人教版2017初中一年级(下册)数学 滚动练习三 二元一次方程组(PPT课件)
合集下载
人教版初中数学一年级下册《二元一次方程组》图文课件

x+10=y
X+10=200-x
思考一:请大家观察一下这三个方程 有什么区别? 思考二:你能给前两个方程取个名字吗?
二元一次方程
含有两个未知数,并且未 知数的项的次数都是 1的方 程叫做二元一次方程。
注意:方程两边都是整式。
1.判断下列方程是否为二元一次方程: 1 (1) 3y-2x =z+5 不是 (2) y x 不是 2 2 2 (3) x y 0 不是 (4) x 1 不是 y x y 2 y 0 是 (6) 3 - 2xy =1 不是 (5) 3 不是 (8) 2x=1-3y (7) 4x+ =0 是
①
x 1 y 0
1 1 x x x 2 2④ 2 ③ ② y 2 y1 y
1
x y 0 ∴方程组 的解是 ④② 2 x 3 y 2 ① ② ③
2 x 2 y 2
方程2x+3y=2的解 方程x+y=0的解 x+y=0 方程组 的解 2x+3y=2
(2)已知方程y=x+10,填写下表: x y … 85 90 95 100 105 … …
… 95 100 105 110 115
(3)有没有这样的解,它既是方程x+y=200的一 个解,又是方程 y=x+10的一个解? 二元一次方程组的两个方程的公共解,叫做二元一次
方程组的解。
1、把下列各组数的题序填入图中适当的位置,并 且写出方程组的解.
200
10
解:设苹果的质量是xg, 那么梨的质量是(200-x)g, 根据题意,得 X+10=200-x 解得:X=95 200-95=105 答:苹果95g,梨105g.
课件《二元一次方程组》课件PPT_人教版1

和9x-15y=0 ④ 的解相同,求a , b的值。
2y=、3已知x,y满足方程组
求代数式x+y的值。
x4=x+-14y=4
找x或y的系数的最小公倍数 当把未x=知-3代数入的①系得数的符号相反时,用_______.
2把、y=会-3用代加入减①消得元,法解二元一次方程组
∴y=-3x=-1
2、例4解方程组的基本思路是什么?主 自x=学-1检测2(6分钟)
把s=-1代入②得
2× (-1)-t=-5
t=3
s=-1
∴原方程组的解是
t=3
解:①×2得
10x-12y=18 ③
②×3得
21x-12y=-15 ④
③-④得 -11x=33
x=-3
把x=-3代入①得
5× (-3)-6y =9
y=-4
x=-3
∴原方程组的解是 y=-4
3、解下列方程组:
(2 x3
y)
当未知数的系数的符号相反时,用_______.
x=-1
学生自学,教师巡视(3分钟)
∴ x=-1
y=0
×3得:9x+6y=3
自学检测1(6分钟)
5、(思考题)解二元一次 方程组 学生自学,教师巡视(3分钟)
把s=-1代入②得
21x-12y=-15 ④
自学指导2(1分钟)
x y x y 第五章 二元一次方程组 7 ∴ x=-1 4x+4y=4 2 4 学生自学,教师巡视(3分钟) 4x+4y=4 x y x y 3 4、(选做题)已知关于X,y的方程组
×2得:4x+6y=8 ×3得:9x+6y=3 -得:-5x=5
x=-1 把x=-1代入得:2×(-1)+3y-4=0
(完整版)二元一次方程组优秀课件PPT

矩阵法解二元一次方程组
总结词
利用矩阵的运算性质和逆矩阵的性质,将二元一次方程组转化为线性方程组进行求解。
详细描述
矩阵法的基本思路是将二元一次方程组转化为线性方程组,然后利用矩阵的运算性质和 逆矩阵的性质求解。具体步骤包括:将二元一次方程组写成矩阵形式,然后对矩阵进行 变换,将其化为行最简形式,得到线性方程组;然后利用逆矩阵的性质求解线性方程组
示例
x + y = 1, 2x - y = 3
二元一次方程组的解法概述
01
02
03
消元法
通过加减或代入法消去一 个未知数,将二元一次方 程组转化为一元一次方程 求解。
替换法
通过一个方程中的未知数 表示另一个未知数,然后 将其代入另一个方程求解 。
矩阵法
利用矩阵表示方程组,通 过矩阵运算求解。
二元一次方程组的应用场景
化学问题
在化学中,有些问题涉及到两种化学物质之间的反应,如反 应速率和反应物浓度等,这时也可以用二元一次方程组来表 示和解决。
04
二元一次方程组的扩展知识
二元一次方程组的几何意义
平面直角坐标系
二元一次方程组可以表示平面上的点集,通过坐标系将代数问题与几何问题相互 转换。
直线交点
二元一次方程组的解对应于直线交点,即两个方程的公共解。
二元一次方程组的解的个数与性质
解的个数
二元一次方程组可能有无数解、唯一 解或无解,取决于方程组中方程的系 数和常数项。
解的性质
解的个数与方程组系数矩阵的秩和增 广矩阵的秩有关,通过比较两者可以 判断解的情况。
二元一次方程组的解的判定定理
定理内容
如果二元一次方程组的系数矩阵的秩等于增广矩阵的秩,则该方程组有唯一解;如果秩不相等,则该 方程组无解或有无数解。
人教版数学七年级下册8.1《二元一次方程组》教学课件(共20张PPT)

知识树
1.必做:习题8.1 第1、2、3题 2.选做:习题8.1 第5题 3.思考: x=2 写出一个以 为解的二元一次方程组. y = -1
鸡兔同笼
今有鸡兔同笼,
上有三十五头, 下有九十四足, 问鸡兔各几何?
设鸡x只,兔y只
x+y=35 2x+ 4y=94
-----------《孙子算经》
胜场积分+负场积分=总积分
解:设该队胜了X场,负了y场, 根据题意可得方程:
思考:在这 两个方程 中,x的含义 相同吗?y呢?
x + y = 16
2x + y = 28
方程组中有两个未知数,含有每个未知数的项的次 数都是1,并且一共有两个方程,像这样的方程组叫做
二元一次方程组.
下列方程组是二元一次方程组吗? x+y=1 5m-n=0 不是 1、 4、 不是 x+z=2 3n2=9
2、 x=0
y-3x=5
是
5、
2ab=6 不是 4b=8
3、 3m=2n
2m+n=8
是
6、
x=1 y=2
是
x + y = 16
2x + y = 28
x+y=2 x–y=1
请你说说二元一次方程组有哪些特点? ①方程组中共有2个不同未知数; ②含有每个未知数的项的次数都是1; ③共有两个一次方程。
探究:
做一做
1.下列方程中哪些是二元一次方程.
(1) x+y+z=9 不是 (2) 2x+10 =0 不是 (3) 2x+6y=14 (5) 2a+3b=5 (4) x2 +2x+1=0 不是
人教版数学七年级下册8.1《二元一次方程组》教学课件(共20张PPT)

胜场积分+负场积分=总积分
解:设该队胜了X场,负了y场, 根据题意可得方程:
x + y = 10
2x + y = 16
能力提升
《一千零一夜》中有这样一段文字:有一群 鸽子,其中一部分在树上欢歌,另一部分 在地上觅食,树上的一只鸽子对地上觅食 的鸽子说:“若从你们中飞上来一只,则 树下的鸽子就是整个鸽群的三分之一;若 从树上飞下去一只,则树上、树下的鸽子 就一样多了。”你知道树上、树下各有多 少只鸽子吗? 请列出二元一次方程组,并尝试求出方程组 的解。
等量关系: 解:设该队胜了X场, 负了y场
胜的场数+负的场数=总场数 x + y = 10 胜场积分+负场积分=总积分
2x + y = 16
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分, 负一场得1分.某队在10场比赛中得到16分,那么这个队胜 负场数分别是多少? 等量关系: 胜的场数+负的场数=总场数
联系前面的问题可知,去了11个小孩,4个大人.
考考你:
给你一对数值
x=2
y=5 ⑴ 你能写出一个二元一次方程,使 这对数值是满足这个方程的解吗? ⑵ 你能写出一个二元一次方程组,使 这对数值是满足这个方程组的解吗?
试一试:
1.如果a 2x
a 1
3y
3b - 2
100是关于
x,y的二元一次方程,求 a, b的值。
“一切问题都可以转化为数学问题,一切数学 问题都可以转化为代数问题,而一切代数问题又都可以转化为方程 问题,因此,一旦解决了方程问题,一切问题将迎刃而解!
—法国数学家 笛卡尔
8.1 二元一次方程组
真的吗?那你 们去了几个小 孩?几个大人 呢?
(完整版)二元一次方程组优秀课件PPT

答案解析
答案解析1
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
答案解析2
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
几何问题
例如,在计算几何图形的面积、 周长或体积时,需要使用二元一 次方程组来表示相关变量之间的
关系。
代数问题
例如,在解决代数方程组时,需要 使用二元一次方程组来表示未知数 之间的关系。
概率统计问题
例如,在计算概率分布或统计数据 时,需要使用二元一次方程组来表 示相关变量之间的关系。
科学中的二元一次方程组问题
化学反应
在化学反应中,常常需要用到 二元一次方程组来表示反应物 和生成物的关系。
几何问题
在解决涉及两个未知数的几何 问题时,如两点之间的距离、 角度等,常常需要用到二元一
次方程组。
02
二元一次方程组的解法
代入消元法
通过代入一个方程中的未知数,将其表示为另一个变量的函数,从而简化方程组的方法。
代入消元法是解二元一次方程组的一种常用方法。首先,选择一个方程中的未知数,用另一个未知数表示出来,然后将其代 入到另一个方程中,消去一个未知数,得到一个一元一次方程。接着解这个一元一次方程,得到一个变量的值,再将其代回 原方程中求得另一个变量的值。
01
02
03
购物问题
例如,在购买商品时,需 要计算不同商品的价格和 折扣,以确定最佳购买方 案。
交通问题
《求解二元一次方程组》二元一次方程组PPT课件

x7 2
所以,原方程组 的解是
x 7 2 y 1
3x 2y 4,
1.二元一次方程5组x 2y 6 ()
A.x 1,
y
1;
x 1,
B.
y
1 2
;
x 1,
C.
y
1 2
;
【解析】选C
的解是
x 1,
D.
y
1 2
.
2.(芜湖·中考)方程组
2x 3y 7,
x
3
y
8
① ②
的解是
C.
y
4
答案:选B
D.
x 4
y
1
3.已知(2x+3y-4)2+∣x+3y-7∣=0,则x= -3 ,
10
y= 3
.
4.(青岛·中考)解方程组:
3x 4 y
x
y
4.
19,
【解析】
3x 4 y 19, ①
x
y
4.
②
由②,得x=4+y ③
把③代入①,得12+3y+4y=19,
解得:y=1.
求解求出两个未知数的值 Nhomakorabea写解写出方程组的解
2. 二元一次方程组的解法有____代__入__法__、__加__减__法__ _.
解所得的一元一次方程④ ,得x=3
再把x=3代入③,得y=2
x+y=5
这样,我们就得到二元一次方程组 4x+3y=18
x=3 的解
y=2
因此,李明和妈妈共买了苹果3 kg,梨2 kg.
归纳
上面的解法是把二元一次方程组中的一个方程的某 个未知数用含有另一个未知数的代数式表示出来,并代 入另一个方程中,从而消去一个未知数,化二元一次方 程组为一元一次方程.这种解方程组的方法称为代入消元 法,简称代入法.
人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)

第八章 二元一次方程组
8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.
胜
负
合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】
8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.
胜
负
合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】