初中数学二元一次方程组知识点+习题
数学第八章 二元一次方程组知识点及练习题及解析(1)

数学第八章 二元一次方程组知识点及练习题及解析(1)一、选择题1.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23x y =+B .32y x +=C .23y x =-D .32y x =-2.下列判断中,正确的是( ) A .方程x y =不是二元一次方程B .任何一个二元一次方程都只有一个解C .方程25x y -=有无数个解,任何一对x 、y 都是该方程的解D .21x y =⎧⎨=-⎩既是方程24x y -=的解也是方程231x y +=的解3.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km .一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km ,设小汽车和货车的速度分别为xkm /h ,ykm /h ,则下列方程组正确的是( )A .()()45126456x y x y ⎧+=⎪⎨-=⎪⎩B .()312646x y x y ⎧+=⎪⎨⎪-=⎩C .()()31264456x y x y ⎧+=⎪⎨⎪-=⎩D .()()31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩4.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( )A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩5.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( )A .2,3B .3,2C .2,4D .3,46.已知下列各式:①12+=y x;②2x ﹣3y =5;③xy =2;④x+y =z ﹣1;⑤12123x x +-=,其中为二元一次方程的个数是( ) A .1 B .2 C .3 D .47.已知方程组222x y kx y +=⎧⎨+=⎩的解满足x+y=2,则k 的算术平方根为( )A .4B .﹣2C .﹣4D .2 8.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( )A .6种B .7种C .8种D .9种9.下列方程组的解为31x y =⎧⎨=⎩的是( )A .224x y x y -=⎧⎨+=⎩B .253x y x y -=⎧⎨+=⎩C .32x y x y +=⎧⎨-=⎩D .2536x y x y -=⎧⎨+=⎩10.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( )A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=3二、填空题11.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生A 的妻子是__________.12.方程组31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩的解是________.13.已知对任意a b ,关于x y ,的三元一次方程()()a b x a b y a b --+=+只有一组公共解,求这个方程的公共解_____________.14.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a +b ﹣m =_____.15.已知x m y n =⎧⎨=⎩是方程组20234x y x y -=⎧⎨+=⎩的解,则3m +n =_____.16.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.17.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.18.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =__________,y =__________.19.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 20.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.三、解答题21.阅读以下内容:已知有理数m ,n 满足m+n =3,且3274232m n k m n +=-⎧⎨+=-⎩求k 的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m ,n 的方程组3274232m n k m n +=-⎧⎨+=-⎩,再求k 的值;乙同学:将原方程组中的两个方程相加,再求k 的值; 丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x ,y 的方程组()()11821a x by b x ay ⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x ,也可以用①×2+②×5消去未知数y .求a 和b 的值.22.对x ,y 定义一种新运算T ,规定()22,ax byT x y a y+=+(其中a ,b 是非零常数且0x y +≠),这里等式右边是通常的四则运算.如:()223193,1314a b a b T ⨯+⨯+==+,()24,22am bT m m +-=-. (1)填空:()4,1T =_____(用含a ,b 的代数式表示);(2)若()2,02T -=-且()5,16T -=. ①求a 与b 的值;②若()()310,33,310T m m T m m --=--,求m 的值.23.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答: 自来水销售价格 每户每月用水量 单位:元/吨15吨及以下a超过15吨但不超过25吨的部分 b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.24.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).25.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)a b产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元.(1)求a、b的值;(2)若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一种最省钱的购买方案.26.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a 辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】将x 看做常数移项求出y 即可得. 【详解】由2x-y=3知2x-3=y ,即y=2x-3, 故选C . 【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .2.D解析:D 【分析】根据二元一次方程的概念和二元一次方程的解逐项进行判断即可. 【详解】A .方程x y =是二元一次方程,故错误;B .任何一个二元一次方程都有无数个解,故错误;C .方程25x y -=有无数个解,但并不是任何一对x 、y 都是该方程的解,故错误;D .21x y =⎧⎨=-⎩既是方程24x y -=的解也是方程231x y +=的解,故正确;故选:D . 【点睛】本题主要考查了二元一次方程的概念和二元一次方程的解,熟练掌握二元一次方程的概念和解法是解题的关键.3.D解析:D 【解析】设小汽车的速度为xkm/h ,则45分钟小汽车行进的路程为34xkm ;设货车的速度为ykm/h ,则45分钟货车行进的路程为34ykm .由两车起初相距126km ,则可得出34(x+y )=126;又由相遇时小汽车比货车多行6km ,则可得出34(x-y )=6.可得出方程组31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩()(). 故选:D .点睛:学生在分析解答此题时需注意弄清题意,明白所要考查的要点.另外,还需注意单位的换算,避免粗心造成失误.4.A解析:A 【分析】根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组. 【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩.故选:A . 【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组.5.B解析:B 【分析】由于这两个方程组的解相同,所以可以把这两个方程组中的第一个方程联立再组成一个新的方程组,然后求出x 、y 的解,把求出的解代入另外两个方程,得到关于a ,b 的方程组,即可求出a 、b 的值. 【详解】根据题意,得:55216x y x y +=⎧⎨+=⎩,解得:23x y =⎧⎨=⎩,将2x =、3y =代入1213ax by bx ay +=⎧⎨+=⎩,得:23122313a b b a +=⎧⎨+=⎩,解得:32a b =⎧⎨=⎩,∴a 、b 的值分别是3、2. 故选:B . 【点睛】本题主要考查了二元一次方程组的解,理解方程组的解即为能使方程组中两方程都成立的未知数的值是解题的关键.6.A解析:A 【分析】根据二元一次方程的定义即可判断. 【详解】①是分式方程,故不是二元一次方程; ②正确;③是二元二次方程,故不是二元一次方程; ④有3个未知数,故不是二元一次方程; ⑤是一元一次方程,不是二元一次方程. 故选:A . 【点睛】考查二元一次方程的定义,含有2个未知数,未知项的最高次数是1的整式方程就是二元一次方程.7.D解析:D 【解析】试题分析:把两个方程相加可得3x+3y=2+k ,两边同除以3可得x+y=23k+=2,解得k=4,因此k 的算术平方根为2. 故选D.8.A解析:A 【解析】试题解析:设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10,方程的整数解为:24xy=⎧⎨=⎩,43xy=⎧⎨=⎩,62xy=⎧⎨=⎩,81xy=⎧⎨=⎩,10{xy==,5xy=⎧⎨=⎩.因此兑换方案有6种,故选A.考点:二元一次方程的应用.9.D解析:D【解析】把31xy=⎧⎨=⎩代入选项A第2个方程24x y+=不成立,故错误;把31xy=⎧⎨=⎩代入选项B第2个方程3x y+=不成立,故错误;把31xy=⎧⎨=⎩代入选项C第1个方程3x y+=不成立,故错误;把31xy=⎧⎨=⎩代入选项D两个方程均成立,故正确;故选D.10.C解析:C【分析】根据二元一次方程的定义,列出关于m、n的方程组,然后解方程组即可.【详解】解:根据题意,得121 m nm n-=⎧⎨+-=⎩,解得21mn=⎧⎨=⎩.故选:C.二、填空题11.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且与有相同的奇偶性,即可得出关于x、y 的二元一次方程组,求出x、y的值,再找出符合和解析:c【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x 、y 都是正整数,且x y +与x y -有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合9x y -=和7x y -=的情况即可进行解答. 【详解】设一对夫妻,丈夫买了x 件商品,则钱数为2x ,妻子买了y 件商品,则钱数为2y ,依题意有x 2-y 2=48,即()()48x y x y +-=, ∵x 、y 都是正整数,且x y +与x y -有相同的奇偶性, 又∵x y x y +>-,48=24×2=12×4=8×6,∴242x y x y +=⎧⎨-=⎩或124x y x y +=⎧⎨-=⎩或86x y x y +=⎧⎨-=⎩,解得13x =,11y =或8x =,4y =或7x =,1y =,符合9x y -=的只有一种,可见A 买了13件商品,b 买了4件, 同时符合7x y -=的也只有一种,可知B 买了8件,a 买了1件, ∴C 买了7件,c 买了11件.由此可知三对夫妻的组合是:A 、c ;B 、b ;C 、a . 故答案为:c . 【点睛】本题考查了不定方程组的解及数的奇偶性,根据题意列出关于x 、y 的不定方程是解答此题的关键.12.【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可. 【详解】 解:①+③解得:2x=10,即x=5; 将x=5代入②得y=3; 将x=5,y=3代解析:532x y z =⎧⎪=⎨⎪=⎩【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可. 【详解】解:31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩①②③①+③解得:2x=10,即x=5;将x=5代入②得y=3;将x=5,y=3代入③可得z=2.故答案为532x y z =⎧⎪=⎨⎪=⎩.【点睛】本题考查了解三元一次方程组,观察方程组、寻找各方程的特点、运用整体思想代入消元是解答本题的关键.13.【分析】先把原方程化为的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:∴两式相加得:,即,把代入得到,,故此方程组的解为:.故答案为:.【点睛】本题主要考解析:01x y =⎧⎨=-⎩【分析】先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:(1)(1)0a x y b x y ---++=∴1010x y x y --=⎧⎨++=⎩两式相加得:20x =,即0x =,把0x =代入10x y --=得到,1y =-,故此方程组的解为:01x y =⎧⎨=-⎩. 故答案为:01x y =⎧⎨=-⎩. 【点睛】 本题主要考查的知识点是三元一次方程组的问题,运用三元一次方程组的解法的知识进行计算,即可解答.14.﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2解析:﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2)列,结合表一中每个数等于其所在的行数×列式即可列出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,将其代入m=(x+1)(y+1)即可得出m 的值,将a 、b 、m 的值代入a-b+m 即可得出结论.【详解】表二截取的是其中的一列:上下两个数字的差相等,∴a-15=15-12,解得:a=18;表三截取的是两行两列的相邻的四个数字:右边一列数字的差比左边一列数字的差大1, ∴42-b-1=36-30,解得:b=35;表四截取的是两行三列的相邻的六个数字:设42为第x 行y 列,则75为第(x+1)行(y+2)列,则有()()421275xy x y ⎧⎨++⎩==, 解得:143x y ⎧⎨⎩== 或3228x y ⎧⎪⎨⎪⎩==(舍去), ∴m=(x+1)(y+1)=(14+1)×(3+1)=60.∴a+b ﹣m=18+35-60=-7.故答案为:-7【点睛】此题考查一元一次方程的应用,规律型:数字变化类,根据表一中数的排列特点通过解方程(或方程组)求出a 、b 、m 的值是解题关键.15.4【分析】将方程组的解代入得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把代入方程组得: ,①+②得:3m+n =4,故答案为4【点睛】本题考查了方程组的解解析:4【分析】将方程组的解代入20234x y x y -=⎧⎨+=⎩得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把x m y n =⎧⎨=⎩代入方程组得: 20234m n m n -=⎧⎨+=⎩①② , ①+②得:3m +n =4,故答案为4【点睛】本题考查了方程组的解的作用.将方程组的解代入方程组的解后,可以求出未知数,然后进行计算;但认真观察整体变换求得的结果,准确率更高.16.14或19【解析】【分析】由、、、…、是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a1+2)2、(a2+2)2、…、(an+2)2有x 个9,y 个4,列不定方程解答即解析:14或19【解析】【分析】由1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a 1+2)2、(a 2+2)2、…、(a n +2)2有x 个9,y 个4,列不定方程解答即可确定正确的答案.【详解】解:设有x 个1,y 个0,则对应(a 1+2)2、(a 2+2)2、…、(a n +2)2中有x 个9,y 个4, ∵()()()()2222123222281n a a a a ++++++⋯++=,∴9x +4y =81 ∴499y x =-, ∵x ,y 均为正整数,∴y 是9的倍数,∴59x y =⎧⎨=⎩,118x y =⎧⎨=⎩, ∴这列数的个数n =x +y 为14或19,故答案为:14或19.【点睛】本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,得到不定方程然后求整数解即可.17.2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】,①-②得:3y=5-a ,解析:2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】322x y x y a +⎧⎨--⎩=①=②, ①-②得:3y=5-a ,解得:y=53a -, 把y=53a -代入①得: x+53a -=3, 解得:x=+43a , ∵方程组的解为正整数,∴5-a 与a+4都要能被3整除,∴a=2或-1,故答案为2或-1.【点睛】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键.18.5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组,再求解.故答案为4和5.点睛:本题考查了二元一解析:5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组23233222x yx y+=⎧⎨+=⎩,再求解45xy=⎧⎨=⎩.故答案为4和5.点睛:本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.19.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合解析:61 3【解析】由题意得:227{3393 a ba b++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值.20.【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增解析:1 8【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增加的营业额为m,则7月份摆摊增加的营业额为25m,设7月份外卖还需增加的营业额为x.∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5,∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,7a,由题意可知:3385552275k m x ak x am k a⎧+-=⎪⎪+=⎨⎪⎪+=⎩,解得:125215k ax am a⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,∴512 857208axa a a a==++,故答案为:18.【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.三、解答题21.(1)见解析;(2)a和b的值分别为2,5.【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k 的值即可;(2)根据加减消元法的过程确定出a 与b 的值即可.【详解】解:(1)选择甲,3274232m n k m n +=-⎧⎨+=-⎩①②, ①×3﹣②×2得:5m =21k ﹣8,解得:m =2185k -, ②×3﹣①×2得:5n =2﹣14k ,解得:n =2145k -, 代入m+n =3得:21821455k k --+=3, 去分母得:21k ﹣8+2﹣14k =15,移项合并得:7k =21,解得:k =3;选择乙, 3274232m n k m n +=-⎧⎨+=-⎩①②, ①+②得:5m+5n =7k ﹣6,解得:m+n =7-65k , 代入m+n =3得:7-65k =3, 去分母得:7k ﹣6=15,解得:k =3;选择丙,联立得:3232m n m n +=⎧⎨+=-⎩①②, ①×3﹣②得:m =11,把m =11代入①得:n =﹣8,代入3m+2n =7k ﹣4得:33﹣16=7k ﹣4,解得:k =3;(2)根据题意得:1327a b +=⎧⎨+=⎩, 解得:52b a =⎧⎨=⎩, 检验符合题意,则a 和b 的值分别为2,5.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(1)163a b +;(2)①11a b =⎧⎨=-⎩;②53m = 【分析】(1)把(4,-1)代入新运算中,计算得结果;(2)①根据新运算规定和T (-2,0)=-2且T (5,-1)=6,得关于a 、b 的方程组,解方程组即可;②把①中求得的a 、b 代入新运算,并对新运算进行化简,根据T (3m-10,m )=T (m ,3m-10)得关于m 的方程,求解即可.【详解】 解:(1)224(1)16(4,1)413a b a b T ⨯+⨯-+-==-; 故答案为:163a b +; (2)①∵()2,02T -=-且()5,16T -=, ∴42,225 6.4a ab ⎧=-⎪⎪-⎨+⎪=⎪⎩ 解得:1,1.a b =⎧⎨=-⎩②∵a=1,b=1-,且x+y≠0, ∴22()()(,)x y x y x y T x y x y x y x y -+-===-++.∴()310,33103610T m m m m m --=-+=-,()3,3103310610T m m m m m --=--+=-+∵()()310,33,310T m m T m m --=--,∴610610m m -=-+, 解得:53m =. 【点睛】本题考查了解一元一次方程、二元一次方程组的解法及新运算等相关知识,理解新运算的规定并能运用是解决本题的关键23.(155)a b +;23a b =⎧⎨=⎩;28.3吨;a 的值上调了0.4时b 的值上调了0.6或者a 的值上调了0.6时b 的值上调了0.1.【分析】(1)小王家今年3月份用水20吨,超过15吨,所以分两部分计费,15吨及以下费用为15a ,超过15吨的费用为(2015)5b b -=,故总费用155a b +;(2)依题意列方程组1564815105270a b a b +=⎧⎨++⨯=⎩,可求解; (3)在第(2)题的条件下,正好25吨时,所需费用60(元),可知若交水费76.5元,肯定用水超过25吨,可得用水量;(4)由小王家5月份用水量与4月份用水量相同与要比4月份多交9.6元钱水费,可列方程,满足方程的条件的解列出即所求.【详解】解:(1)小王家今年3月份用水20吨,要交消费为155a b +,故答案为:(155)a b +;(2)根据题意得,1564815105270a b a b +=⎧⎨++⨯=⎩, 解得:23a b =⎧⎨=⎩; (3)在第(2)题的条件下,当正好25吨时,可得费用15210360⨯+⨯=(元),由交水费76.5元可知,小王家用水量超过25吨,即:超过25吨的用水量(76.560)5 3.3=-÷=吨,合计本月用水量 3.32528.3=+=吨(4)设a 上调了x 元,b 上调了y 元,根据题意得:1569.6x y +=,52 3.2x y ∴+=,,x y 为整数角线(没超过1元),∴当0.6x =时,0.1y =元,当0.4x =时,0.6y =元,∴a 的值上调了0.4时,b 的值上调了0.6;a 的值上调了0.6时,b 的值上调了0.1.【点睛】本题考查了二元一次方程组的实际应用,并学会看图提练已知,用二元一次方程列举法来表示解.24.(1)A 款瓷砖单价为80元,B 款单价为60元.(2)买了11块A 款瓷砖,2块B 款;或8块A 款瓷砖,6块B 款.(3)B 款瓷砖的长和宽分别为1,34或1,15.【解析】【分析】(1)设A款瓷砖单价x元,B款单价y元,根据“一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等”列出二元一次方程组,求解即可;(2)设A款买了m块,B款买了n块,且m>n,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米,根据图形以及“A款瓷砖的用量比B款瓷砖的2倍少14块”可列出方程求出a的值,然后由92bb-+是正整教分情况求出b的值.【详解】解: (1)设A款瓷砖单价x元,B款单价y元,则有14034x yx y+=⎧⎨=⎩,解得8060 xy=⎧⎨=⎩,答: A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:7997 22114 22b ba ab a b a--⎛⎫⨯⨯=+⨯-⎪++⎝⎭,解得a=1.由题可知,92bb-+是正整教.设92bkb-=+(k为正整数),变形得到921kbk-=+,当k=1时,77(122b=>,故合去),当k=2时,55(133b=>,故舍去),当k=3时,34b=,当k=4时,15b=,答: B款瓷砖的长和宽分别为1,34或1,15.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.25.(1)3018ab=⎧⎨=⎩;(2)有4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器.(3)最省钱的方案是购买2 台甲种机器,8 台乙种机器.【解析】【分析】(1)根据购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元这一条件建立一元二次方程组求解即可,(2)设买了x台甲种机器,根据该公司购买新机器的资金不超过216万元,建立一次不等式求解即可,(3)将两种机器生产的产量相加,使总产量不低于1890吨,求出x的取值范围,再分别求出对应的成本即可解题.【详解】(1)解:由题意得12 236 a ba b-=⎧⎨-=⎩,解得,3018ab=⎧⎨=⎩;(2)解:设买了x台甲种机器由题意得:30+18(10-x)≤216解得:x≤3∵x为非负整数∴x=0、1、2、3∴有4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器.(3)解:由题意得:240+180(10-x)≥1890解得:x≥1.5∴1.5≤x≤ 3∴整数x=2 或3当x=2 时购买费用=30×2+18×8=204(元)当 x =3 时购买费用=30×3+18×7=216(元) ∴最省钱的方案是购买 2 台甲种机器,8 台乙种机器.【点睛】本题考查了利润的实际应用,二元一次方程租的实际应用,一元一次不等式的实际应用,难度较大,认真审题,找到等量关系和不等关系并建立方程组和不等式组是解题关键.26.(1) A 型车、B 型车都装满货物一次可以分别运货3吨、4吨;(2) 最省钱的租车方案是方案一:A 型车8辆,B 型车2辆,最少租车费为2080元.【分析】(1)设每辆A 型车、B 型车都装满货物一次可以分别运货x 吨、y 吨,根据题目中的等量关系:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,列方程组求解即可;(2)由题意得出3a+4b=35,然后由a 、b 为整数解,得到三中租车方案;(3)根据(2)中的所求方案,利用A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,分别求出租车费用即可.【详解】解:(1)设每辆A 型车、B 型车都装满货物一次可以分别运货x 吨、y 吨,依题意列方程组为:32172318x y x y +=⎧⎨+=⎩解得34x y =⎧⎨=⎩答:1辆A 型车辆装满货物一次可运3吨,1辆B 型车装满货物一次可运4吨.(2)结合题意,和(1)可得3a+4b=35∴a=3543b - ∵a、b 都是整数∴92a b =⎧⎨=⎩或55a b =⎧⎨=⎩或18a b =⎧⎨=⎩答:有3种租车方案:方案一:A 型车9辆,B 型车2辆;方案二:A 型车5辆,B 型车5辆;方案三:A 型车1辆,B 型车8辆.(3)∵A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案一:A 型车1辆,B 型车8辆,最少租车费为2120元.【点睛】此题主要考查了二元一次方程组以及二元一次方程的解法,关键是明确二元一次方程有无数解,但在解与实际问题有关的二元一次方程组时,要结合未知数的实际意义求解.。
初中数学方程与不等式之二元一次方程组技巧及练习题

初中数学方程与不等式之二元一次方程组技巧及练习题一、选择题1.如图,将长方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大18°.设∠BAE和∠BAD的度数分别为x,y,那么x,y所适合的一个方程组是()A.1890y xy x-=⎧⎨+=⎩B.18290y xy x-=⎧⎨+=⎩C.182y xy x-=⎧⎨=⎩D.18290x yy x-=⎧⎨+=⎩【答案】B【解析】【分析】首先根据题意可得等量关系:①∠BAD-∠BAE大18°;②∠BAD+2∠BAE=90°,根据等量关系列出方程组即可.【详解】解:设∠BAE和∠BAD的度数分别为x°和y°,依题意可列方程组:18290 y xy x-=⎧⎨+=⎩故选:B.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==【答案】A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为( )A.15 B.﹣15 C.16 D.﹣16【答案】B【解析】【分析】把方程组的解代入方程组可得到关于a、b的方程组,解方程组可求a,b,再代入可求(a+b)(a-b)的值.【详解】解:∵是关于x、y的方程组的解,∴解得∴(a+b)(a-b)=(-1+4)×(-1-4)=-15.故选:B.【点睛】本题考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题关键.4.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x,乙数为y,由题意得方程组()A.4243y xx y+=⎧⎨=⎩B.4243x yx y+=⎧⎨=⎩C.421134x yx y-=⎧⎪⎨=⎪⎩D.4234x yx y+=⎧⎨=⎩【答案】D【解析】【分析】按照题干关系分别列出二元一次方程,再组合行成二元一次方程组即可.【详解】解:由甲、乙两数之和是42可得,42x y +=;由甲数的3倍等于乙数的4倍可得,34x y =,故由题意得方程组为:4234x y x y +=⎧⎨=⎩, 故选择D. 【点睛】本题考查了二元一次方程组的应用,理清题干关系,分别列出两个二元一次方程即可.5.x=2y=7⎧⎨⎩是方程mx-3y=2的一个解,则m 为( )A .8B .232C .-232D .-192【答案】B 【解析】 【分析】把x 与y 的值代入方程计算即可求出m 的值. 【详解】解:把x=2y=7⎧⎨⎩代入方程得:2m-21=2, 解得:m=232, 故选:B . 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组 ( ) A .1204010x y y x+=⎧⎨=⎩B .1201040x y y x+=⎧⎨=⎩C .1204020x y y x+=⎧⎨=⎩D .1202040x y y x+=⎧⎨=⎩【答案】C 【解析】 【分析】首先根据题意可以得出以下两个等量关系:①制作盒身的白铁皮张数+制作盒底的白铁皮的张数=120,②盒身的个数×2=盒底的个数,据此进一步列出方程组即可. 【详解】∵一共有120张白铁皮,其中x 张制作盒身,y 张制作盒底, ∴120x y +=,又∵每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒, ∴4020y x =, ∴可列方程组为:1204020x y y x+=⎧⎨=⎩,故选:C. 【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.7.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( )A .k=-5B .k=5C .k=-10D .k=10【答案】A 【解析】 【分析】 根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值. 【详解】 ∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,∴5320x y x y -=⎧⎨-=⎩ , 解得,1015x y =-⎧⎨=-⎩ ; 把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0, ∴k=-5. 故选A. 【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.8.小李去买套装6色水笔和笔记本,若购买4袋笔和6本笔记本,他身上的钱还差22元,若改 成购买1袋笔和2本笔记本,他身上的钱会剩下34元.若他把身上的钱都花掉,购买这两种物品(两种都买)的方案有()A.3种B.4种C.5种D.6种【答案】C【解析】【分析】设1袋笔的价格为x元,1本笔记本的价格为y元,根据“若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元”,即可得出关于x,y的二元一次方程,结合x,y均为正整数即可得出结论,再设可购买a袋笔和b本笔记本,根据总价=单价×数量可得出关于a,b的二元一次方程,结合a,b均为正整数即可得出结论.【详解】设1袋笔的价格为x元,1本笔记本的价格为y元,依题意,得:4x+6y-22=x+2y+34,∴3x+4y=56,即y=14-34 x.∵x,y均为正整数,∴411xy⎧⎨⎩==,88xy⎧⎨⎩==,125xy⎧⎨⎩==,162xy⎧⎨⎩==.设可购买a袋笔和b本笔记本.①当x=4,y=11时,4x+6y-22=60,∴4a+11b=60,即a=15-114b,∵a,b均为正整数,∴44ab⎧⎨⎩==;②当x=8,y=8时,4x+6y-22=58,∴8a+8b=58,即a+b=294,∵a,b均为正整数,∴方程无解;③当x=12,y=5时,4x+6y-22=56,∴12a+5b=56,即b=56125a-,∵a,b均为正整数,∴34 ab==⎧⎨⎩;④当x=16,y=2时,4x+6y-22=54,∴16a+2b=54,即b=27-8a,∵a ,b 均为正整数, ∴119a b ⎧⎨⎩==,211a b ⎧⎨⎩==,33a b ⎧⎨⎩==.综上所述,共有5种购进方案. 故选:C . 【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9.方程组的解为,则被遮盖的前后两个数分别为( )A .1、2B .1、5C .5、1D .2、4【答案】C 【解析】 【分析】把x=2代入x+y=3求出y ,再将x ,y 代入2x+y 即可求解. 【详解】 根据,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5 故被遮盖的两个数分别为5和1. 故选C. 【点睛】主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y 值为解题关键.10.由方程组53x m y m-=⎧⎨+=⎩,可得到x 与y 的关系式是()A .2x y -=-B .2x y -=C .8x y -=D .8x y -=-【答案】C 【解析】 【分析】先解方程组求得5x m =+、3y m =-,再将其相减即可得解. 【详解】解:∵53x m y m -=⎧⎨+=⎩①②由①得,5x m =+ 由②得,3y m =-∴()()53538x y m m m m -=+--=+-+=. 故选:C【点睛】本题考查了解含参数的二元一次方程组、以及代数求值的知识点,熟练掌握相关知识点是解决本题的关键.11.用5个大小相同的小长方形拼成了如图所示的大长方形,若大长方形的周长是28,则每个小长方形的周长是( )A .12B .14C .13D .16【答案】A 【解析】 【分析】设小长方形的长为x,宽为y ,根据题意列出方程组,解方程组求出x,y 的值,进而可求小长方形的周长. 【详解】设小长方形的长为x,宽为y ,根据题意有2(3)228x y y x x =⎧⎨++⨯=⎩ 解得42x y =⎧⎨=⎩∴小长方形的周长为(42)212+⨯= , 故选:A . 【点睛】本题主要考查二元一次方程组的应用,读懂题意列出方程组是解题的关键.12.已知关于x y 、的方程组135x y a x y a +=-⎧⎨-=+⎩,满足12x y ≥,则下列结论:①2a ≥-;②53a =-时,x y =;③当1a =-时,关于x y 、的方程组135x y a x y a +=-⎧⎨-=+⎩的解也是方程2x y +=的解;④若1y ≤,则1a ≤-,其中正确的有( ) A .1个 B .2个C .3个D .4个【答案】C 【解析】 【分析】 ①解方程组得322x a y a =+⎧⎨=--⎩,由12x y ≥得到关于a 的不等式,解之可得答案;②将x =y代入方程组,求出a 的值,即可做出判断;③将x =y 代入322x a y a =+⎧⎨=--⎩求出x 、y 的值,从而依据x=y得出答案;④由y≤1得出关于a的不等式,解之可得.【详解】解:关于x、y的方程组135 x y ax y a+=-⎧⎨-=+⎩,解得:322 x ay a=+⎧⎨=--⎩.①∵12x y ≥,∴a+3≥−a−1,解得a≥−2,故①正确;②将x=y代入322x ay a=+⎧⎨=--⎩,得:4353xa⎧=⎪⎪⎨⎪=-⎪⎩,即当x=y时,a=53-,此结论正确;③当a=−1时,2xy=⎧⎨=⎩,满足x+y=2,此结论正确;④若y≤1,则−2a−2≤1,解得a≥−32,此结论错误;故选:C.【点睛】本题考查了二元一次方程组的解,解题的关键是牢记二元一次方程组的解题方法.13.若12xy=⎧⎨=-⎩是关于x和y的二元一次方程1ax y+=的解,则a的值等于()A.3 B.1 C.1-D.3-【答案】A【解析】【分析】将方程的解代入所给方程,再解关于a的一元一次方程即可.【详解】解:将12xy=⎧⎨=-⎩代入1ax y+=得,21a-=,解得:3a=.故选:A.【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.14.如果方程组4x y mx y m+=⎧⎨-=⎩的解是二元一次方程3x ﹣5y ﹣30=0的一个解,那么m 的值为( ) A .7 B .6C .3D .2【答案】D 【解析】 【分析】理解清楚题意,运用三元一次方程组的知识,把x ,y 用含m 的代数式表示出来,代入方程3x-5y-30=0求得a 的值. 【详解】()()142x y m x y m ⎧+⎪⎨-⎪⎩== (1)+(2)得x=52m , 代入(1)得y=-32m ,把x ,y 代入方程3x-5y-30=0得:3×52m +5×32m -30=0,解得m=2; 故选D . 【点睛】本题的实质是解三元一次方程组,用加减法或代入法来解答.15.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( ) A .104937466x y x y +=⎧⎨+=⎩B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩ D .466374910x y x y +=⎧⎨+=⎩【答案】A 【解析】 【分析】设49座客车x 辆,37座客车y 辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组. 【详解】解:设49座客车x 辆,37座客车y 辆,根据题意得:10 4937466x yx y+=⎧⎨+=⎩故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.16.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A.3201036x yx y-=⎧⎨+=⎩B.3201036x yx y+=⎧⎨+=⎩C.3201036y xx y-=⎧⎨+=⎩D.3102036x yx y+=⎧⎨+=⎩【答案】B【解析】分析:根据等量关系“一本练习本和一支水笔的单价合计为3元”,“20本练习本的总价+10支水笔的总价=36”,列方程组求解即可.详解:设练习本每本为x元,水笔每支为y元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:3 201036 x yx y+⎧⎨+⎩==,故选:B.点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.17.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是()A.106cm B.110cm C.114cm D.116cm【答案】A【解析】【分析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm ,单独一个纸杯的高度为ycm , 则29714x y x y +=⎧⎨+=⎩,解得17x y =⎧⎨=⎩ 则99x +y =99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm .故选:A .【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm 当作3个纸杯的高度,把14cm 当作8个纸杯的高度.18.一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h .设普通公路长、高速公路长分别为km km x y 、,则可列方程组为( )A .2 2.210060x y x y =⎧⎪⎨+=⎪⎩B .2 2.260100x y x y =⎧⎪⎨+=⎪⎩C .2 2.260100x y x y =⎧⎪⎨+=⎪⎩D .2 2.210060x y x y =⎧⎪⎨+=⎪⎩ 【答案】C【解析】【分析】设普通公路长、高速公路长分别为xkm 、ykm ,由普通公路占总路程的13,结合汽车从A 地到B 地一共行驶了2.2h ,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】设普通公路长、高速公路长分别为xkm 、ykm ,依题意,得: 2 2.260100x y x y =⎧⎪⎨+=⎪⎩ 故答案为:C .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.19.图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示.则被移动石头的重量为( )A .5克B .10克C .15克D .20克【答案】A【解析】【分析】【详解】解:设左天平的一袋石头重x 克,右天平的一袋石头重y 克,被移动的石头重z 克,由题意,得: 2010x y x z y z =+⎧⎨-=++⎩解得z=5答:被移动石头的重量为5克.故选A .【点睛】本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时理解图象天平反映的意义找到等量关系是关键.20.如果230x y z +-=,且20x y z -+=,那么x y 的值为( ) A .15 B .15- C .13 D .13- 【答案】D【解析】【分析】将题目中的两个方程相加,即可求得3x +y =0的值,根据x 与y 的关系代入即可求出x y的值.【详解】解:2x +3y −z =0 ① ,x −2y +z =0 ② ,①+②,得 3x +y =0, 解得,1=-3x y , 故选D .【点睛】本题主要考查解三元一次方程组,解答本题的关键是明确题意,求出所求式子的值.。
初一数学 第八章 二元一次方程组练习题(含答案)

二元一次方程组复习题一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246...22222222x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?找规律专题给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个()2、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _______个。
初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。
二元一次方程组练习题及答案

二元一次方程组练习题及答案二元一次方程组是初中数学中的重要内容,它是解决实际问题的一种常见方法。
通过练习题的形式,我们可以更好地掌握解决二元一次方程组的方法和技巧。
下面,我将给大家提供一些二元一次方程组的练习题及答案,希望能帮助大家更好地理解和掌握这一知识点。
练习题一:已知方程组:2x + 3y = 74x - y = 1请求方程组的解。
解答:我们可以采用消元法来解决这个方程组。
首先,将第二个方程的系数乘以2,得到:8x - 2y = 2然后,将第一、二个方程相减,消去x的项,得到:(8x - 2y) - (2x + 3y) = 2 - 7化简得:6x - 5y = -5现在,我们得到了一个只含有x和y的方程,可以继续求解。
将第一、三个方程相减,消去x的项,得到:(6x - 5y) - (2x + 3y) = -5 - 7化简得:4x - 8y = -12现在,我们得到了另一个只含有x和y的方程。
我们可以继续求解这个方程。
将第二个方程的系数乘以2,得到:8x - 16y = -24然后,将第三、四个方程相减,消去x的项,得到:(8x - 16y) - (4x - 8y) = -24 - (-12)化简得:4x - 8y = -12我们发现,这个方程与之前得到的第三个方程相同。
这意味着,我们可以得出结论:这个方程组有无穷多个解。
练习题二:已知方程组:x + y = 52x - 3y = 1请求方程组的解。
解答:同样地,我们可以采用消元法来解决这个方程组。
首先,将第一个方程的系数乘以2,得到:2x + 2y = 10然后,将第二个方程的系数乘以3,得到:6x - 9y = 3现在,我们得到了两个只含有x和y的方程。
将第三、四个方程相减,消去x的项,得到:(6x - 9y) - (2x + 2y) = 3 - 10化简得:4x - 11y = -7我们得到了一个新的方程,继续求解。
将第四个方程的系数乘以4,得到:16x - 44y = -28然后,将第五、六个方程相减,消去x的项,得到:(16x - 44y) - (4x - 11y) = -28 - (-7)化简得:12x - 33y = -21我们发现,这个方程与之前得到的第四个方程相同。
七年级初一数学第八章 二元一次方程组复习题及答案

七年级初一数学第八章二元一次方程组复习题及答案一、选择题1.古代一歌谣:栖树一群鸦,鸦树不知数:三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何?若设乌鸦有x只,树有y棵,由题意可列方程组()A.3551y xy x+=⎧⎨-=⎩B.3551y xy x-=⎧⎨=-⎩C.15355 x y yx⎧+=⎪⎨⎪=-⎩D.5315xyxy-⎧=⎪⎪⎨⎪=-⎪⎩2.若关于x,y的方程组()348217x ymx m y+=⎧⎨+-=⎩的解也是二元一次方程x-2y=1的解,则m 的值为( )A.52B.32C.12D.13.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为()A.50人,40人B.30人,60人C.40人,50人D.60人,30人4.若21xy=⎧⎨=⎩是关于x、y的方程组27ax bybx ay+=⎧⎨+=⎩的解,则(a+b)(a﹣b)的值为( )A.15 B.﹣15 C.16 D.﹣165.二元一次方程组2213x yax y+=⎧⎪⎨+=⎪⎩的解也是方程36x y-=-的解,则a等于()A.-3 B.13-C.3 D.136.规定”△”为有序实数对的运算,如果(a,b)△(c,d)=(ac+bd,ad+bc).如果对任意实数a,b都有(a,b)△(x,y)=(a,b),则(x,y)为( )A.(0,1) B.(1,0) C.(﹣1,0) D.(0,﹣1)7.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A、B、C、D表示的数分别是整数a、b、c、d,且满足2319a d,则b c+的值为()A.3-B.2-C.1-D.08.如果2x3n y m+4与-3x9y2n是同类项,那么m、n的值分别为()A .m=-2,n=3B .m=2,n=3C .m=-3,n=2D .m=3,n=29.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 斛,1 个大桶加上 5 个小桶可以盛酒 2 斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是( )A .5253x y x y +=⎧⎨+=⎩B .5352x y x y +=⎧⎨+=⎩C .5352x y x y +=⎧⎨=+⎩D .5=+352x y x y ⎧⎨+=⎩10.有若干只鸡和兔关在一个笼子里,从上面数,有30个头,从下面数,有84条腿﹐问笼中各有几只鸡和兔?若设笼中有x 只鸡,y 只兔,则列出的方程组为( )A .30284x y x y +=⎧⎨+=⎩B .302484x y x y +=⎧⎨+=⎩C .304284x y x y +=⎧⎨+=⎩D .30284x y x y +=⎧⎨+=⎩二、填空题11.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,则方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩的解为__________. 12.若m=m =________.13.若m 1,m 2,…,m 2019是从0,1,2,这三个数中取值的一列数,m 1+m 2+…+m 2019=1525,( m 1-1)2+(m 2-1)2+…+(m 2019-1)2=1510,则在m 1,m 2,…,m 2019中,取值为2的个数为___________.14.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 15.已知点 C 、D 是线段AB 上两点(不与端点A 、B 重合),点A 、B 、C 、D 四点组成的所有线段的长度都是正整数,且总和为29,则线段AB 的长度为__________________ . 16.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A 植树点植树,乙、丁两组到B 植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A 、B 两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.17.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.18.我校第二课堂开展后受到了学生的追捧,学期结束后对部分学生做了一次“我最喜爱的第二课堂”问卷调查(每名学生都填了调査表,且只选了一个项目),统计后趣味数学、演讲与口才、信息技术、手工制作榜上有名.其中选信息技术的人数比选手工制作的少8人;选趣味数学的人数不仅比选手工制作的人多,且为整数倍;选趣味数学与选手工制作的人数之和是选演讲与口才与选信息技术的人数之和的5倍;选趣味数学与选演讲与口才的人数之和比选信息技术与选手工制作的人数之和多24人.则参加调查问卷的学生有________人.19.解三元一次方程组经过①-③和③×4+②消去未知数z后,得到的二元一次方程组是________.20.端午节是中华民族的传统节日,节日期间大家都有吃粽子的习惯.某超市去年销售蛋黄粽、肉粽、豆沙粽的数量比为3:5:2.根据市场调查,超市决定今年在去年销售量的基础上进货,肉粽增加20%、豆沙粽减少10%、蛋黄粽不变.为促进销售,将全部粽子包装成三种礼盒,礼盒A有2个蛋黄粽、4个肉粽、2个豆沙粽,礼盒B有3个蛋黄粽、3个肉粽、2个豆沙粽,礼盒C有2个蛋黄粽、5个肉粽、1个豆沙粽,其中礼盒A和C的总数不超过200盒,礼盒B和C的总数超过210盒.每个蛋黄粽、肉粽、豆沙粽的售价分别为6元、5元、4元,且A、B、C三种礼盒的包装费分别为10元、12元、9元(礼盒售价为粽子价格加上包装费).若这些礼盒全部售出,则销售额为_____元.三、解答题21.对于数轴上的点A,给出如下定义:点A在数轴上移动,沿负方向移动a个单位长度(a是正数)后所在位置点表示的数是x,沿正方向移动2a个单位长度(a是正数)后所在位置点表示的数是y,x与y这两个数叫做“点A的a关联数”,记作G(A,a)={x,y},其中x y.例如:原点O表示0,原点O的1关联数是G(0,1)={-1,+2}(1)若点A表示-3,a=3,直接写出点A的3关联数.(2)①若点A表示-1,G(A,a)={-5,y},求y的值.②若G(A,a)={-2,7},求a的值和点A表示的数.(3)已知G(A,3)={x,y},G(B,2)={m,n},若点A、点B从原点同时同向出发,且点A的速度是点B速度的3倍.当|y-m|=6时,直接写出点A表示的数.22.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.23.我国古代的“河图”是由33⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图1,根据给出的“河图”的部分点图,可以得到:1515P ++=⎧⎨++=⎩●●●●●●●●●●●●●●●●●●●●●●●●如图2,已知33⨯框图中每一行、每一列以及每一条对角线上的三个数的和均为3,求x y ,的值并在图3中填出剩余的数字.24.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由; (3)求C ∠的度数。
二元一次方程组知识点及练习题

二元一次方程组知识点及练习题
一、基本定义及知识点
1、每个方程都含有两个未知数(x、y)并且含有未知数的项的次数都是1,像这样的方程叫二元一次方程,方程组叫二元一次方程组。
2、二元一次方程组的解法
⑴、带入消元法:将方程组中的一个方程的其中一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程中实现消元,进而求解。
例
⑵、加减消元法:当方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一元一次方程进而求解。
二、练习题
1、 2、 3、
4、 5、 6、
7、
8、
9、有一个两位数,其数字和为14,若调换个位数字与十位数字,就比原数大18则这个两位数是多少。
10、一个长方形的长减少10㎝,同时宽增加4㎝,就成为一个正方形,并且这两个图形的面积相等,求员长方形的长、宽各是多少。
(附加题,前三个答对给个棒棒糖)现有A、B、C三箱橘子,其中A、B两箱共100个橘子,A、C两箱共102个,B、C两箱共106个,求每箱各有多少个?(三元一次方程组)。
数学第八章 二元一次方程组知识点及练习题及答案

数学第八章 二元一次方程组知识点及练习题及答案一、选择题1.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是( )A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .2x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩2.用加减法将方程组2311255x y x y -=⎧⎨+=-⎩中的未知数x 消去后,得到的方程是( ).A .26y =B .816y =C .26y -=D .816y -=3.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ). A .5352x y x y +=⎧⎨+=⎩B .5253x y x y +=⎧⎨+=⎩C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩4.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x 人,小学在校生y 人,由题意可列方程组( ) A .30008%11%300010%x y x y +=⎧⎨+=⨯⎩B .30008%11%3000(110%)x y x y +=⎧⎨+=+⎩C .()()300018%111%300010%x y x y +=⎧⎨+++=⨯⎩D .30008%11%10%x y x y +=⎧⎨+=⎩5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .10011003x y x y +=⎧⎪⎨+=⎪⎩ C .100131003x y x y +=⎧⎪⎨+=⎪⎩D .1003100x y x y +=⎧⎨+=⎩ 6.端午节前夕,某超市用1680元购进A ,B 两种商品共60,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是( ) A .6036241680x y x y +=⎧⎨+=⎩B .6024361680x y x y +=⎧⎨+=⎩C .3624601680x y x y +=⎧⎨+=⎩D .2436601680x y x y +=⎧⎨+=⎩7.《九章算术》是我国东汉初年编订的一部数学经典著作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学二元一次方程组知识点+习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、二元一次方程含有两个未知数,并且两个未知数项的次数都是1的方程叫做二元一次方程. 判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——分母中不能含有字母; ②有两个未知数——“二元”;③含有未知数的项的最高次数为1——“一次”.关于x 、y 的二元一次方程的一般形式:ax by c +=(0a ≠且0b ≠). 二、二元一次方程的解使二元一次方程两边的值相等的两个未知数的一组取值叫做二元一次方程的解.在写二元一次方程解的时候我们用大括号联立表示.如:方程2x y +=的一组解为11x y =⎧⎨=⎩,表明只有当1x =和1y =同时成立时,才能满足方程. 一般的,二元一次方程都有无数组解,但如果确定了一个未知数的值,那么另一个未知数的值也就随之确定了.【例1】 若211350a b x y +-+=是关于x 、y 的二元一次方程,则a =______,b =______. 【例2】 已知方程()21320m n m x y ---+=是关于x 、y 的二元一次方程,则m =______,n =______.【例3】 下列方程中,属于二元一次方程的是( )模块一:二元一次方程知识精讲例题解析二元一次方程组的概念及解法A .10x y +-=B .54xy +=-C .2389x y +=D .12x y+=【例4】 在方程325x y -=中,若2y =-,则x =________.【例5】 二元一次方程21x y -=有无数多个解,下列四组值中不是该方程的解的是( )A .012x y =⎧⎪⎨=-⎪⎩B .11x y =⎧⎨=⎩C .10x y =⎧⎨=⎩D .11x y =-⎧⎨=-⎩【例6】 求二元一次方程25x y +=的所有非负整数解.【例7】 已知23x y =⎧⎨=⎩是关于x 、y 的二元一次方程432x y a =+的一组解,求231a a -+的值.一、二元一次方程组由几个一次方程组成并且一共..含有两个未知数的方程组叫做二元一次方程组. 特别地,134x y x +=⎧⎨-=⎩和31x y =⎧⎨=-⎩也是二元一次方程组.二、二元一次方程组的解模块二:二元一次方程组的概念知识精讲二元一次方程组中所有方程(一般为两个)的公共解...叫做二元一次方程组的解. 注意:(1)二元一次方程组的解一定要写成联立的形式,如方程组2397x y x y -=⎧⎨+=⎩的解是61x y =⎧⎨=⎩.(2)二元一次方程组的解必须同时满足所有方程,即将解代入方程组的每一个方程时,等号两边的值都相等.例如:因为12x y =⎧⎨=⎩能同时满足方程3x y +=、1y x -=,所以12x y =⎧⎨=⎩是方程组31x y y x +=⎧⎨-=⎩的解.【例8】 下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B .52313x y y x-=⎧⎪⎨+=⎪⎩C .20135x z x y +=⎧⎪⎨-=⎪⎩D .57x y =⎧⎨=⎩【例9】 下列各组数中,_________是方程32x y -=的解;_________是方程29x y -=的解;________是方程组3229x y x y -=⎧⎨-=⎩的解.①.11x y =-⎧⎨=-⎩;②.51x y =⎧⎨=⎩; ③.32x y =⎧⎨=⎩;④.25x y =⎧⎨=-⎩【例10】 下列方程中,与方程325x y +=所组成的方程组的解是32x y =⎧⎨=-⎩的是()A .34x y -=B .434x y +=C .1x y +=D .432x y -=【例11】 请以122x y ⎧=⎪⎨⎪=-⎩为解,构造一个二元一次方程组__________________.例题解析【例12】 若x ay b =⎧⎨=⎩是方程31x y +=的一个解,则934_______a b ++=.【例13】 若关于x 、y 的二元一次方程组2x y m x my n -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则m n -的值是()A .1B .3C .5D .2【例14】 已知方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组()()()()223113325130.9x y x y ⎧+--=⎪⎨++-=⎪⎩的解是_________.一、消元思想二元一次方程组中有两个未知数,如果能“消去”一个未知数,那么就能把二元一次方程组转化为我们熟悉的一元一次方程.这种将未知数的个数由多化少、逐一解决的思想,叫做“消元”.使用“消元法”减少未知数的个数,使多元方程组最终转化为一元方程,再逐步解出未知数的值. 二、代入消元法1、代入消元法的概念将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法.2、用代入消元法解二元一次方程组的一般步骤:①等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y ),用另一个未知数(如x )的代数式表示出来,即将方程写成y ax b =+的形式;模块三:二元一次方程组的解法知识精讲②代入消元:将y ax b =+代入另一个方程中,消去y ,得到一个关于x 的一元一次方程; ③解这个一元一次方程,求出x 的值;④回代:把求得的x 的值代入y ax b =+中求出y 的值,从而得出方程组的解; ⑤把这个方程组的解写成x ay b =⎧⎨=⎩的形式. 三、加减消元法1、加减消元法的概念当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法.2、用加减消元法解二元一次方程组的一般步骤:①变换系数:利用等式的基本性质,把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等;②加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求得一个未知数的值;④回代:将求出的未知数的值代入原方程组的任何一个方程中,求出另一个未知数的值;⑤把这个方程组的解写成x ay b =⎧⎨=⎩的形式.【例15】 把方程513yx y +=+写成用含x 的式子表示y 的形式,下列各式正确的是( ) A .352y x =+B .3102y x =-C .31522y x =--D .31522y x =-+例题解析【例16】 若222x ty t⎧=⎪⎨=⎪⎩,则x 与y 之间的关系式为_________.【例17】 已知代数式133m x y --与52n m n x y +是同类项,那么m 、n 的值分别是()【例18】 A .21m n =⎧⎨=-⎩B .21m n =-⎧⎨=-⎩C .21m n =⎧⎨=⎩D .21m n =-⎧⎨=⎩【例19】 若()2523100x y x y +-+--=,则( )A .32x y =⎧⎨=⎩B .23x y =⎧⎨=⎩C .50x y =⎧⎨=⎩D .05x y =⎧⎨=⎩【例20】 用代入消元法解下列二元一次方程组:(1)2342x y y +=⎧⎨=⎩(2)50180x y x y =-⎧⎨+=⎩(3)53210x y x y -=-⎧⎨+=⎩(4)34194x y x y +=⎧⎨-=⎩【例21】 解二元一次方程组345527x y x y +=⎧⎨-=⎩①②正确的消元方法是() 【例22】 A .53⨯+⨯①②,消去x B .35⨯-⨯①②,消去x 【例23】 C .2-⨯①②,消去yD .2+⨯①②,消去y【例24】用加减消元法解下列二元一次方程组:(1)37232x yx y+=⎧⎨-=⎩(2)3263524x yx y-=⎧⎨-=⎩(3)3210512x yx y+=⎧⎨+=⎩(4)324432x yy x-=⎧⎨-=-⎩【例25】已知x、y满足方程组2100721006x yx y+=⎧⎨+=-⎩,则x y-的值为_________.【例26】在方程组2122x y mx y+=-⎧⎨+=⎩中,若未知数x、y满足0x y+>,则m的取值范围为()A.3m> B.3m< C.3m≥D.3m≤【例27】解下列二元一次方程组:【例28】(1)235455y xx y=⎧⎨+=⎩(2)2333215x yx y-=-⎧⎨+=⎩【例29】【例30】【例31】【例32】【例33】【例34】(3)()()()()31425125y xx y⎧-=-⎪⎨-=+⎪⎩(4)2153224111466x yx y⎧+=-⎪⎪⎨⎪-=-⎪⎩【例35】 解二元一次方程组:(1)1243231y x x y ++⎧=⎪⎨⎪-=⎩(2)21322453132045y x y x --⎧+=⎪⎪⎨++⎪-=⎪⎩(3)2320.40.7 2.8yx x y ⎧+=⎪⎨⎪+=⎩【例36】已知关于x 、y 的方程组227x y kx y k -=-⎧⎨+=⎩,则:________x y =.【习题1】下列各式是二元一次方程的是()A .30x y z -+=B .30xy y x -+=C .12023x y -=D .210y x+-=【习题2】若2211a b a b x y -+--=是关于x 、y 的二元一次方程,那么a 、b 的值分别是()随堂练习A .10a b =⎧⎨=⎩B .01a b =⎧⎨=-⎩C .21a b =⎧⎨=⎩D .23a b =⎧⎨=-⎩【习题3】二元一次方程组224x y x y -=⎧⎨+=⎩的解是()A .12x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .02x y =⎧⎨=-⎩D .20x y =⎧⎨=⎩【习题4】由4360x y -+=,可以得到用y 表示x 的式子为________________.【习题5】解下列方程: 【习题6】(1)2328y xy x =⎧⎨+=⎩(2)1035x y x y +=⎧⎨-=⎩【习题7】 【习题8】 【习题9】【习题10】(3)233511x y x y +=⎧⎨-=⎩(4)1232(1)11x yx y +⎧=⎪⎨⎪+-=⎩ 【习题11】 【习题12】 【习题13】【习题14】(5)372513x y x y -=⎧⎨+=⎩(6)347910250m n m n -=⎧⎨-+=⎩【习题15】【作业1】若24341358m n m n x y --+--=是关于x 、y 的二元一次方程,则22()()m n m mn n -++的值为_________.【作业2】若12x y =⎧⎨=⎩是关于x 、y 的二元一次方程31ax y -=的解,则a 的值为( ) A .5-B .1-C .2D .7 【作业3】下列方程组:①220x y x y -=⎧⎨+=⎩;②11x y y z -=⎧⎨-=⎩;③12xy x y =⎧⎨+=⎩;④120x y =⎧⎨-=⎩其中,是二元一次方程组的是_________.【作业4】已知12x y =-⎧⎨=⎩是关于x 、y 的方程组12x ay bx y +=-⎧⎨-=⎩的解,则a b +=______. 【作业5】若12x y =⎧⎨=-⎩是关于x 、y 的方程1ax by -=的一组解,且3a b +=-,求52a b -的值.【作业6】解下列二元一次方程组:【作业7】(1)45805620x y y x -=⎧⎨+=⎩ (2)23953x y x y +=-⎧⎨-=⎩【作业8】【作业9】【作业10】课后作业【作业11】(3)()39312x y y x +=⎧⎪⎨-=⎪⎩ (4)1243231y x x y ++⎧=⎪⎨⎪-=⎩ 【作业12】【作业13】【作业14】【作业15】(5)734628x y x y +=⎧⎨+=⎩ (6)134723m n m n ⎧-=-⎪⎪⎨⎪+=⎪⎩。