循环冷却水中氯离子的危害和防护
循环冷却水主要控制指标影响及处理

循环冷却水主要控制指标影响及处理(一)浊度1、影响浊度变化的因素⑴泥沙与扬尘通过冷却塔进入循环水影响浊度,空气中扬尘越多,循环水浊度越高,工艺介质的泄漏也影响浊度。
⑵补充水中浊度越高,补水浊度、空气含尘量愈高,循环水浊度愈高;补水浊度、空气含尘量不变,若排污量减少,即浓缩倍数升高或浓缩倍数不变而运行时间增长,则循环水浊度增加。
⑶循环水中微生物大量繁殖所产生的粘泥和胶体会增加浊度。
而微生物的大量繁殖所产生的色度因能引起光的散射亦会影响浊度分析。
⑷循环水池液位过低,因池水搅动加剧,引起了池底污泥翻动,而浊度增加;循环水流量突然大幅增加或循环水泵短暂停止和再启动,因水由动到静、再由静到动会引起循环水浊度的变化。
⑸循环水pH值、碱度、Ca2+等严重超高限时,引起难溶盐类结晶析出,浊度增加;⑹油类进入循环水系统与水产生乳浊而浊度增加;腐蚀产物如铁﹥1mg/L时,易与氧作用而产生浑浊现象。
⑺系统热负荷突然大幅增加,管壁上随温度升高而溶解量增加的盐类溶解时,再汇同管壁上的其它污物进入水中,浊度亦增加。
⑻循环水旁滤池故障或停运会增加循环水浊度。
2、浊度偏高的解决措施⑴排放置换,加大排污量循环水浊度降低。
⑵降低补充水浊度和改善冷却塔周遍环境,有利于循环水浊度的降低。
⑶选好药剂配方、严格控制各项水质指标、搞好杀菌灭藻,保持系统运行稳定,能较好地控制循环水浊度。
⑷改善旁滤池过滤效果,可以降低循环水浊度。
(二)pH值1、pH值是关系到循环冷却水结垢或腐蚀的一个极其重要的水质指标。
其一规律是,pH值高时结垢趋势增加,腐蚀减少;pH值低时腐蚀增加,结垢减少。
2、影响pH值的主要因素⑴浓缩倍数在不调pH值循环冷却水系统,正常状态下循环水浓缩倍数越高、碱度越高、pH越高,因pH值与lgM成直线关系。
若浓缩倍数降低而碱度、pH随之降低。
⑵酸性物质(如CO2、H2S、NO X等)或碱性物质(如NH3等)漏入或由冷却塔进入循环水系统,引起pH下降或升高。
减轻循环水氯离子腐蚀危害的方法

减轻循环水氯离子腐蚀危害的方法李旻【摘要】石化装置循环冷却水系统采用杀菌灭藻处理,可以延长生产装置水冷器的使用寿命.杀菌灭藻处理通常采用含氯根杀菌剂控制菌藻,当浓缩倍数高时,Cl-浓度超出1 000 mg/L,对水冷器带来应力腐蚀危害.文中通过采用不含氯根的强力溴控制菌藻、降低循环水浓缩倍数运行等措施,减轻氯离子浓度超标引起的应力腐蚀危害.【期刊名称】《炼油与化工》【年(卷),期】2011(022)005【总页数】3页(P39-41)【关键词】循环水;浓缩倍数;Cl-浓度;应力腐蚀【作者】李旻【作者单位】胜利油田分公司胜利石化总厂设计室,山东东营257019【正文语种】中文【中图分类】TQ085.4胜利油田分公司胜利石化总厂循环冷却水系统设计循环水量为15 000 t/h,保有水量7 000 m3,循环水量6 000 m3/h,主要向重催、常减压、焦化、加制氢等生产装置供应循环冷却水。
系统大部分换热器材质为碳钢,少部分水冷器材质为不锈钢。
冷却水循环使用过程中会对冷换设备产生腐蚀、结垢和微生物繁殖形成的生物粘泥等各种危害。
为降低危害,就需要对循环冷却水进行缓蚀、阻垢和杀菌灭藻处理。
2009年,该厂(胜利石化总厂)循环冷却水系统采用某公司技术进行水质处理,通过自动加药系统定时定量投加缓蚀、阻垢药剂;自动检测循环水氧化还原电位(ORP)控制投加漂白水(NaClO)和强氯精杀菌剂控制菌藻;定期冲击投加NX1104非氧化性杀菌剂防止细菌产生抗药性。
投加的漂白水杀菌剂在水中发生如下反应:氯离子浓度超出1 000 mg/L的控制指标时,会对循环水系统水冷器带来应力腐蚀的危害[1]。
因此,应严格控制循环水氯离子浓度,减轻对水冷器的应力腐蚀危害。
新鲜水Cl-浓度在250 mg/L左右,循环水浓缩倍数提高到5~6时,水中氯离子浓度理论值为:5×250 mg/L=1 250 mg/L,大于1 000 mg/L,因此应严格控制浓缩倍数。
循环水水质分析及对策

在企业的生产运行中,许多单位的循环水投用污水回用水,冷却水重复利用是节水减排的必然趋势,但也不是无条件的,一方面,在水的重复利用过程中随着水分的蒸发,水中的溶解盐类、悬浮固体及非挥发性有机物质量浓度逐步增大,超过一定质量浓度时在管道设备特别是在换热面上发生结垢;另一方面,在水中有溶解氧存在的条件下,以铁素体的阳极发生反应可促进形成腐蚀电池,造成严重的垢下腐蚀,污垢覆盖下的贫氧区与裸露的富氧区之间也能形成氧浓度差电池,使金属遭受局部腐蚀。
反之,腐蚀也必然改变金属的表面形状,使结垢加剧。
这样,结垢、腐蚀相互促进,形成错综复杂的协同效应,影响甚至破坏生产系统的正常运行。
总之循环水的水质直接影响装置水冷器及管路的安全运行,水质超标,对换热器形成腐蚀,造成泄漏,泄漏进一步使水质恶化,恶化的水质再对冷换设备加重腐蚀,形成恶性循环,严重时可造成装置停产。
1循环水情况分析1)循环水中氯离子受回用污水中氯离子较高的影响,质量浓度越来越高(水质分析见表一),这是腐蚀设备速度增高的一个主要原因。
2)氨氮指标偏高促进微生物的繁殖。
在循环水中有充足的碳源、磷源、氧气、适宜的温度,非常适合细菌、藻类等微生物生长,若加上氮源,就会极大促进微生物的繁殖,硝化菌群大量繁殖,硝化菌群对水质最大的危害是使氨氧化成为亚硝酸根、硝酸根,从而影响氯的杀菌能力,产生酸性环境,造成水质恶化。
微生物没有得到有效控制,导致生物粘泥大量超标,给循环水场的连续,稳定生产造成了一系列的负面影响。
①造成换热器的沉积和腐蚀加剧,使换热效率降低,同时这种非均匀的沉积必然会促使氧浓差的形成,会使垢下腐蚀加剧,另外由于粘泥中有大量微生物的繁殖,一方面消耗氧气量,一方面产生许多酸性代谢物使局部微环境中的PH值降低,造成酸腐蚀。
②造成循环水水质恶化,水质稳定处理效果下降,生物粘泥的大量增加,会使循环水水质恶化,严重时会使循环水变黑发臭,同时造成循环冷却水水质稳定处理效果大大下降,设备的腐蚀速率和沉积速率增加-同时增加了供水生产成本,由于在循环水场出现生物粘泥故障时,供水生产不得不加大排污置换力度,造成供水生产中的补充水量、杀菌剥离剂及水处理药剂用量的增加,从而造成水成本的增加,严重时还会危及合成氨和尿素装置的正常运行。
发电厂循环水处理的必要性及措施

发电厂循环水处理的必要性及措施发电厂循环水处理的必要性及措施发电厂循环水处理的必要性及措施火力发电厂,循环冷却系统的运行方式分为两种:(1)开放式(2)半开放式。
开放式系统没有冷却设备,只有冷却水泵,适用于靠近江、河、水库等水源充足的电厂,在整个过程中,对水质处理工作较少。
一般发电厂受地理条件限制,多使用半开式循环,冷却水经凝汽器换热后,通过自然通风冷却塔淋至水池降温后循环使用,在此过程中,需采用物理和化学方法进行处理,保证水质在合格范围。
1 循环水处理的必要性循环水作为机组的冷却介质,负责供给凝汽器、冷油器、空冷器等重要设备的用水。
如水质恶化,将导致设备管束结垢,换热效率降低,真空下降,严重时导致设备腐蚀、泄漏,直接影响汽水品质。
循环水质恶化危害:1)降低热交换器的热传导效率;2)水流量降低,管束堵塞;3)垢下腐蚀;4)机组能耗上升;5)维护费用上升。
循环水处理需解决的问题:1)腐蚀问题提高冷却水pH值,选用高效合成耐腐蚀材料,并加耐腐涂层。
2)结垢问题控制冷却水中钙离子浓度,投加药剂。
3)微生物问题投加杀菌剂,采用物理方法,减少阳光直射。
2 循环水处理中的重点1)冷却水在循环使用中,不断蒸发、浓缩。
Ca (HCO3)2受热分解生成难溶CaCO3,即碳酸盐水垢。
循环水处理应防止磷酸盐硬度浓缩,防止Ca (HCO3)2分解,维持极限运行中不结垢的极限碳酸盐硬度值(Ht)。
2)循环冷却水系统中,重碳酸盐是发生水垢附着的主要成份,其浓度随着蒸发浓缩而增加,在其以过饱和状态存在或换热后水温上升时,发生反应。
Ca(HCO3)2→CaCO3+CO2+H2O, CaCO3在换热器表面附着、沉积,形成水垢,水垢导热性能较差。
3)循环水在冷却塔喷淋过程中,溶入大量O2,水中O2以过饱和状态存在,金属表面与之长期接触,溶解氧加剧电化学腐蚀。
4)循环水在使用过程中的不断蒸发和浓缩,盐类物质不断增多,其中Cl-的不断浓缩,致使阳极腐蚀加剧,引起点蚀。
浅谈炉水中氯离子浓度高的原因分析与防止

浅谈炉水中氯离子浓度高的原因分析与防止[摘要] 氯离子对热力机组的腐蚀危害极大,其腐蚀表现形式主要是破坏水冷壁管金属表面的钝化膜,进而向金属晶格里面渗透,引起金属表面性质的变化。
本文分析了炉水系统中氯离子对金属腐蚀的现象,并针对炉水系统内部氯离子的来源,提出了相应的解决措施。
[关键词] 炉水,氯离子,控制1 前言热力机组水汽系统内部金属表面保持良好的状态对其安全经济运行有着重要的意义。
然而由于水汽系统内部水质总会含有少量的杂质离子,使得金属表面常常出现腐蚀、结垢等现象,威胁着机组的正常运行。
杂质离子中以氯离子的危害最为严重。
溶解氧是通过给水系统带入锅炉的杂质来间接加剧炉管腐蚀的;锅炉给水中的溶解氧大部分会消耗在省煤器的受热面上,而绝不会跑到炉管的受热面上。
但是近年来的研究表明,一些动力锅炉和工业锅炉在运行中发生了由溶解氧和氯离子共同作用产生的破坏作用。
实验表明,在阳极极化条件下,介质中的氯离子可使金属发生孔蚀,而且随着氯离子浓度的增加,孔蚀电位下降, 更容易引发孔蚀,而后又加速孔蚀。
《火力发电机组及蒸汽动力设备水汽质量》中规定火电机组锅炉过热蒸汽压力为15.7-18.3Mpa、炉水采用磷酸盐处理时,炉水中氯离子含量在电力行业标准中有一个参考控制的数据小于500μg/L,当炉水的温度和PH 值控制不当,会破坏炉本体金属表面氧化膜,使炉管遭到腐蚀,而且氯离子会以溶解携带和机械携带的形式进入汽轮机中,氯离子的蒸汽携带系数相当可观,其总溶解携带系数为0.4%,机械携带系数约为0.2%,会造成汽轮机蒸汽通流部位积盐、结垢,国外有的资料表明,过热蒸汽中氯离子的浓度大于3μg/L,有造成汽轮机叶片等材质的点蚀及应力腐蚀的危险,因此,必须对炉水中的氯离子含量进行控制。
宁夏马莲台电厂现机组装机容量为2×330M W,机组水源主要取自灵武宁东鸭子荡水库水(黄河水),锅炉补给水方式为弱酸+超滤+反渗透+一级除盐系统+混床, 给水、凝结水均进行加氨、加联胺处理,凝结水加氨和联胺点设在精处理出水母管上;给水加药点设在除氧器出水下降管上;炉水处理方式为磷酸盐处理,加药点设在汽包加药管上。
浅谈炉水中氯离子浓度高的原因分析与防止

贵宾会员zhuh提供----浅谈炉水中氯离子浓度高的原因分析与防止黄丽萍宁夏马莲台电厂[摘要] 氯离子对热力机组的腐蚀危害极大,其腐蚀表现形式主要是破坏水冷壁管金属表面的钝化膜,进而向金属晶格里面渗透,引起金属表面性质的变化。
本文分析了炉水系统中氯离子对金属腐蚀的现象,并针对炉水系统内部氯离子的来源,提出了相应的解决措施。
[关键词] 炉水,氯离子,控制1 前言热力机组水汽系统内部金属表面保持良好的状态对其安全经济运行有着重要的意义。
然而由于水汽系统内部水质总会含有少量的杂质离子,使得金属表面常常出现腐蚀、结垢等现象,威胁着机组的正常运行。
杂质离子中以氯离子的危害最为严重。
溶解氧是通过给水系统带入锅炉的杂质来间接加剧炉管腐蚀的;锅炉给水中的溶解氧大部分会消耗在省煤器的受热面上,而绝不会跑到炉管的受热面上。
但是近年来的研究表明,一些动力锅炉和工业锅炉在运行中发生了由溶解氧和氯离子共同作用产生的破坏作用。
实验表明,在阳极极化条件下,介质中的氯离子可使金属发生孔蚀,而且随着氯离子浓度的增加,孔蚀电位下降, 更容易引发孔蚀,而后又加速孔蚀。
《火力发电机组及蒸汽动力设备水汽质量》中规定火电机组锅炉过热蒸汽压力为15.7-18.3Mpa、炉水采用磷酸盐处理时,炉水中氯离子含量在电力行业标准中有一个参考控制的数据小于500μg/L,当炉水的温度和PH 值控制不当,会破坏炉本体金属表面氧化膜,使炉管遭到腐蚀,而且氯离子会以溶解携带和机械携带的形式进入汽轮机中,氯离子的蒸汽携带系数相当可观,其总溶解携带系数为0.4%,机械携带系数约为0.2%,会造成汽轮机蒸汽通流部位积盐、结垢,国外有的资料表明,过热蒸汽中氯离子的浓度大于3μg/L,有造成汽轮机叶片等材质的点蚀及应力腐蚀的危险,因此,必须对炉水中的氯离子含量进行控制。
宁夏马莲台电厂现机组装机容量为2×330MW,机组水源主要取自灵武宁东鸭子荡水库水(黄河水),锅炉补给水方式为弱酸+超滤+反渗透+一级除盐系统+混床, 给水、凝结水均进行加氨、加联胺处理,凝结水加氨和联胺点设在精处理出水母管上;给水加药点设在除氧器出水下降管上;炉水处理方式为磷酸盐处理,加药点设在汽包加药管上。
循环水中氯离子去除方法.

循环冷却水中氯离子去除方法过量石灰-铝技术(UHLA )摘要:在循环冷却水中,氯离子是一种有害的成分,一方面氯离子易引发腐蚀,另一方面大多数的缓蚀阻垢剂对水中氯离子浓度都有限值。
氯离子可通过沉淀方式去除:CaAl 2Cl2(H)i2,由此本文开展平衡实验和动力学实验评估UHLA技术对氯离子的去除能力和反应条件。
平衡实验共进行48 组,其中NaCl 溶液为30mM , Ca (0H)2为0~200mM,偏铝酸钠为0~100mM。
实验结果表明UHLA可通过形成氯铝酸钙固体去除,同时这一过程可以通过一个反应动力学表达式证实。
实验结果也表明Ca4Al 2Cl2(H)i2的溶度积为10-94.75。
1、前言2000年,美国工业废水排放量约为120 亿吨,接近80%的废水来源于电力产业。
工业废水主要来源于冷却水,主要污染包括了高温、有毒化学物质、有机和无机污染物等,同时冷却水也是美国水资源的重要消费者。
为了污染物减排、节水和节约开支,必须提高水冷却水的循环倍数。
但循环倍数的提高必然导致难挥发物质的浓缩,进而引发腐蚀、结垢以及生物黏泥等问题。
为了减少这些问题的产生,需要去除冷却水中某些物质,包括Ca2+、Mg2+、磷、硅酸盐、硫酸盐和氯离子。
氯离子是其中一种难挥发且易导致腐蚀的物质,同时氯离子也会影响缓蚀阻垢剂的使用效果,一些研究表明在高氯浓度下,药剂的使用量也会增加。
石灰软化在冷却水中应用去除Ca2+和Mg2+,降低硬度和碱度,同时也可部分去处硅酸盐,但这和Mg2+含量有关。
石灰软化在去除硫酸盐和氯离子方面无效果。
UHL 是一种改进型的石灰软化方法,可以去除Ca2+、Mg2+、P043-、C032-、硅酸盐等。
UHLA 去除硅酸盐是通过高含量的石灰投加提高水体pH 并形成硅酸钙沉淀。
UHL 的流程如图1 所示,该流程分两步进行,第一步投加过量的Ca(0H)2 使水中钙离子提高同时pH达到11~12,硅酸盐、Mg2+、PO43「在这一阶段得到去除;第二步通过加入C02或Na2CO3去除多余的Ca2+,同时调节pH到适宜值。
电厂循环水系统中氯离子容许浓度研究

电厂循环水系统中氯离子容许浓度研究
杜天悦 金 燕 罗 旭 (中国石油乌鲁木齐石化分公司研究院,新疆 乌鲁木齐 830019) 摘 要:循环水的水处理剂可在一定程度上控制系统的腐蚀与结垢,但氯离子过高会影响其 性能。在不同补充水质和不同的循环水处理方案中,对氯离子最大容忍度各不相同。通过实验和 现场水质监测,分析氯离子对电厂循环水系统影响程度,确定其控制范围,可有效提高循环水系 统运行效率,保证平稳运行。 关键词:氯离子含量 循环水系统 阻垢率7 8.64 391.0 374.7 4.03 45458 0.0250
2016年 707.2 237.7 8.48 381.6 339.1 2.83 46086 0.0222
2014-2016年电厂循环水水质分析数据均值
时间 分析项目 钙硬(CaCO3计),mg/L 碱度(CaCO3计),mg/L pH 氯离子,mg/L 硫酸根,mg/L COD,mg/L 异养菌,个/mL 碳钢挂片腐蚀速率,mm/a
2014年 796.8 264.2 8.66 325.2 401.3 4.35 74863 0.0087
。如何制定合理的循环水氯离子控制范围,
已成为困扰企业节水及生产的瓶颈问题。我国目前 执行的GB 50050-2007《工业循环冷却水处理设计规 范》中,规定了氯离子控制指标为≤700~1000mg/L 之间,但在某电厂循环水系统实际运行过程中,存
作者简介:杜天悦(1973-) ,女,新疆伊犁人,高级工程师,硕士,主要从事质量管理和水处理 技术攻关和新技术应用研究工作。
DU Tian-yue, JIN Yan, LUO Xu (Urumqi Petrochemical Company Research Institute of China National Petroleum, Urumqi 830019, China)