矩形的判定 新人教版教案

合集下载

矩形的判定定理教学设计(精选5篇)

矩形的判定定理教学设计(精选5篇)

矩形的判定定理教学设计(精选5篇)矩形的判定定理教学设计(精选5篇)作为一位杰出的教职工,时常需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。

一份好的教学设计是什么样子的呢?下面是小编整理的矩形的判定定理教学设计(精选5篇),仅供参考,希望能够帮助到大家。

矩形的判定定理教学设计1一、说教材《矩形的判定》是人教版教科书《数学》八年级(下)第19章第二节的内容,本课为第2课时。

矩形是生活中常见的图形,学习矩形的判定方法是对前面所学的全等三角形和平行四边形性质的回顾与延伸,也是为后续特殊平行四边形的判定方法奠定基础,起着承上起下的作用,本节课对培养学生的探索精神,动手能力,应用意识都有有很好的作用。

二、说目标1.知识与技能在对矩形性质认识的的基础上,探索并掌握矩形的判别方法;规范推理的书写格式;应用矩形定义、判定等知识,解决简单的实际问题。

2.过程与方法通过矩形的判定定理猜想,操作验证,逻辑推理,体现数学研究和发现的过程,学会数学思考的方法。

3.情感、态度与价值观能积极参加数学学习活动,能体验数学活动充满着探索,培养逆向思维的能力、并从中获得成功的体验,充满对数学学习的好奇心和求知欲。

三、说重点难点1.重点:矩形的判定。

2.难点:矩形的判定及性质的综合应用。

判定定理都是以“定义”为基础推导出来的。

因此本节课要从复习矩形定义下手,得到矩形的判定方法,引出课题。

除了通过定义来判定一个四边形是矩形外,在探究判定定理时要让学生沿着这样的思路进行探究:矩形是在平行四边形的基础上添加有一个角是90度,那么还有别的添加方式吗?让学生探究:在平行四边形的边上添加条件是否可以可以成为矩形呢?同学么探究,发现在边上添加不出来条件使之成为矩形,那么学生自然会想到在对角线上添加条件。

这样就猜想出对角线相等的平行四边形是矩形。

然后同学们以组为单位对判定进行证明。

这样既培养了学生对问题的猜想又培养了学生分析问题、解决问题的能力,又培养了学生合作学习的精神。

人教版八年级数学下册18.2.1矩形的判定(教案)

人教版八年级数学下册18.2.1矩形的判定(教案)
-证明过程的表达:学生需要学会如何用严谨的数学语言表达证明过程,这对于逻辑思维和表达能力都是一种挑战。
举例:
a.难点突破:通过动态几何软件或实物模型,演示如何从一组对边平行且相等的四边形推导出矩形的其他性质,帮助学生理解判定方法的逻辑性。
b.应用难点:给出实际问题,如矩形的窗户玻璃需要多少平方分米,引导学生运用矩形面积公式,结合实际测量数据进行计算。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了矩形的基本概念、判定方法和应用。同时,我们也通过实践活动和小组讨论加深了对矩形判定方法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
c.证明表达:在黑板上逐步展示如何书写矩形的证明过程,指出每一步的关键点和注意事项,如使用等量代换、平行线性质等,确保学生能够模仿并独立完成证明。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《矩形的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状类似长方形的物体,但不确定它是否是矩形的情况?”(比如门框、桌面等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索矩形的判定方法。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解矩形的基本概念。矩形是有两组对边分别平行且相等的四边形。它是平面几何中非常重要的一种图形,因为它具有独特的性质和应用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析一个矩形图形,展示矩形的性质在实际中的应用,以及如何帮助我们解决问题。

八年级数学下册矩形的判定教案人教新课标版

八年级数学下册矩形的判定教案人教新课标版

八年级数学下册矩形的判定教案人教新课标版一、教学目标:知识与技能:1. 学生能够理解矩形的定义及性质。

2. 学生能够运用矩形的判定方法判断一个四边形是否为矩形。

过程与方法:3. 学生通过观察、操作、推理等过程,培养直观想象和逻辑推理能力。

4. 学生能够运用矩形的性质解决实际问题。

情感态度与价值观:5. 学生培养对数学的兴趣,增强自信心,树立合作意识。

二、教学重点与难点:重点:1. 矩形的定义及性质。

2. 矩形的判定方法。

难点:1. 矩形的性质在实际问题中的应用。

2. 灵活运用矩形的判定方法判断四边形是否为矩形。

三、教学准备:教师准备:1. 矩形的定义及性质的讲解课件。

2. 矩形的判定方法的讲解课件。

3. 矩形性质的实际问题案例。

学生准备:1. 八年级数学下册课本。

2. 笔记本、笔。

四、教学过程:1. 导入:教师通过一个生活中的实例引入矩形的概念,如教室的黑板可以看作是一个矩形。

引导学生思考:矩形有哪些性质?2. 新课讲解:(1) 矩形的定义:矩形是一种四边形,它的四个角都是直角。

(2) 矩形的性质:对边平行且相等,对角相等。

(3) 矩形的判定方法:①如果一个四边形的四个角都是直角,这个四边形是矩形。

②如果一个四边形的对边平行且相等,这个四边形是矩形。

③如果一个四边形的对角相等,这个四边形是矩形。

3. 案例分析:教师出示一些实际问题,让学生运用矩形的性质和判定方法进行解答。

如:判断一个长方形是否为矩形;判断一个平行四边形是否为矩形等。

4. 巩固练习:学生自主完成课本中的练习题,教师进行讲解和答疑。

5. 小结:五、课后作业:1. 完成课后练习题。

2. 收集生活中的矩形实例,下节课分享。

六、课堂活动与互动:1. 小组讨论:让学生分成小组,讨论矩形在实际生活中的应用,如建筑设计、家具制作等。

每组选一个代表进行分享。

2. 游戏环节:设计一个矩形性质的抢答游戏,让学生在游戏中巩固所学知识。

3. 矩形判定竞赛:教师出示一些四边形,让学生判断它们是否为矩形。

八年级数学下册矩形的判定教案人教新课标版

八年级数学下册矩形的判定教案人教新课标版

八年级数学下册矩形的判定教案人教新课标版一、教学目标1. 让学生掌握矩形的判定方法,能够识别和判断一个四边形是否为矩形。

2. 培养学生的空间想象能力和逻辑思维能力。

3. 培养学生的合作交流能力,提高学生解决实际问题的能力。

二、教学重点与难点1. 教学重点:矩形的判定方法及其应用。

2. 教学难点:矩形判定方法的灵活运用。

三、教学准备1. 教师准备:矩形的相关知识资料、PPT、黑板、粉笔。

2. 学生准备:课本、练习本、铅笔、橡皮。

四、教学过程1. 导入新课1.1 教师通过PPT展示矩形的图片,引导学生观察矩形的特征。

1.2 学生分享对矩形的认识,教师总结并板书矩形的定义。

2. 自主学习2.1 学生根据课本内容,自主学习矩形的判定方法。

2.2 学生互相交流讨论,分享学习心得。

3. 课堂讲解3.1 教师根据课本内容,讲解矩形的判定方法。

3.2 教师结合PPT,展示矩形的判定过程和实例。

4. 练习巩固4.1 教师布置练习题,学生独立完成。

4.2 教师选取部分学生作业进行讲评,分析对错原因。

5. 拓展应用5.1 教师提出实际问题,引导学生运用矩形的判定方法解决。

5.2 学生分组讨论,展示解题过程和答案。

6. 课堂小结6.1 教师引导学生总结本节课所学内容。

6.2 学生分享学习收获。

五、课后作业1. 完成课本课后练习题。

2. 绘制一个矩形,并标出其判定方法。

教学反思:本节课通过引导学生观察、讨论、讲解、练习等方式,让学生掌握了矩形的判定方法。

在教学过程中,注意调动学生的积极性,鼓励学生发表自己的观点,提高学生的参与度。

结合实际问题,让学生学会运用矩形的判定方法解决实际问题。

但在时间安排上,可以更加合理,确保每个学生都有足够的时间进行练习和交流。

六、教学评价1. 通过课堂讲解、练习和拓展应用,评价学生对矩形判定方法的掌握程度。

2. 观察学生在实际问题中运用矩形判定方法的灵活性,评价其解决问题的能力。

3. 通过学生之间的交流和合作,评价学生的合作交流能力。

八年级数学下册 19.2.1 矩形 判定教案 新人教版

八年级数学下册 19.2.1 矩形 判定教案 新人教版

19.2.1矩形判定’一、教学目标知识与技能:1、叙述矩形的判定定理,会证明;3、会根据矩形的定义和判定定理判定一个四边形是矩形,并能进行有关的论证或计算。

过程与方法:历探究矩形判定条件的过程,通过观察——总结——猜想——证明,发展合情推理能力,养成主动探究的习惯。

情感态度价值观:通过探究活动,激发学习兴趣,体会转化思想,学会类比的研究方法;二、教学重难点重点:矩形的判定方法。

难点:合理应用矩形的判定定理解决问题。

三、教学方法启发引导、合作探究四、课时安排1课时五、教学过程(一)创设问题情境,导入新课矩形具有哪些性质?在这些性质中哪些是平行四边形所没有的?列表进行比较。

矩形矩形是特殊的平行四边形,那么,怎样判定一个平行四边形是矩形呢?也就是说,平行四边形具备什么条件时成为矩形呢?回顾一下学习平行四边形时,先学了性质进而学了判定。

那么大家想想有矩形的性质,我们猜测怎样来判定一个四边形是矩形呢?通过前面的学习,我们发现矩形是一种特殊的平行四边形,他最大的特点就是角都是直角,对角线相等.由矩形的定义我们很容易知道,有一个角是直角的平行四边形是矩形.当平行四边形的一个角变为直角时,另外三个角同时变为直角,也使两条对角线成为相等的线段.问题:还有没有其他的方法把一个平行四边形或四边形变成矩形呢?(二)讲授新课1、动手探究教学时引导学生对教材96页“思考”进行探究,课件也展示。

2、猜想并证明:对角线相等的平行四边形是矩形。

教学时对这条判定方法要灵活掌握,如果是四边形的话,前提必须是对角线互相平分且相等。

3、学以致用教学时课件展示6道判断题,学生现场作答。

4、自我诊断教学时课件展示3道题目,其中第三题重点讲解。

5、例题讲解:教材没有安排例题,课件不充例题。

6、生活中的数学(1)、给你一根足够长的绳子,你能检查教室的门窗或你的桌子是不是矩形吗?你怎样检查?解释其中的道理。

(2)、检验铝合金门窗的合格性。

7、范例点击,应用所学课件展示4道题目,题目有一定的难度,教学时重点讲解。

2024年人教版八年数学下册教案(全册) 平行四边形 矩形的判定教案

2024年人教版八年数学下册教案(全册) 平行四边形 矩形的判定教案

第2课时矩形的判定课时目标1.经历探索矩形判定定理的过程,掌握矩形的判定定理,培养学生的合情推理与演绎推理的能力.2.通过对比平行四边形判定的学习方法,体会证明过程中类比、转化、由一般到特殊的数学思想方法,发展学生的数学思维.达成目标1的标志:学生通过对比平行四边形判定的学习方法,可以提出矩形判定的猜想,然后经历验证并证明猜想的过程,最终能够得出矩形的判定定理.达成目标2的标志:学生能够主动想到类比平行四边形判定的学习方法来学习矩形的判定定理,在探究判定的过程中能自己设计探究过程并分步实施,最终得出结论.学习重点矩形的判定定理.学习难点矩形判定定理的应用.课时活动设计回顾平行四边形的判定定理是怎样研究的?平行四边形的性质与判定有什么联系?矩形有哪些性质?矩形的判定从何处入手研究?设计意图:引导学生回顾矩形的性质以及平行四边形判定的研究路径,思考几何图形性质与判定的逻辑关系,为矩形判定的研究提供研究思路,让学生体会它们的研究路径和方法是一致的.你现在知道的判定矩形的方法是什么?判定矩形需要几个条件?分别是什么?请写出矩形性质的逆命题?你能对矩形的判定提出猜想吗?学生活动:先独立写出矩形性质的逆命题,再小组讨论,最后形成一致意见进行展评.矩形的性质1:矩形的四个角都是直角.逆命题1:四个角都是直角的(平行)四边形是矩形.矩形的性质2:矩形的对角线相等.逆命题2:对角线相等的(平行)四边形是矩形.对于逆命题中的条件,是用四边形还是用平行四边形这个条件呢?为什么?设计意图:引导学生回忆矩形的定义,明确定义具有双重性,既是性质也是判定.引导学生通过性质猜想判定,让学生体会数学知识间的联系,建立知识的整体结构框架,理清各个知识点之间的联系,使学生头脑中的知识结构化、系统化.通过分析逆命题中的条件,让学生体会定理条件的精简,体会数学的简洁美.画图验证得出的两个逆命题的真假:逆命题1:四个角都是直角的四边形是矩形.逆命题2:对角线相等的平行四边形是矩形.设计意图:让学生经历猜想——验证——证明——得出结论的科学的探究过程,培养学生科学的思维方法,发展学生的核心素养.通过画图验证,培养学生动手作图的能力,发展学生的几何直观.你能证明教学活动3中的两个命题吗?证明命题的步骤:画图——写出已知和求证——证明,请同学们按照步骤对上述命题进行证明,然后小组展评.1.已知:如图,在四边形ABCD中,∠A=∠B=∠C=∠D=90°.求证:四边形ABCD是矩形.证明:∵∠A=∠B=∠C=∠D=90°,∴∠A+∠B=180°,∠B+∠C=180°.∴AD∥BC,AB∥CD.∴四边形ABCD是平行四边形.∵∠D=90°,∴四边形ABCD是矩形.2.已知:如图,在▱ABCD中,AC,DB是它的两条对角线,AC=DB.求证:▱ABCD是矩形.证明:∵在▱ABCD中,AB=DC,BC=CB,且AC=DB.∴△ABC≌△DCB(SSS).∴∠ABC=∠DCB.∵AB∥CD,∴∠ABC+∠DCB=180°.∴∠ABC=∠DCB=90°.又∵四边形ABCD是平行四边形,∴▱ABCD是矩形.设计意图:引导学生在经过合情推理之后对得到的结论进行严密的逻辑推理证明,让学生明白每一个数学定理的得出都要经过严谨的演绎推理的过程,培养学生思维的缜密性以及推理能力.通过小组合作讨论、展评,培养学生的合作意识以及语言表达能力.再次理解:对于“四个角都是直角的四边形是矩形”这一命题,条件可以再精简吗?三个直角可以吗?两个直角可以吗?为什么?解:可以精简为三个直角,因为四边形的内角和为360°,其中三个角为90°,则第四个角一定是90°,所以三个角都是直角的四边形一定是矩形.不可以精简为两个直角,如直角梯形有两个角为直角,但它不是矩形.设计意图:通过弱化矩形判定的条件,让学生再次感知数学的简洁美,培养学生的推理能力,让学生站在更高的角度思考定理的合理性,培养学生科学的思维方法.例题练习,巩固理解先独立完成教材第54页例2,然后学生代表讲解,全班分享,共同完善修正答案.例如图,在▱ABCD中,对角线AC,BD相交于点O,且OA=OD,∠OAD=50°,求∠OAB的度数.解:∵四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD=12BD.又OA=OD,∴AC=BD.∴四边形ABCD是矩形.∴∠DAB=90°.又∠OAD=50°,∴∠OAB=40°.设计意图:本环节力求提高学生运用知识的能力和推理能力,培养学生的语言表达能力,加深学生对性质的理解.本节课我们研究了矩形的判定定理,请同学们带着以下问题进行总结:(1)在探寻矩形的判定定理时,你经历了怎样的研究过程?这个过程中用到了哪些数学方法?积累了哪些活动经验?(2)矩形是特殊的平行四边形,特殊在哪里?还有其他的特殊的平行四边形吗?还可以从哪方面进行研究?你能设计研究路径吗?设计意图:学生通过自主反思,不但可以梳理本节所学的知识,更重要的是能将数学思想方法进行内化吸收,通过引导学生矩形是平行四边形角特殊的情况,容易想到我们还要研究平行四边形边特殊的情况,引出下一节的内容,这样既可以将学生头脑中的知识结构化、系统化,还为下一节的研究做好铺垫并提供研究思路及研究方法.课堂8分钟.1.教材第60页习题18.2复习巩固第1,2,3题,第61页综合应用第8题.2.七彩作业.教学反思。

矩形的判定新人教版教案

矩形的判定新人教版教案

矩形的判定新人教版教案一、教学目标1. 知识与技能:(1)理解矩形的定义及其性质;(2)掌握矩形的判定方法;(3)能够运用矩形的性质和判定方法解决实际问题。

2. 过程与方法:(1)通过观察、操作、推理等活动,培养学生的空间想象能力和逻辑思维能力;(2)学会运用转化思想,将实际问题转化为矩形问题,提高解决问题的能力。

3. 情感态度与价值观:(1)激发学生对几何学的兴趣,培养学生的观察力、思考力;(2)培养学生合作交流、归纳总结的能力,感受数学的趣味性与魅力。

二、教学重点与难点1. 教学重点:(1)矩形的定义及其性质;(2)矩形的判定方法;(3)运用矩形的性质和判定方法解决实际问题。

2. 教学难点:(1)矩形的判定方法的综合运用;(2)将实际问题转化为矩形问题。

三、教学过程1. 导入:(1)复习相关知识:平行四边形的定义及其性质;(2)提问:平行四边形有哪些特殊的性质?2. 新课讲解:(1)介绍矩形的定义;(2)引导学生观察、操作,发现矩形的性质;(3)讲解矩形的判定方法,并进行举例说明。

3. 练习与讨论:(1)学生独立完成相关练习题;(2)分组讨论,总结矩形的判定方法。

四、课后作业1. 完成教材课后练习题;2. 运用矩形的性质和判定方法解决实际问题。

五、教学反思1. 总结本节课的教学效果,学生对矩形的定义、性质和判定方法的掌握情况;2. 对教学过程中存在的问题进行反思,提出改进措施;3. 针对学生的学习情况,调整课后作业的难度,提高学生的学习兴趣。

六、矩形的应用1. 教学目标:(1)能够运用矩形的性质解决实际问题;(2)学会运用矩形的判定方法判断生活中的矩形形状;(3)培养学生的观察力、思考力和解决问题的能力。

2. 教学过程:(1)讲解矩形在实际生活中的应用,如建筑设计、电路板设计等;(2)让学生举例说明矩形在生活中的应用,并进行交流讨论;(3)运用矩形的性质和判定方法,解决实际问题。

七、矩形的性质探究1. 教学目标:(1)深入理解矩形的性质;(2)学会运用矩形的性质解决几何问题;(3)培养学生的空间想象能力和逻辑思维能力。

人教版初中数学八年级下册《矩形的判定》的教学设计

人教版初中数学八年级下册《矩形的判定》的教学设计

人教版初中数学八年级下册《矩形的判定》的教学设计一. 教材分析人教版初中数学八年级下册《矩形的判定》是学生在学习了平面几何基本概念、性质和判定之后的一节内容。

本节课主要让学生掌握矩形的判定方法,并能够运用矩形的性质解决一些几何问题。

教材通过引入矩形的定义和判定方法,引导学生通过观察、思考、探究,从而得出矩形的性质和判定定理。

教材内容丰富,既有理论的学习,又有实践的操作,使学生在学习过程中能够更好地理解和掌握矩形的相关知识。

二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念、性质和判定,具备了一定的逻辑思维和推理能力。

但矩形的判定方法和性质较为抽象,需要学生在学习过程中更好地发挥自己的观察能力、思考能力和动手能力。

此外,学生在学习过程中要能够主动参与课堂讨论,与同学进行合作交流,提高自己的学习效果。

三. 教学目标1.理解矩形的定义和判定方法。

2.掌握矩形的性质,并能够运用矩形的性质解决一些几何问题。

3.培养学生的观察能力、思考能力和动手能力,提高学生的逻辑推理能力。

4.培养学生的合作交流意识,提高学生的团队协作能力。

四. 教学重难点1.矩形的定义和判定方法。

2.矩形的性质及其应用。

五. 教学方法1.引导探究法:教师引导学生观察、思考、探究,从而得出矩形的性质和判定定理。

2.案例分析法:教师通过列举实例,让学生更好地理解和掌握矩形的性质和判定方法。

3.合作交流法:学生在课堂上进行小组讨论,与同学分享自己的观点和思考,提高学习效果。

4.动手操作法:学生通过动手操作,加深对矩形性质的理解和记忆。

六. 教学准备1.教学PPT:制作有关矩形定义、判定方法和性质的PPT,以便于课堂教学演示。

2.几何图形:准备一些矩形、正方形等图形,用于课堂展示和练习。

3.练习题:准备一些有关矩形的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的矩形物体,如课本、黑板、门等,引导学生关注矩形在日常生活中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩形的判定
教学目的:(1)知识技能:经历图形性质的探讨,掌握图形与几何的基础知识和基本技能。

(2)数学思考:在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,清晰地表达自己的想法。

(3)问题解决:获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。

(4)情感态度:在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。

教学重点:矩形的判定方法
教学难点:矩形判定方法的灵活运用
教学过程:
一、知识回顾:
1、矩形的定义:有一个角是直角的平行四边形是矩形,并说明它是一种判定方法。

2、矩形的性质:①边:矩形对边平行且相等;②角:矩形的四个角都是直角;
③对角线:矩形的对角线相等且平分。

3、直角三角形斜边上的中线性质:直角三角形斜边上的中线等于斜边的一半。

二、创设情景,探究新知。

你知道如何判定一个平行四边行是矩形吗?
1、定义判定:有一个角是直角的平行四边形是矩形。

(方法一)
几何语言:∵∠A=90°平行四边形ABCD (已知)
∵四边形ABCD是矩形(矩形的定义)
思考?
你还有其它的判定方法吗?
情境一:李芳同学用四步画出了一个四边形,她的画法是“边——直角、边——直角、边——直角、边”这样,她说这就是一个矩形,她的判断对吗?为什么?
猜想:有三个角是直角的四边形是矩形。

你能证明上述结论吗?(可以口述证明即可)
推出矩形的判断方法二
有三个角是直角的四边形是矩形
几何语言:
∵∠A=∠B=∠C=90°(已知)
∴四边形ABCD是矩形(有三个角是直角的四边形是矩形
情境二:工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?
猜想:
对角线相等的平行四边形是矩形。

命题:对角线相等的平行四边形是矩形。

已知:平行四边形ABCD,AC=BD。

求证:四边形ABCD是矩形。

证明:∵四边形ABCD是平行四边(已知)
∴AB=CD,AB∥CD(平行四边形对边平行且相等)
在△ABC和△DCB中
AB=CD (已证)
BC=BC (公共边
AC=BD (已知)
∴△ABC≌△DCB(SSS)
∴∠ABC=∠DCB(全等三角形对应边相等)
∵AB∥CD(已证)
∴∠ABC+∠DCB=180°(二直线平行,同旁内角互补)
(1)猜想矩形∴∠ABC=90°(等式的性质)
又∵四边形ABCD是平行四边形(已知)
∴四边形ABCD是矩形(矩形的定义)
矩形的判定方法三:
对角线相等的平行四边形是矩形
几何语言:
∵AC=BD,四边形ABCD是平行四边形(已知)
∴四边形ABCD是矩形(对角线相等的平行四边形是矩形)
归纳总结:你能归纳矩形的几种判定方法吗?
方法1:(矩形的定义)有一个角是直角的平行四边形是矩形。

方法2:有三个角是直角的四边形是矩形。

方法3:对角线相等的平行四边形是矩形。

三、巩固练习
练习1 下列各判定矩形的说法是否正确?为什么?
(1)对角线相等的四边形是矩形
(2)对角线互相平分且相等的四边形是矩形
(3)有一个角是直角的四边形是矩形
(4)有四个角是直角的四边形是矩形
(5)四个角都相等的四边是矩形
(6)矩形的对角相等且互补;
(7)对角线相等且互相垂直的四边形是矩形;
(8)一组邻边垂直,一组对边平行且相等四边形是矩形
说明:(1)所给四边形添加的条件不满足三个的肯定不是矩形
(2)所给四边形添加的条件是三个独立条件,但若与定理不同,则]需要利用定义和判定定理证明或举反例,才能下结论。

练习2 在△ABC中,已知∠ACB=90°,
CD为AB边上的中线,延长CD到点E,
使得DE=CD.连结AE,BE,请说明
四边形ACBE为矩形.
解∵CD是AB边上的中线,
∴AD=DB.又∵DE=CD,
∴四边形ACBE是平行四边形.(对角线互相平分的四边形是平行四边形.)
∵∠ACB=90°,
∴四边形ACBE为矩形.(有一个角是直角的平行四边形是矩形。

)
练习3 如图,ABCD的四个内角平分线相交于点E,F,G,H.
试说明:EG=FH.
解::ABCD中,AD∥BC
∴∠DAB+∠ABC=180°.
又∵AG、BG分别平分∠DAB、∠ABC,
∴∠GAB+∠ABG=90°.
∵∠GAB+∠ABG+∠AGB=180°,
∴∠AGB=90°.
同理∠FEH=90°,∠BFC=90°
∴∠EFG=90°.∴四边形EFGH为矩形.(有三个角是直角的四边形是矩形。

)
∴EG=FH
四、课堂小结
谈谈本节课的收获:
方法1:(矩形的定义)有一个角是直角的平行四边形是矩形。

方法2:有三个角是直角的四边形是矩形。

方法3:对角线相等的平行四边形是矩形。

矩形的判定方法分两类:从四边形不判定和从平行四边形来判定。

常用的判定方法有三种:定义和两个判定定理。

遇到具体题目,可根据条件灵活选用恰当的方法。

五、作业
教材p55“练习”的第1、2题。

相关文档
最新文档