重复荷载作用下混凝土性能.
混凝土的力学性能

混凝土的力学性能
1.2 混凝土的变形
1)混凝土在一次短期荷载作用下的变形
(1)混凝土在单调短期加荷作用下
力学性能,曲线的特征是研究钢筋混凝 土构件的强度、变形、延性(承受变形 的能力)和受力全过程的依据。图2-7所 示为混凝土棱柱体试件在受压时的应力
混凝土的力学性能
图2-8 混凝土棱柱体试件加荷至σ=0.5fc时测 得的应变与时间的关系曲线
混凝土的力学性能
影响混凝土徐变的因素是多方面的,主 要可归结为以下三个方面:
(1)内在因素。 (2)环境因素。 (3)应力因素。
混凝土结构与砌体结构
混凝土的力学性能
如图2-6所示,劈裂抗拉试验在立方体或圆柱体试件上通过钢
制弧形垫块施加均匀线荷载。除垫条附近很小的范围以外,在中
间垂直截面上产生与该面垂直且均匀分布的拉应力。当拉应力达
到混凝土的抗拉强度时,试件沿中间垂直截面被劈裂为两部分而
破坏。根据弹性理论,劈裂抗拉强度 σt可按式(2-4)计算。
t
2P
ld
(2-4)
式中,P为破坏荷载;d为圆柱体试件直径或立方体试件边长;
l为圆柱体试件高度或立方体试件边长。
混凝土的力学性能
图2-6 混凝土的劈裂抗拉试验
混凝土的力学性能
《混凝土结构设计规范》(GB 50010—2010)给出的混凝土 抗压、抗拉强度标准值,可参见表2-2。
表2-2 混凝土强度标准值
Ec
105 2.2 34.7
f cu ,k
混凝土结构材料的物理力学性能

第二章混凝土结构材料的物理力学性能2.1砼的物理力学性能材料的力学性能指标包括:强度指标和变形性能指标。
本节内容一、混凝土的组成结构二、单向受力状态下的混凝土强度(重点)三、复合受力状态下的混凝土强度四、混凝土的变形性能2.1.1 混凝土的组成结构普通混凝土是由水泥、砂子和石子三种材料及水按一定配合比拌合,经过凝固硬化后做成的人工石材。
1、混凝土结构分为三种基本类型:微观结构:即水泥石结构,由水泥凝胶、晶体骨架、未水化完的水泥颗粒和凝胶孔组成,其物理力学性能取决于水泥的化学—矿物成分、粉磨细度、水灰比和硬化条件亚微观结构:即混凝土中的水泥砂浆结构;可看作以水泥石为基相、砂子为分散相的二组分体系,砂子和水泥石的结合面是薄弱面。
对于水泥砂浆结构,除上述决定水泥石结构的因素外,砂浆配合比、砂的颗粒级配与矿物组成、砂粒形状、颗粒表面特性及砂中的杂质含量是重要控制因素宏观结构:即砂浆和粗骨料两组分体系。
与亚微观结构有许多共同点,因为这时可以把水泥砂浆看作基相,粗骨料分布在砂浆中,砂浆与粗骨料的结合面也是薄弱面。
2、混凝土的内部结构特点a)混凝土是一种复杂的多相复合材料。
其组份中的砂、石、水泥胶块中的晶体、未水化的水泥颗粒组成了混凝土中错综复杂的弹性骨架,主要用它来承受外力,并使混凝土具有弹性变形的特点;b)水泥胶块中的凝胶、孔隙和结合界面初始微裂缝等,在外荷载作用下则使混凝土产生塑性变形。
c)混凝土结构中的孔隙、界面微裂缝等先天缺陷,往往是混凝土受力破坏的起源,而微裂缝在受荷时的发展对混凝土的力学性能起着极为重要的影响。
2.1.2、单向受力状态下的混凝土强度用途:是进行钢筋混凝土结构构件强度分析、建立强度理论公式的重要依据。
1、立方体抗压强度 混凝土强度等级立方体抗压强度是最主要和最基本的指标。
混凝土的强度等级是依据混凝土立方体抗压强度标准制f cuk 确定的。
(1)测定方法:以边长150mm 立方体标准试件,在标准条件下(20±3℃,≥90%湿度)养护28天,用标准试验方法(加载速度0.15~0.3N/mm 2/s ,两端不涂润滑剂)测得的具有95%保证率的抗压强度值,用符号C 表示,C30表示f cu,k =30N/mm 2现《规范》根据强度范围,从C15~C60共划分为14个强度等级,级差为5N/mm2。
混凝土考试简答题总结

第一章绪论混凝土结构:包括素混凝土结构、钢筋混凝土结构、预应力混凝土结构。
钢筋混凝土结构:由配置受力的普通钢筋,钢筋网或钢筋骨架的混凝土制成结构。
配筋的作用与要求。
作用:在混凝土中配置适量的受力钢筋,并使得混凝土主要承受压力,钢筋主要承受拉力,就能充分起到利用材料,提高结构承载力和变形能力的作用。
要求:在混凝土中设置受力钢筋构成钢筋混凝土,这就要求受力钢筋与混凝土之间必须可靠地粘结在一起,以保证两者共同变形,共同受力。
钢筋和混凝土为什么能有效地在一起共同工作?1)混凝土结硬后,能与钢筋牢固地粘结在一起,相互传递内力。
即粘结力。
2) 由于钢筋和混凝土两种材料的温度线膨胀系数十分接近。
当温度变化时钢筋与混凝土之间不会产生由温度引起的较大相对变形造成的粘结破坏。
3)钢筋埋置于混凝土中,混凝土对钢筋起到了保护和固定作用,使钢筋不容易发生锈蚀,且使其受压时不易失稳,在遭受火灾时不致因钢筋很快软化而导致结构整体破坏。
因此,在混凝土结构中,钢筋表面必须留有一定厚度的混凝土作保护层,这是保持二者共同工作的必要措施。
钢筋混凝土有哪些主要优点和主要缺点。
优点:取材容易,合理用材,耐久性较好,耐火性好,可模性好,整体性好。
缺点:自重较大。
(对大跨度,高层结构抗震不利。
也给运输带来困难)抗裂性较差,施工复杂,工序多,隔热和隔声性能较差。
结构有哪些功能要求?建筑结构的功能包括安全性,适用性和耐久性三个方面。
简述承载力极限状态和正常使用极限状态的概念?承载力极限状态:结构或构件达到最大承载力或变形达到不适用继续承载状态。
正常使用极限状态:结构或构件达到正常使用或耐久性能某项规定限度的状态。
第二章混凝土结构材料的物理力学性能混凝土的变形模量:割线混凝土的弹性模量(原点模量):原点切线混凝土的切线模量:切线。
图2-14徐变:结构或材料承受的应力不变,而应变随着时间增长的现象称为徐变。
徐变对混泥土影响:使构件的变形增加,在钢筋混凝土截面中引起应力重分布的现象,在预应力混凝土结构中会造成预应力损失。
混凝土结构材料的物理力学性能.

第二章混凝土结构材料的物理力学性能教学重点:掌握各种材料性能的特性,钢筋及混凝土各自的应力应变关系,影响材料强度及变形大小的因素,从而为以后学习本课程或使用材料时打下基础。
教学内容:1.钢筋:钢筋的成份、种类和级别,钢筋的应力应变曲线,钢筋的塑性性能,钢筋的冷加工。
2.混凝土:立方体抗压强度,影响混凝土强度的因素,轴心抗压强度,轴心抗拉强度。
混凝土的变形:混凝土在一次短期加载时的应力应变性能,混凝土的变形模量。
混凝土的徐变。
混凝土的收缩。
3.钢筋与混凝土之间的粘结力。
2.1 混凝土的物理力学性能2.1.1 混凝土的组成结构普通混凝土是由水泥、砂、石材料用水拌合硬化后形成的人工石材,是多相复合材料。
混凝土组成结构是一个广泛的综合概念,包括从组成混凝土组分的原子、分子结构到混凝土宏观结构在内的不同层次的材料结构。
通常把混凝土的结构分为三种基本结构类型:微观结构即水泥石结构;亚微观结构即混凝土中的水泥砂浆结构;宏观结构即砂浆和粗骨料两组分体系。
微观结构(水泥石结构)由水泥凝胶、晶体骨架,未水化完的水泥颗粒和凝胶孔组成,其物理力学性能取决于水泥的化学矿物成分、粉磨细度、水灰比和凝结硬化条件等。
混凝上的宏观结构与亚微观结构有许多共同点,可以把水泥砂浆看作基相.粗骨料分布在砂浆中,砂浆与粗骨料的界面是结台的薄弱面。
骨料的分布以及骨料与基相之间在界面的结合强度也是重要的影响因素。
浇注混凝上时的泌水作用会引起沉缩,硬化过程中由于水泥浆水化造成的化学收缩和干缩受到骨料的限制,会在不同层次的界面引起结合破坏,形成随机分布的界面裂缝。
混凝土中的砂、石、水泥胶体中的晶体、未水化的水泥颗粒组成了错综复杂的弹性骨架,主要承受外力,并使混凝土具有弹性变形的特点。
而水泥胶体中的凝胶、?L隙和界面初始微裂缝等,在外力作用下使混凝土产生塑性变形。
另一方面,混凝土中的孔隙、界面微裂缝等缺陷又往往是混凝土受力破坏的起源。
在荷载作用下,微裂缝的扩展对混凝土的力学性能有着极为重要的影响。
钢筋混凝土材料力学性能

砼结构对钢筋质量要求 适当强度:屈服和极限强度,屈服强度是计算主要依据; 可焊性好:要求钢筋焊接后不产生裂纹及过大变形;
足够塑性:以伸长率和冷弯性能为主要指标,即要求钢筋断裂前有足够变形,在钢筋混凝土结构 中,能给出构件将要破坏的预告信号,同时保证钢筋冷弯要求。一般而言强度高的钢筋塑性和可 焊性就差些;
1 混凝土立方体抗压强度的定义和强度等级 砼立方体强度的定义:立方体试件的强度比较稳定,我国把立方体强度值作为混 凝土强度的基本指标,并把立方体抗压强度作为评定混凝土强度等级的标准。我国《规 范》规定:,用ƒ表示,单位2。
换句话:混凝土强度等级应按立方体强度标准值确定。
立方体抗压强度标准值(ƒ) 两重含义: 1、采用边长为150㎜的立方体试块,在标准条件(温度为17~23℃,湿度在90%以上) 下养护28d,按照标准的试验方法加压到破坏测得的立方体抗压强度。
1 钢筋强度指标 (1)软钢:屈服强度、极限强度
当某截面钢筋应力达到屈服强度后,试件将在荷载基本不增加情况下产生持续塑性变形,构件 可能在钢筋尚未进入强化阶段之前就已破坏或产生过大的变形与裂缝。因此,钢筋的屈服强度是钢 筋关键性强度指标;此外,钢筋的屈强比(屈服强度与极限强度之比)表示结构可靠性潜力。在抗 震结构中,考虑受拉钢筋可能进入强化阶段,要求其屈强比≤0.8,因而钢筋极限强度是检验钢筋质 量的另一强度指标。
近年来,我国强度高,性能好的预应力钢筋已可充分供应,冷加工钢筋不再列入规范。
1.1.2 钢筋品种、级别和分类
推广具有较好延性、可焊性、机械连接性能及施工适应性的系列普通热轧带肋钢筋。列入采 用控温轧制工艺生产的系列细晶粒带肋钢筋。
系列余热处理钢筋由轧制钢筋经高温淬水,余热处理后提高强度。而其它性能则相应降低, 一般可用于对变形性能及加工性能要求不高的构件中,如基础、大体积混凝土、楼板、墙体及 次要的中小结构构件中。
考研:结构设计原理 习题试题

结构设计原理习题试题1.什么叫工程结构?何为结构设计原理?2.桥梁结构有哪些可选类型?其通常适宜的跨度为多少?3.一般将哪些结构称为特种结构?4.钢结构、混凝土结构、砌体结构各有哪些优缺点?5.组成结构的“基本元素”有哪些?6.何为刚域?它与刚节点有何不同?7.永久作用,可变作用和偶然作用各有什么特征?8.何为荷载代表值、荷载标准值、可变荷载准永久值、可变荷载频遇值及可变荷载组合值?9.为什么把荷载标准值作为荷载基本代表值看待?10.结构可靠性的含义是什么?它包括哪些方面的功能要求?建筑结构安全等级是按什么原则划分的?11.“作用”和“荷载”有什么区别?结构上的作用按时间的变异、按空间的变异、以及按结构的反应各分为哪几类?12.什么是结构的极限状态?结构的极限状态分为几类,其含义各是什么?或者说结构超过极限状态会产生什么后果?13.什么是结构的可靠度和可靠指标?《统一标准》对可靠指标是如何定义的?14.什么是失效概率?可靠指标和失效概率有何定性关系?为什么说我国“规范”采用的极限状态设计法是近似概率的极限状态设计法?分析其主要特点。
15.什么是荷载标准值?什么是活荷载的频遇值和准永久值?什么是荷载的组合值?对正常使用极限状态验算,为什么要区分荷载的标准组合和准永久组合?如何考虑荷载的标准组合和荷载的准永久组合?对于承载能力极限状态,如何确定其荷载效应组合?永久荷载和可变荷载的分项系数一般情况下如何取值?16.各种材料强度的标准值根据什么原则确定?材料性能分项系数和强度设计值是如何确定的?17.绘出有明显流幅的钢材(钢筋)的拉伸图,说明各阶段的特点,指出比例极限、屈服极限和强度极限(极限强度)的含义。
18.软钢和硬钢的拉伸图有何不同,抗拉强度设计值fy各对应于图中何处的应力值?19.钢材质量等级分A、B、C、D、E级的依据是什么?Q235.钢号中质量等级由A到D,表示质量的由低到高。
质量高低主要是以对冲击韧性(夏比V型缺口试验)的要求区分的,对冷弯试验的要求也有所区别。
对钢筋混凝土结构的认识理解

对钢筋混凝土结构的认识理解发布时间:2023-02-24T03:30:38.021Z 来源:《中国科技信息》2022年第19期作者:王文暄[导读] 目前,我国钢筋混凝土主要用于房屋建筑和土木工程的水利王文暄重庆交通大学经济管理学院摘要:目前,我国钢筋混凝土主要用于房屋建筑和土木工程的水利、交通、市政等所有行业,从结构材料类型方面来讲,混凝土及预应力混凝土结构约占全部工程结构的90%以上,将是现阶段乃至未来二十年内我国主导的工程结构材料。
本文从走进钢筋混凝土结构、砼结构材料、砼结构变形及裂缝、预应力砼四个方面来认识理解钢筋混凝土结构的知识体系。
关键词:钢筋混凝土结构,知识体系,专业知识一、走进钢筋混凝土结构1.1 学习混凝土结构的意义钢筋混凝土结构与工程造价专业或工程管理密切相关,学习混凝土结构的目的在于运用理论去解决实际问题。
1.2混凝土结构的相关概念(1)素混凝土结构 (plain concrete structure)指无筋或不配置受力钢筋的混凝土结构。
(2)钢筋混凝土结构 (reinforced concrete structure)是指用配有钢筋增强的混凝土制成的结构。
承重的主要构件是用钢筋混凝土建造的,钢筋承受拉力,混凝土承受压力。
具有坚固、耐久、防火性能好、比钢结构节省钢材和成本低等优点。
(3)预应力混凝土结构 (prestressed concrete structure)是在结构构件受外力荷载作用前,先人为地对它施加压力,由此产生的预应力状态用以减小或抵消外荷载所引起的拉应力,即借助于混凝土较高的抗压强度来弥补其抗拉强度的不足,达到推迟受拉区混凝土开裂的目的。
1.3混凝土结构配筋的作用与要求 (1)配筋的作用:在混凝土中配置适量的受力钢筋,并使得混凝土主要承受压力,钢筋主要承受拉力,就能起到充分利用材料,提高结构承载能力和变形能力的作用。
(2)配筋的要求:配筋要求受力的钢筋与混凝土之间必须可靠的粘结在一起,以保证两者共同变形,一起受力。
钢筋混凝土梁的疲劳性能计算方法

钢筋混凝土梁的疲劳性能计算方法一、前言钢筋混凝土梁是结构工程中常用的结构构件,其在承载力和使用寿命方面的性能要求非常高。
在长期的使用过程中,其承载能力会逐渐下降,甚至发生疲劳破坏。
因此,研究钢筋混凝土梁的疲劳性能,对保障结构的安全性和延长使用寿命具有重要意义。
二、疲劳载荷作用下的钢筋混凝土梁疲劳载荷作用下的钢筋混凝土梁是指在长期重复荷载作用下,材料会逐渐疲劳损伤,导致梁的性能逐渐下降,最终发生疲劳破坏。
其荷载作用方式分为单向反复荷载和多向反复荷载。
钢筋混凝土梁的疲劳破坏主要表现为裂纹的产生和扩展,最终导致梁的破坏。
因此,研究钢筋混凝土梁的疲劳性能,需要关注裂纹的发生和扩展过程。
三、疲劳性能计算方法1. 疲劳极限荷载计算疲劳极限荷载是指在给定的疲劳寿命下,能够承受的最大荷载。
其计算方法如下:Wf = W0 × Kf × Kfs其中,W0为静载荷,Kf为荷载系数,Kfs为应力系数。
荷载系数Kf的计算公式如下:Kf = 1 + (Nf / N0) ^ b其中,Nf为疲劳寿命,N0为静载荷下的寿命,b为材料参数。
应力系数Kfs的计算公式如下:Kfs = 1 / (1 - R)其中,R为应力幅值与极限应力的比值。
2. 疲劳裂纹扩展速率计算疲劳裂纹扩展速率是指裂纹在疲劳荷载作用下每个循环内扩展的长度。
其计算方法如下:da / dN = C × ΔK ^ m其中,C和m为材料参数,ΔK为应力强度因子范围。
3. 疲劳寿命计算疲劳寿命是指在给定的荷载下,材料能够承受的循环次数。
其计算方法如下:Nf = (W / Wf) ^ (1 / b)其中,W为荷载,Wf为疲劳极限荷载,b为材料参数。
四、疲劳性能试验方法疲劳性能试验是评价钢筋混凝土梁疲劳性能的重要手段。
常用的试验方法包括疲劳试验和裂纹扩展试验。
1. 疲劳试验疲劳试验是通过在钢筋混凝土梁上施加重复荷载,模拟实际使用条件下的荷载作用,评估梁的疲劳性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应力-应变关系
压应力较大时:在荷载的作用下,混凝 土内部微裂缝不断出现新的开裂和发展。 当荷载重复次数增加后,加载应力-应变曲 线就会由凸向应力轴转为凹向应力轴,以 致加载、卸载不能再形成封闭的滞回环。 如此循环,混凝土试件因严重开裂或变形 过大而破坏。这种因荷载重复作用而引起 的破坏称为混凝土的疲劳破坏现象。
应力-应变关系
高温后:应力-应变关系
实验依据:高温会造成混凝土的大量失水甚至部分 化学成分的转变,从而改变混凝土的内部结构。 实验目的:研究高温后混凝土的应力-应变关系
实验变量:100×100×300mm棱柱体,温度工况 为20℃、100℃、300℃、500℃、700℃、800℃
高温后:应力-应变关系
重复荷载作用下混凝土的 变形性能
目
录
• 重复荷载作用下混凝土的应力-应变关系
• 高温后重复荷载作用下混凝土的应力-应变关系 • 重复荷载作用下混凝土的强度
• 参考文献
应力-应变关系
混凝土是弹塑性材料,在重复荷载的作 用下会发生弹性应变和塑性应变(残余变 形)。一次加载、卸载循环中混凝土的应 力-应变曲线形成一闭合环。 压应力较小时:加、卸载次数的增加导 致残余变形逐渐减小, 应力-应变曲线的 上升段与下降段逐渐靠近,最后曲线环退 化成一条直线,此时混凝土基本处于弹性 工作状态下。
重复荷载作用下混凝土的强度
疲劳破坏现象:荷载重复作用而引起破坏的 称为混凝土的疲劳破坏现象。 疲劳强度→→疲劳破坏现象 疲劳强度:构件混凝土能支承某一定重复作 用次数的应力值。
重复荷载作用下钢筋混凝土的强度
影响因素: 应力变化幅值:缩小→提高 最大应力值 重复荷载作用的大小、次数、速度
参考文献
[1]凌知民.重复荷载作用下混凝土的残余变形.上海铁道大学 学报.1996.17(1) [2]吴波,马忠诚,欧进萍.高温后混凝土在重复荷载作用下的 应力-应变关系.地震工程与工程振动.1997.17 [3]陈俊杰,罗小勇.重复荷载作用下无粘结部分预应力混凝土 的变形试验研究.第十四届全国混凝土及预应力混凝土学 术会议论文.2007
高温后:应力-应变关系
公共点曲线:高温后混凝土在重复荷载作用下的
公共点(卸载曲线与再加载曲线的交点)如下图 所示。由试验结果可知,在低于300℃的高温作 用后,当应变小于0.55Σ时,公共点基本上位于包 络线上,即卸载点与公共点重合;而当温度大于 300℃时,即使在较低的应变比值时,公共点与 卸载点也不重合。超过300℃的高温作用后,混 凝土内部形成大量裂缝及孔洞,结构疏松,这就 是上述现象的主要原因。
高温后:应力-应变关系
高温后:应力-应变关系
高温后:应力-应变关系
高温后:应力-应变关系
高温后:应力-应变关系
直线-试验曲线 虚线-计算曲线
高温后:应力-应变关系
加载和卸载曲线: 遭受不同温度作用后混凝土的加载和 卸载曲线有很大的不同。在无量纲化曲线 上表现为对应同一残余应力变化,随着温 度升高,加载和卸载曲线就愈加陡直。此 外,对应于相同的卸载应变化,高温后混 凝土一般表现出较大的残余应变比值。
谢
谢
高温后:应力-应变关系
Байду номын сангаас温后:应力-应变关系
高温及加载过程对混凝土材料损伤的影响
对高温后的混凝土进行加载的过程,实际上 是有损伤材料的损伤进一步积累发展的过程。当 温度达到300℃以后,混凝土内部大量化学结合 水及吸附水丧失,改变了混凝土内部结构性质。 低于300℃时,随应变增加混凝土的损伤主要来 自外荷载,而高于300℃时由高温导致的初始损 伤是主要的。