混凝土单轴受压应力-应变曲线..

合集下载

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变全曲线方程混凝土受压应力-应变全曲线方程混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构内力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney 通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley 和Mchenry 的试验研究再次证实,1962年,Barnard 在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin ,P.T.Wang ,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。

钢筋混凝土结构是目前使用最为广泛的一种结构形式。

但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。

近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。

由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。

1、混凝土单轴受压全曲线的几何特点经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。

典型的曲线如图1所示,图中采用无量纲坐标。

sc c E E N f y x 0,,===σεε 式中,c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。

常用混凝土受压应力—应变曲线的比较及应用

常用混凝土受压应力—应变曲线的比较及应用

常用混凝土受压应力—应变曲线的比较及应用σσεεp 图1-2 Sargin曲线式中:εc1为相应于压应力峰值σ0的压应变εc1=-0.0022,εc1为从原点到压应力峰值点的割线模量, 1c E =0σ/0.0022,0E 为混凝土初始弹性模量;εu为混凝土极限压应变, 其大小与1c E 、0E 及εc1有关。

1.3清华过镇海曲线清华大学的过镇海教授在1982年结合自己多年的研究成果提出了自己的混凝土受压应力-应变曲线表达式,如图1-3所示。

第I 阶段中,OA 仍为二次抛物线,与德国人R üsch 提出的抛物线模式相同如下:])(2[2000εεεεσσ-⨯= )(0εε≤ (1-1) 第II 阶段中,下降段AB 用有理分式表示如下: 0200)1(εεεεαεεσσ+-=)(0u εεε<< (1-5)σσεε0图1-3 过镇海曲线εAB其中,α,0ε见下表:表1-1 材料 强度等级 水泥标号α 0ε/10-3普通混凝土 C20~C30 325 425 0.4 0.8 1.40 1.60 C40 425 2.0 1.80 陶粒混凝土 CL25 425 4.0 2.00 水泥砂浆 M30~M40325,4254.02.501.4 美国Hognestad 曲线美国人E.Hognestad 在1951年提出的应力-应变全曲线方程分为上升段和下降段,上升段与德国人R üsch 所提出模型的上升段相同,但是下降段采用一条斜率为负的直线来模拟,如图1-4所示,上升段表达式如下:])(2[2000εεεεσσ-⨯= )(0εε≤ (1-1)下降段表达式为:)1(000εεεεασσ---=u)(0u εεε<<(1-6)其中:α=0.015;εu =0.038经过化简以后,表达式变为如下: )()012.0014.0(u 00ε<ε<εε-σ=σ(1-7)σσ0ε2图1-4 Hongestad曲线0.85σ0εu对于以上四种常见的混凝土单轴受压应力—应变曲线先将其优缺点进行总结,如下表:表1-2优点 缺点中国规范(1)OA 段表达式比较简单,又能反映应力—应变曲线上升段的特点;AB 段则更为简单。

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变全曲线方程混凝土受压应力-应变全曲线方程混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构内力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley和Mchenry的试验研究再次证实,1962年,Barnard在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin,P.T.Wang,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。

钢筋混凝土结构是目前使用最为广泛的一种结构形式。

但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。

近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。

由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。

1、混凝土单轴受压全曲线的几何特点经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。

典型的曲线如图1所示,图中采用无量纲坐标。

sc c E E N f y x 0,,===σεε 式中,c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变全曲线方程混凝土受压应力-应变全曲线方程混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构内力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney 通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley 和Mchenry 的试验研究再次证实,1962年,Barnard 在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin ,P.T.Wang ,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。

钢筋混凝土结构是目前使用最为广泛的一种结构形式。

但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。

近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。

由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。

1、混凝土单轴受压全曲线的几何特点经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。

典型的曲线如图1所示,图中采用无量纲坐标。

sc c E E N f y x 0,,===σεε 式中,c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。

常用混凝土受压应力_应变曲线的比较和应用

常用混凝土受压应力_应变曲线的比较和应用

常用混凝土受压应力—应变曲线的比较及应用摘要:为了对受弯截面进行弹塑性分析及其他研究,在对各种混凝土受压应力应变曲线研究的基础上,总结出了四种常用曲线,这些曲线已经被广泛应用。

对四种常用曲线进行简介,并指出了它们的适用范围及优缺点。

在进行受弯截面弹塑性分析时,介绍了运用四种常用曲线对其受力性能进行分析的计算模式,并且运用实际案例进行受弯截面弹塑性分析,方便工程师们参考和借鉴。

关键词:混凝土;受压应力应变曲线;本构关系;受弯截面0 引言混凝土受压应力—应变曲线是其最基本的本构关系,又是多轴本构模型的基础,在钢筋混凝土结构的非线件分析中,例如构件的截面刚度、截面极限应力分布、承载力和延性、超静定结构的内力和全过程分析等过程中,它是不可或缺的物理方程,对计算结果的准确性起决定性作用。

近年来,国内外学者对其进行了大量的研究及改进,已有数十条曲线表达式,其中部分具有代表性的表达式已经被各国规范采纳。

常用的表达式包括我国《混凝土结构设计规范》(GB50010-2010)、CEB-FIP Model Code(1990)、清华过镇海以及美国学者Hognestad 建议的混凝土受压应力应变关系,在已有研究的基础上,本文将对各个表达式在实际运用中的情况进行比较,并且通过实际算例运用这些表达式进行受弯截面弹塑性分析,从而为工程师们在实际应用时提供参考和借鉴。

1 常用混凝土受压应力—应变曲线比较至今已有不少学者提出了多种混凝土受压应力应变曲线,常用的表达式采用两类,一类是采用上升段与下降段采用统一曲线的方程,一类是采用上升段与下降段不一样的方程。

1.1 中国规范我国《混凝土结构设计规范》(GB50010-2010)采用的模式为德国人R üsch1960年提出的二次抛物线加水平直线,如图1-1所示。

上升阶段的应力应变关系式为:)(])(2[02000ε≤εεε-εε⨯σ=σ (1-1)A 点为二次抛物线的顶点,应力为0σ,是压应力的最大值,A 点的压应变为0ε。

混凝土单轴受压的应力-应变曲线(2010版规范)

混凝土单轴受压的应力-应变曲线(2010版规范)

参数输入及计算过程数据 峰值压应变ε c,r(10^-6) 1640 下降段参数值α c 1.36 抗压强度代表值(标准值)fc,r 20.1 混凝土初始弹性模量Ec(10^4) 3.00 ρ c=fc,r/(Ec*ε c,r) 0.409 n=Ec*ε c,r/(Ec*ε c,r-fc,r) 1.691 x=ε /ε c,r 即时应变ε (10^-6) 即时损伤因子dc 即时压应力(Mpa) 0.06 106 0.01 3.1 0.08 128 0.02 3.8 0.09 153 0.03 4.5 0.11 184 0.03 5.3 0.13 221 0.05 6.3 0.16 265 0.06 7.5 0.19 318 0.08 8.7 0.23 381 0.11 10.2 0.28 458 0.14 11.8 0.33 549 0.19 13.4 0.40 659 0.24 15.1 0.48 791 0.30 16.7 0.58 949 0.36 18.1 0.69 1139 0.44 19.2 0.83 1367 0.52 19.9 1.00 1640 0.59 20.1 1.20 1968 0.67 19.2 1.44 2362 0.76 17.0 1.73 2834 0.83 14.2 2.07 3401 0.89 11.4 2.49 4081 0.93 9.1 2.99 4897 0.95 7.2 3.58 5876 0.97 5.7 4.30 7052 0.98 4.5 5.16 8462 0.99 3.6 6.19 10154 0.99 2.9 7.43 12185 0.99 2.3 8.92 14622 1.00 1.9 注:依据混凝土结构设计规范GB50010-2010附录C编制
受压应力-应变曲线的参数取值及其它相关参数 35 40 45 50 1720 1790 1850 1920 1.65 1.94 2.21 2.48 2.10 2.00 1.90 1.90 23.4 26.8 29.6 32.4 3.15 3.25 3.35 3.45

混凝土基本力学性能二

混凝土基本力学性能二

c
fc
混凝土棱柱体抗压强度和峰值应变的比 值,即峰值割线模量(N/mm2)。
αa=a1,规范称之为曲线上升段参数。 物理意义:混凝土的初始切线模量与峰值割线模量之比E0/Ep; 几何意义:曲线的初始斜率和峰点割线斜率之比。 上升段曲线方程为:
x 1
y a x (3 2 a ) x ( a 2) x
x 1
解得:
x y d ( x 1) 2 x

u 1 (1 2 d 1 4 d ) c 2 d
分析或验算结构构件时,混凝土的单轴压应变不宜超过值εu。
按上述公式计算随混凝土抗压强度而变化的各项参数值,经 整理后如表。 混凝土单轴受压应力-应变曲线的参数值
0 u
x 1
c fc
y 1 (1 x) n y 1

c x 0
y
c
fc
曲线方程可改写为 式中各参数都随混凝 土的立方体抗压强度 标准值fcu,k而变化,计 算公式为:
cu 1 x 0
1 n 2 ( f cu 50) ≯2.0 60 0 0.002 0.5( f cu 50) 10 6
≮0.002
≯0.0033
u 0.0033 ( f cu 50) 10 6
上升段:
0
c n c f c [1 (1 ) ] 0

70
C80
60
下降段: 0 u
c fc
50
C60
40
1 n 2 ( f cu 50) ≯2.0 60 0 0.002 0.5( f cu 50) 10 6

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变全曲线方程混凝土受压应力-应变全曲线方程混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构内力分析、结构延性计算和钢筋混凝土有限元分析的根底,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度缺乏造成的重要结论,这一结论于1948年由Ramaley和Mchenry的试验研究再次证实,1962年,Barnard在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者〔如M.Sagin,P.T.Wang,过镇海等〕所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。

钢筋混凝土结构是目前使用最为广泛的一种结构形式。

但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。

近年来,随着有限元数值方法的开展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比拟精确的分析了。

由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线确实定就是一个重要的方面。

1、混凝土单轴受压全曲线的几何特点经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。

典型的曲线如图1所示,图中采用无量纲坐标。

sc c E E N f y x 0,,===σεε 式中,c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混凝土单轴受压应力-应 变关系及主要影响因素
姓名:艾红红 学号:130520015 专业:结构工程
主要内容
1. 什么是混凝土——混凝土简介 2各种不同混凝土的应力-应变关系曲线 及其获得方法 3. 影响混凝土应力-应变关系曲线的主要影 响
因素 4. 问题与讨论 5. 参考文献
混凝土简介
• 混凝土是一种复合建筑材料,内部组成结 构非常复杂。它是由二相体所组成,即粗 细骨料被水泥浆所包裹,靠水泥浆的粘接 力,使骨料相互粘接成为整体。如果考虑 到带气泡和毛细孔隙的存在,
高温后混杂纤维RPC单轴受压应力一 应变关系[7]
原材料选用:
• 普通硅酸盐水泥,Si02,微硅粉,S95型矿渣粉,石英砂,ຫໍສະໝຸດ 黄褐色粉末状FDN浓缩型高效减水剂;
• 长度为13mm,直径为0.22mm的高强平直 钢纤维; • 长度为18~20mm;熔点为165℃的聚丙 烯纤维(PPF).
实验装置
再生混凝土应力-应变关系曲线[3]
• 实验装置
实验方法
• 1.再生混凝土设计强度等级为C20,C25,C30, C40,再生骨料取代率100%。标准棱柱体试件 150mm*150mm*300mm,采用28天强度测试结果。
• 2.采用“等应力循环加卸载试验方法”测定再生 混凝土的应力-应变全曲线,即每次加载 至预定应力后再卸载至零,再次进行加 载,次循环后达不到预定应力而自动转 向包络线时,进行下一级预定应力的 加载。[3]
2.试件设计强度等级为C40,采用普通硅酸盐混凝土 材料,骨料选用最大粒径25mm连续级配卵石,水 泥:水:砂:石=1.00:0.42:1.41:2.62,
圆柱体试件,尺寸φ100mm*200mm, 人工浇筑,机械振捣,钢模成型,24 小时拆模,28天养护。 3.采用两层0.1mm厚聚四氟乙烯薄膜 作减磨层,消除侧向约束影响。
实验曲线
曲线分析
1。各体积分数碳纤维掺量混凝土单轴受压应力-应 变曲线的基本形状相同,但与未掺碳纤维的混凝 土曲线相差较大。
2.掺有碳纤维的混凝土的应力应变曲线的峰值点对 应的应变值基本相同,但,应力大小不同,
且都比未掺时低。 3.掺有碳纤维的混凝土破坏时的应变量都 比未掺时的应变量大,且大很多。 4.由图可得,碳纤维的加入可以增加 混凝土的延性
• 按碳纤维体积分数的不同,混凝土共分为9组,每组制作3 块100mm ×100mm×100 mm立方体试件和4块 100mm×100mm×300mm棱柱体试件,
共计63块试件。
• 每组7块试件中,3块立方体试件用于测定
混凝土立方体抗压强度,3块棱柱体试件用
于测定混凝土棱柱体抗压强度,1块棱柱体试
件用于混凝土应力-应变全曲线的测定。
实测再生混凝土应力应变全曲线
曲线形状分析
• 由以上四幅图可见,四组试件得到的 应力应变曲线形状大概相同,但是细 部差别较大。
• 曲线上升段变化趋势基本相 同,但下降段各不相同。
高强混凝土在单轴受压时的应力-应变曲线[4]
• 实验装置
应力-应变曲线
曲线形状分析
1. 从图中可以看出A1-A5试件的曲线为完整的圆滑 曲线,A6,A7只有上升段曲线;A6,A7由于混凝 土试件强度较高实验设备刚度不够,当σc>fc 后, 试验机释放的能量迅速传到周围的4
实验方法:
• 经高温试验后的试件,在室内放置3d后 进行单轴受压试验.
• 试验在5000kN电液伺服液压试验机上 附加刚性元件,以提高试 验装置的整体刚度
个钢柱上,从而引起混凝土突然破坏,所以曲 线只有上升段没有下降段。 2. A1-A7试件的应力应变曲线的上升段 是相似的,但下降段的曲线形状差 别较大。
3.混凝土应力应变曲线的下降段,随混凝土强度的 提高而越来越陡。
4.高强混凝土的应力一旦达到峰值即呈现剥落,所 以下降段所反映的主要是一个混凝土的破碎
试验配合比为:m水泥∶m水∶m砂∶m石子 =1∶0.55∶1.92∶3.27。
素混凝土中减水剂质量为水泥质量 的0.5%,碳纤维混凝土中减水剂质量 为水泥质量的2.5%。
实验方法:
• 采用外掺法掺入碳纤维,即保持基准混凝土的配合比各材 料用量不变,碳纤维按不同体积分数控制掺入其中,体积 分数控制为9组,分别为0,0.2%,0.4%,0.6%,0.8%, 1.0%,1.2%,1.4%,1.6%。
掺杂了纤维与混杂纤维的纤维增强高强混凝 土的压缩应力一应变全曲线[2]
曲线形状分析
• 由曲线可以看出,纤维与混杂纤维增强 高强混凝土则能够准确地测出完整的压应 力-应变曲线. 纤维增强高强混凝土和混杂纤维增强高强 混凝土的这两种曲线具有相同的形状,都 由三段组成:线性上升阶段、
初裂点以后的非线性上升阶段、 峰值点以后的缓慢下降阶段.[2]
过程。 5.混凝土线性段的范围随混凝土强度的 提高而增大,混凝土强度越高,应力 应变曲线的下降段越陡,曲线更倾斜。
不同加载速度下混凝土单轴受压应力-应 变曲线[5]
实验装置:MTS815.04岩石力学试验机
实验方法
1.考虑5中不同加载速度,在位移和应变双重控制下 得到动力加载条件下单轴受压应力应变曲线。
混凝土实际是一种三相体的混合 物,不能认为是连续的整体。[1]
普通高强度混凝土受压应力应变曲线
曲线形状分析
如图,普通高强度混凝土只能测出压应力应变曲线的上升段,因为混凝土一旦出现 出裂缝,承力系统在加压过程中积累的大 量弹性能突然急剧释放,使得裂缝 迅速扩展,试件即刻发生破坏,无法 测得应力-应变曲线的下降段。[2]
应力-应变曲线
曲线分析
• 有图可得:动力加载下的单轴受压应力-应 变曲线的形状仍然符合经典单轴受压实验 的基本描述;
• 动力加载条件对实验结果的影响主要体现 在混凝土抗压强度以及变形特性方面;
• 应变率对混凝土抗压强度 的影响较为突出显著。
碳纤维混凝土单轴受压应力-应变曲线
1.实验材料:42.5R普通硅酸盐水泥;天然细河沙; 碎石,最大粒径不超过10 mm;萘系减水剂。碳 纤维使用威海拓展纤维有限公司生产的长度为25 mm的CCF300-12K碳纤维。配制基准混凝土试件强 度为C25,
相关文档
最新文档