形的所有性质,你能列举出来吗?预设答案:矩形的对边相等,对角相等,对角线互相平分.追问:除了这些性质,矩形还具有哪些特殊的性质呢?【做一做】教师活动:动画演示折纸活动,通过折纸活动,让学生发现、验证矩形是轴对称图形;通过量一量,让学生观察,发现矩形的特殊性质:四个角都是直角,对角线相等.(1)用矩形纸片折一折,矩形是轴对称图形吗?如果是,它有几条对称轴?预设答案:矩形是轴对称图形,有两条对称轴.(2)用量角器和直尺分别量一量矩形纸片的角和对角线:思考:通过上面的量一量活动,你发现了矩形的什么特殊性质?预设答案:矩形的四个角都是直角;矩形的对角线相等.追问:你能证明这些性质吗?【证明】已知:如图,在矩形ABCD中,∠ABC=90°, 对角线AC与BD相交于点O.求证:(1)∠ABC =∠BCD =∠CDA =∠DAB = 90°;(2) AC = BD.证明:(1)∠四边形ABCD是矩形,∠∠ABC=∠CDA,∠BCD=∠DAB(矩形的对角相等),AB∠DC(矩形的对边平行).∠∠ABC +∠BCD = 180°.又∠∠ABC = 90°,∠∠BCD = 90°.∠∠ABC=∠BCD=∠CDA=∠DAB = 90°.(2)∠四边形ABCD是矩形,∠AB = DC(矩形的对边相等),在∠ABC 和∠DCB中,∠AB = DC,∠ABC = ∠DCB,BC = CB.∠∠ABC ∠∠DCB.∠AC = BD.【归纳】矩形的性质具有平行四边形的所有性质:对边平行且相等;对角相等;对角线互相平分.矩形的特殊性质:角:矩形的四个角都是直角. 对角线:矩形的对角线相等. 几何语言:∠四边形ABCD 是矩形∠ ∠ABC =∠BCD =∠CDA =∠DAB = 90°,AC=BD.【议一议】教师活动:课件出示动画,让学生自主量一量,再观察,发现直角三角形的性质. 如图,矩形ABCD 的对角线AC 与BD 交于点E ,那么BE 是Rt △ABC 中一条怎样的特殊线段?BE 与AC 有什么大小关系?预设答案:BE 是Rt △ABC 的中线,1=.2BE AC追问:你能证明这个结论吗? 【证明】已知:如图,在矩形ABCD 中, 对角线 AC 与 BD 相交于点E .求证: 1=.2BE AC证明:∠四边形 ABCD 是矩形,EDB CA思维导图的形式呈现本节课的主要内容:教科书第13-14页。
北师大版数学九年级上册《矩形的判定》教学设计1

北师大版数学九年级上册《矩形的判定》教学设计1一. 教材分析《矩形的判定》是北师大版数学九年级上册第18章“图形的性质”中的一个知识点。
本节课的主要内容是让学生掌握矩形的判定方法,并能够运用这些方法解决实际问题。
在学习本节课之前,学生已经学习了矩形的性质,对于矩形的概念和性质有一定的了解。
本节课的内容与学生的生活实际密切相关,有助于提高学生学习数学的兴趣和积极性。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于图形的性质和判定方法有一定的了解。
但是,学生在学习过程中可能会对矩形的判定方法产生混淆,特别是在解决实际问题时,可能会出现判断错误的情况。
因此,在教学过程中,教师需要注重引导学生理解矩形的判定方法,并通过大量的练习来提高学生的判断能力。
三. 教学目标1.知识与技能目标:让学生掌握矩形的判定方法,并能够运用这些方法解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 教学重难点1.教学重点:矩形的判定方法。
2.教学难点:如何运用矩形的判定方法解决实际问题。
五. 教学方法1.情境教学法:通过设置实际问题,激发学生的学习兴趣,引导学生主动探究。
2.合作学习法:学生进行小组讨论和交流,培养学生的团队合作意识。
3.启发式教学法:教师引导学生思考,激发学生的思维潜能,提高学生的判断能力。
六. 教学准备1.教学课件:制作课件,展示矩形的判定方法及相关实例。
2.练习题:准备一些关于矩形判定的练习题,用于巩固所学知识。
3.教学道具:准备一些实物模型,帮助学生更好地理解矩形的判定。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生思考矩形的判定方法。
例如,展示一个教室的平面图,让学生判断教室是不是矩形。
2.呈现(10分钟)教师通过课件呈现矩形的判定方法,并结合实例进行讲解。
数学北师大版九年级上册《矩形的性质与判定(第1课时)》教学设计

《矩形的性质与判定(第1课时)》教学设计一、内容和内容解析(一)内容矩形的概念,矩形的性质,直角三角形斜边上的中线等于斜边的一半.(二)内容解析有平行四边形的定义作基础,教科书采用属加种差的方法,将平行四边形的角特殊化得到矩形的概念.我们探究平行四边形的性质时,从四边形的要素即边、角、对角线等方面进行研究,探究矩形的性质也按照这个思路进行,这也是研究其他的特殊平行四边形性质的思路.将平行四边形的一条边绕一个端点旋转,当一个角变为直角时,其余三个角也变为直角,对角线由不等变为相等,这样利用图形的变换从一般到特殊进行演变,通过合情推理得出猜想,之后再通过演绎推理进行证明,这样的研究思路和方法对其他的特殊平行四边形的学习有借鉴作用.在探索并证明三角形的中位线定理时,通过构造平行四边形,把三角形中的问题转化为平行四边形的性质得到三角形的中位线定理;平行四边形特殊化成矩形后,三角形也特殊化成直角三角形,“直角三角形斜边上的中线等于斜边的一半”自然可以通过矩形的性质得到,进一步体现了四边形与三角形间的联系.基于以上分析,可以确定本节课的教学重点是:矩形特殊性质的发现、证明与初步应用.二、目标和目标解析(一)教学目标1.理解矩形的概念.2.探索并证明矩形的性质,会用矩形性质解决相关问题.3.理解“直角三角形斜边上的中线等于斜边的一半”.(二)目标解析1.达成目标1的标志是:知道矩形是将一个角特殊化成直角的平行四边形.2.达成目标2的标志是:会从边、角、对角线方面通过合情推理提出性质猜想,并用演绎推理加以证明;能运用矩形的性质解决相关问题.3.达成目标3的标志是:能构造矩形理解“直角三角形斜边上的中线等于斜边的一半”,能运用这个结论解决简单的问题.三、教学问题诊断分析在小学时,学生对矩形已有初步认识,但是往往只是把矩形当作独立的个体,未将其与平行四边形联系起来,教学时要从图形变换出发,从一般到特殊的角度重新建立起矩形与平行四边形的联系,并从矩形的有关要素方面提出矩形特殊性质的猜想,这对学生来说,有一定的难度.尽管之前我们借助平行四边形,利用平行四边形的性质得到了三角形的中位线定理,但是平行四边形特殊化成为矩形之后,学生是否意识到三角形已特殊化成为直角三角形,从而可借助矩形的性质研究直角三角形的性质,也有一定的困难.本节课的教学难点是:矩形性质以及“直角三角形斜边上的中线等于斜边的一半”的探究.四、教学支持条件分析借助几何画板将平行四边形特殊化,从而理解矩形与平行四边形的联系,并猜想矩形的特殊性质.五、教学过程设计(一)变换图形,形成概念对于一类几何图形的研究,我们往往按照从一般到特殊的思路进行,比如研究三角形时,我们先研究一般三角形,再将三角形的有关要素特殊化,我们研究了把边特殊化得到的等腰三角形、把角特殊化得到的直角三角形,对于平行四边形的研究,我们也可以按照这个思路进行.问题1把平行四边形的一个角特殊化成直角,我们得到一个什么样的图形呢?这个图形我们小学学过吗?你能从这个图形与平行四边形的关系方面给出它的定义吗?师生活动:教师利用几何画板将平行四边形的一条边绕一个端点旋转,当一个角变为直角时,让学生观察所形成的图形,并回答以下问题:(1)在运动过程中四边形还是平行四边形吗?(2)在运动过程中四边形不变的是什么?(3)在运动过程中四边形改变的是什么?(4)角的大小改变过程中有特殊值吗?这时的平行四边形是什么图形?教师板书概念:有一个角是直角的平行四边形叫做矩形,也就是长方形.设计意图:借助几何画板的动态演示,让学生直观感知角的变化带来平行四边形的改变,体会矩形与平行四边形间的关系,自然引出概念.(二)探究性质,深化认知问题2 生活中有大量的矩形存在,是由于矩形不仅具有平行四边形的性质,而且还有一般平行四边形不具有的特殊性质.回忆我们探究平行四边形性质的思路,你认为应从哪些方面探究矩形的性质呢?追问1:如图1,矩形ABCD的边、角、对角线方面是否有不同于一般平行四边形的特殊性质?你能得出有关性质猜想吗?师生活动:教师利用几何画板再次演示由平行四边形转化为矩形的过程,学生从边、角、对角线方面进行思考、讨论、交流,得出猜想.教师利用几何画板的测量功能,初步验证学生的猜想.猜想1:矩形的四个角都是直角;猜想2:矩形的对角线相等.设计意图:借助动态演示,学生易于发现边、角、对角线方面与平行四边形不同的性质,用几何画板进行初步验证,增添了学生的成就感,也激发了进一步求证的欲望.追问2:你能证明这些猜想吗?师生活动:猜想1的证明学生结合定义口头完成.猜想2的证明方法较多,利用勾股定理、三角形全等、构造等腰三角形利用等腰三角形的三线合一都可进行证明.鼓励学生尝试不同的证明方法.设计意图:让学生进一步体会证明的必要性,完整地体会几何研究的“观察——猜想——证明”过程;进一步培养学生的发散性思维.追问3:矩形是轴对称图形吗?如果是,指出它的对称轴.师生活动:学生利用折叠矩形纸片动手感知,并指出两条对称轴.设计意图:引导学生从轴对称方面进一步领会矩形的特殊性.追问4:在图1的矩形中有哪些三角形?它们分别是什么三角形?它们之间有什么关系?师生活动:学生找出其中的直角三角形与等腰三角形,并说出全等的三角形,面积相等的三角形.设计意图:让学生在学习了矩形的性质后对矩形有一个整体感知.问题3 在前面的学习中,我们通过构造平行四边形,把三角形中的问题转化为平行四边形的性质得到三角形的中位线定理;平行四边形特殊化成矩形后,三角形也特殊化成直角三角形,你能结合图2,发现直角三角形ABC的一些特殊性质吗?师生活动:学生讨论交流,得到性质:直角三角形斜边上的中线等于斜边的一半.设计意图:进一步体会利用特殊平行四边形研究特殊三角形的策略,得到直角三角形斜边上中线的性质.(三)运用性质,解决问题例1如图4,矩形ABCD的对角线AC,BD相交于点O,,.求矩形的对角形线的长.设计意图:运用矩形的性质解决问题,进一步体会矩形中的角、线段、三角形之间的关系.(四)归纳小结,反思提高师生一起回顾本节课所学的主要内容,并请学生回答以下问题:1.矩形的概念是什么?矩形有哪些性质?它是轴对称图形吗?2.由矩形的性质可以得到直角三角形的什么性质?3.小学我们已接触过矩形(长方形),这节课我们是从哪方面对矩形下定义的?我们是如何探究矩形的性质的?设计意图:问题(1)(2)引导学生回顾本节课的知识,问题(3)帮助学生梳理特殊的平行四边形采用属加种差的下定义方法,体会矩形与平行四边形的联系,以及矩形性质的探究角度(边、角、对角线三个方面)和探究思路(观察——猜想——证明),为后续其他特殊平行四边形的探究作好铺垫.(五)布置作业教科书第53页练习第1,2题;习题18.2第9题.六、目标检测设计1.矩形具有而平行四边形不一定具有的性质是()A.内角和是360度B.对角相等C.对边平行且相等D.对角线相等设计意图:考查矩形的性质,明确矩形与一般平行四边形的区别与联系.2.在Rt△ABC中,,AB=5,BC=12,D是AC边上的中点,连接BD,则BD长为.设计意图:考查直角三角形斜边上中线的性质.3.如图,在矩形ABCD中,AE∥BD,且交CB的延长线于点E.求证:.设计意图:考查矩形的性质的综合运用,由于证法不唯一,可训练学生的发散性思维.4.如图,矩形ABCD的对角线AC,BD相交于点O,AE⊥BD于E,,cm.(1)求∠BOC的度数;(2)求△DOC的周长.设计意图:主要考查三角形全等,直角三角形、等边三角形、矩形的性质的综合运用.。
九年级数学上册1.2矩形的性质与判定(第1课时)教案(新版)北师大版

九年级数学上册1.2矩形的性质与判定(第1课时)教案(新版)北师大版第一篇:九年级数学上册 1.2 矩形的性质与判定(第1课时)教案 (新版)北师大版矩形的性质与判定教学目标(1)掌握矩形的的定义,理解矩形与平行四边形的关系。
(2)理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;(3)会初步运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力.教学重点矩形性质定理的证明及应用教学难点“直角三角形斜边上的中线等于斜边的一半”的推导及性质定理的运用教学过程:一、创设情境,引入新课师:展示教具(平行四边形),演示平行四边形变为菱形的过程.当我们给平行四边形其他的特殊条件时,是否还会得出其他图形呢?比如,我们平行四边形的一个内角变为90度,你发现了什么特殊图形呢?生:长方形.师:原来是大家非常熟悉的图形,他还有个高大上的名字——矩形.板书课题师:根据前面大家对菱形,平行四边形的学习过程,对于矩形,你想从哪些方面认识它呢?生:矩形的定义.生:矩形的性质.生:矩形边、角、对角线的特征.生:矩形的判定.生:……二、目标展示师:出示学习目标.生:默读学习目标.三、自主学习1.自主探究师:根据下面的自学指导,自主学习课本11至12页议一议前的内容.1、定义:有的叫做矩形.12、矩形是平行四边形吗?3、如图,四边形ABCD是矩形,试从它的边,角,对角线,对称性上写出性质.(小组讨论)边:.角:.对角线:.对称性:.4、先写出特有的性质,然后独立思考证明过程,再与课本上的证明相比较.矩形特有的性质是:..处理方式:生自主学习和小组合作相结合,通过自学——猜想——推理三个步骤,掌握矩形的性质.以小组为单位,提出学习过程中的疑问,由其它同学讨论答疑.【设计意图】本环节知识较为简单,有前面菱形性质的研究经验,又有比较坚实的三角形全等的知识基础,此处自学应该没有障碍,因此,为培养学生的自主学习能力及增大课堂容量,将此处设计为自主学习.师归纳板书:定义:有一个角是直角的平行四边形是矩形.性质:1、矩形的四个角都是直角.2、矩形的对角线相等.2.自学检测生完成导学案上的自学检测习题,然后借助投影仪展示结果,查缺补漏.3.例题解析展示课本P13例1:如图,在矩形ABCD中,两条对角线相交于点O,∠AOD=120°,AB=2.5cm,求矩形对角线的长。
北师版九上数学1.2矩形的性质与判定(第1课时) 教学课件

新课导入
归纳总结 直角三角形斜边上的中线上的性质常见类型
随堂训练
随堂训练
在矩形ABCD中,找出相等的线段与相等的角.
A
D
相等的线段:
AB=CD AD=BC
O
B
C
AC=BD OA=OC=OB=OD
11 = 2 AC= 2 BD
相等的角:
∠DAB=∠ABC=∠BCD=∠CDA=90°
∠AOB=∠DOC ∠AOD=∠BOC
矩形的特殊性质
边: 角: 猜想1:矩形的四个角都是直角. 对角线: 猜想2:矩形的对角线相等.
知识讲解
矩形的四个角都是直角 已知:四边形ABCD是矩形, 求证:∠A=∠B=∠C=∠D=90°.
证明:∵四边形ABCD是平行四边形, ∠C=90°, ∴∠A=∠C=90° ∠B+∠C=180 °, ∴∠B=180-∠C=90°, ∴∠D=∠B=90°, 即∠A=∠B=∠C=∠D=90°.
2.下列说法错误的是( C ) A. 矩形的对角线互相平分。 B. 矩形的对角线相等。 C. 有一个角是直角的四边形是矩形。 D. 有一个角是直角的平行四边形叫做矩形。
课堂小结
矩形的定义:有一个角是直角的平行四边形.
具有平行四边形的一切特征.
矩形的性质: 四个角都是直角.
对角线相等且平分. 直角三角形的一个性质:
两组对边 四边形 分别平行
平行四 一个角 边形 是直角
矩形
四边形 平行四边形
矩形
知识讲解
矩形有什么性质?
平行四边形 有一个角是直角
矩形
有平行四边形 的所有性质
还有其它特 殊的性质
知识讲解
矩形的一般性质
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题 4.4.1矩形(第一课时)课型新授课授课教师谢爱霞
三维教学目标知识与
技能
1.理解掌握矩形的概念、性质。
2.提高对矩形的性质在实际生活中的应用能力.
过程与
方法
1.经历探索矩形的有关性质的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法.
2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想.
情感态度
价值观
1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神.
2.通过对矩形的探索学习,体会它的内在美和应用美.
教学重点矩形的性质的理解和掌握
教学难点矩形的性质的理解和掌握
教具平行四边形框架教具,多媒体课件
教法
学法
教法:引导启发式教学和自主探究式学习相结合
教学教师活动学生活动
课题引入景1.引导学生复习平行四边形的有关性质。
2.演示平行四边形活动框架,引入课题:
1.回顾平行四边形的性质
2.利用平行四边形活动框架模型探究新知
问题探究一、矩形的定义:
有一个内角是直角的平行四边形是矩形.
抛出问题,加强定义理解
引导学生用三种规范语言表述矩形的定义
思考:
1.从上面的演示过程可以发现:
平行四边形具备什么条件时,就成了矩
形?举例生活中的矩形
2.判断:“有一个内角是直角的四边形是矩
形.”这种说法是否正确?
3.平行四边形的对角线相等吗?
二、矩形的性质:
探究活动一:矩形与平行四边形对比,探究边角的性质
矩形是特殊的平行四边形,具有平行四边形的所有性质
性质1:矩形的四个角都是直角.
探究活动二:探究矩形对角线的性质:
让学生进行如下操作后,思考问题:
在一个平行四边形活动框架上,用两根橡皮筋分别套在相
对的两个顶点上,拉动一对不相邻的顶点,改变平行四边
形的形状.
性质2:矩形的两条对角线互相平分且相等.
探究活动三:议一议
展示问题,引导学生讨论、归纳、解决,并体会矩形的“对
称美”
结论:
1.矩形是轴对称图形,有两条对称轴,它们互相垂直
2.直角三角形中斜边上的中线等于斜边的一半
归纳矩形的性质:
边:矩形的两组对边分别平行且相等
角:矩形的四个内角都相等,等于90度
对角线:举行的对角线相等且互相平分
图形结构特征:矩形是轴对称图形,有两条对称轴,它们
互相垂直
推论:直角三角形斜边上的中线等于斜边的一半
例1 如图,在矩形ABCD中,两条对角线AC,BD相交
于点O,AB=OA=4厘米.,求BD与AD的长
学生操作、思考、交流、归纳,
问题1:矩形与平行四边形间有什么关系?
问题2:矩形除了“有一个内角是直角”外,
还具有哪些一般平行四边形不具备的性质?
问题3:
①. 随着∠α的变化,两条对角线的长度分
别是怎样变化的?
②.当∠α是锐角时,两条对角线的长度有什
么关系?当∠α是钝角时呢?
③.当∠α是直角时,平行四边形变成矩形,
此时:
两条对角线的长度有什么关系?
问题4:
①. 矩形是轴对称图形吗?如果是,它有几
条对称轴?如果不是,简述你的理由.
②. 直角三角形斜边上的中线等于斜边长的
一半,你能用矩形的有关性质解释这结论
吗?。