新北师大版九年级数学上第四章教案

合集下载

新北师大版九年级数学上第四章教案

新北师大版九年级数学上第四章教案

新北师大版九年级数学上第四章教案教学目标1.理解函数的概念,了解常见函数类型及其特征。

2.能够绘制函数的图像,掌握函数图像的基本特征。

3.能够进行函数之间的简单变形和组合,掌握函数的基本变换规律。

4.能够应用函数概念和函数图像进行实际问题的求解。

教学重点1.函数的概念和特征。

2.函数图像的绘制和特征。

3.函数的变形和组合。

教学难点1.函数的变形和组合。

2.函数在实际问题中的应用。

教学方法课堂讲解、案例分析、演示、合作探究。

教学过程第一节:函数的基本概念和特征活动设计1.让学生参考实例,讨论出函数的基本概念是什么。

2.教师向学生介绍函数的具体定义,强调自变量和因变量的概念。

3.介绍一些常见的函数类型及其特征,如一次函数、二次函数、指数函数等。

4.让学生通过观察函数的表格、图像和公式特征,判断其函数类型。

教学要点1.函数的定义;2.自变量和因变量的概念;3.各种常见函数类型的特征。

第二节:函数图像活动设计1.让学生观察一些函数的图像,总结出函数图像的基本特征。

2.让学生利用公式和表格等信息,自己尝试绘制函数图像。

3.将学生的绘制结果进行对比和评价,帮助学生发现问题和改进方法。

教学要点1.函数图像的基本特征;2.利用公式和表格等信息绘制函数图像的方法。

第三节:函数的变形和组合活动设计1.介绍一些常见的函数变形和组合方式,如平移、翻转、缩放、复合等。

2.让学生通过观察和思考,掌握这些函数变形和组合的具体规律。

3.让学生通过练习和案例分析,应用函数变形和组合的知识,解决一些实际问题。

教学要点1.函数变形和组合的基本规律;2.应用函数变形和组合的方法。

课堂练习1.根据给出的函数,判断它的类型和基本特征:y=5x−12.根据给出的函数公式和表格,绘制函数图像:y=2x2+33.对于函数f(x)=x2+1,求f(2)和f(−3)的值。

课后作业1.总结本课所学的重点内容。

2.完成本节课的练习和作业。

3.了解更多的函数类型和应用场景,扩展思维和知识面。

北师大版九年级数学上第四章视图与投影全章教案

北师大版九年级数学上第四章视图与投影全章教案

第四章视图与投影1.视图(一)一、教学目标1. 知识与技能:经历探索基本几何体(圆柱、圆锥、球)与其三视图之间的关系。

能根据三视图描述基本几何体或实物图形,培养和发展学生推理能力和空间观念。

2. 过程与方法:结合具体实例,初步体会视图在现实生活中的应用,感受数学与现实生活的密切联系,增强学生的数学应用意识。

3. 情感态度与价值观:让学生在课堂活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力。

二、教学重点和难点1、重点:会画圆柱、圆锥、球的三种视图,体会这几种几何体与其视图之间的相互转. 画几何体的三视图。

会画直棱柱的三种视图。

2、难点:画直棱柱的三种视图要明确图中实线和虚线的区别。

三、教学过程第一环节:情境问题引入活动内容:1还记得一个物体的主视图、左视图和俯视图吗?2你能自己或者与同伴画出下图的主视图、左视图和俯视图吗?附答案1、主视图:2、左视图:3、俯视图:第二环节:活动探究(获取信息,体会特点)活动内容:110页的图中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,他们的形状各是什么样的?活动目的:首先让学生经历将实物抽象成几何体的过程,培养学生的抽象能力和想象能力,并通过亲身体验归纳总结三种视图的不同特点,及在现实生活中的实际意义。

第三环节:合作学习活动内容:(1)在下图中找出上图中各物体的主视图。

(1) (2) (3)(4) (5) (6)(2) 上图中各物体的左视图是什么?俯视图呢?与同伴进行交流。

活动目的:以问题串的形式引导学生逐步深入地思考三种视图的区别与联系。

前一个问题的设置帮助培养学生的空间想象能力,问题(2)的设置帮助学生体会:三种视图在长、宽、高等方面的联系。

在以上两个问题的铺设下,图表的设置起到归纳总结的作用 。

第四环节:练习提高活动内容:如图是一个蒙古包的照片。

小明认为这个蒙古包可以看成下图所示的几何体,并画出这个几何体的三种视图,你同意小明的做法吗?主视图 左视图俯视图活动目的:对本节知识进行巩固练习。

第4章本章复习教案-初中九年级上册数学(教案)(北师大版)

第4章本章复习教案-初中九年级上册数学(教案)(北师大版)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了多边形性质、相似图形、解直角三角形和一元二次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对本章知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-比例线段与相似图形:掌握比例线段的性质和相似图形的判定、性质,尤其是位似图形的概念和应用。例如,相似三角形的对应角度相等,对应边长成比例。
-解直角三角形:熟练运用锐角三角函数的定义和性质,解决实际问题中的直角三角形计算。例如,已知直角三角形的一边和一角,求解其他边长和角度。
-一元二次方程:掌握一元二次方程的解法,包括因式分解法、公式法、配方法,并能应用于实际问题的解决。例如,根据已知条件列出方程,并求解方程得到实际问题中的未知数。
5.培养学生的数学抽象和数学运算素养,通过综合运用各种数学知识和方法,提高学生解决复杂问题的能力。
三、教学难点与重点
1.教学重点
-多边形性质:强调三角形的内角和定理、外角性质,以及四边形中矩形、菱形、正方形的判定和性质。例如,矩形的特点是四个角都是直角,对边平行且相等;菱形的对角线互相垂直平分,对边相等;正方形具有矩形和菱形的全部性质。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解多边形性质、相似图形、解直角三角形和一元二次方程的基本概念。这些概念是解决几何问题的关键,它们广泛应用于生活中的各种实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用一元二次方程解决实际生活中的问题,以及相似图形在建筑设计中的应用。

九年级数学北师大版上册 第4章《4.3相似多边形》教学设计 教案

九年级数学北师大版上册 第4章《4.3相似多边形》教学设计 教案

设计人审核人上课时间第周科目数学班级共1课时,第 1 课时教学内容北师大版数学书86页至88页课题 4.3相似多边形学习目标1、经历相似多边形概念的形成过程,了解相似多边形的含义.2、在探索相似多边形边、角的关系中,进一步发展学生的观察、判断、归纳能力.3、在交流和反思过程中,体验数学活动中充满了探索性和创造性.重难点教学重点:探索相似多边形的概念过程,以及从定义的角度去判断两个多边形是否相似教学难点:探索相似多边形的概念过程导学流程情境引入一、自主学习请找出形状相同的图形:探索发现:六边形ABCDEF与六边形A1B1C1D1E1F1是形状相同的图形;其中∠A与∠A1, ∠B与∠B1, ∠C与∠C1, ∠D时间二、点拨归纳概念总结:例1、如图,梯形ABCD与梯形A′B′C′D′相似,AD∥BC,A′D′∥B′C′,∠A=∠A′,AD=4,A′D′=6,AB=6,B′C′=12,∠C=60°.求:(1)梯形ABCD与梯形A′B′C′D′的相似比k;(2)A′B′和BC的长;(3)∠D′的大小..64126AB CD A'B'C'D'如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是()A.∠E=2∠KB.BC=2HIC.六边形ABCDEF的周长=六边形GHIJKL的周长D.以上答案都不对EFAB CD KLGHIJ例2、如图,G是正方形ABCD的对角线AC上一点,。

九年级数学上册第四章图形的相似4.3相似多边形教案新版北师大版

九年级数学上册第四章图形的相似4.3相似多边形教案新版北师大版
4.3 相似多边形
课题 教法
4.3 相似多边形 详思+诱思、合作交流
备课 日期 授课 日期
ห้องสมุดไป่ตู้学法
观察、操作、交流、探究
教具
多媒体
教 (1)知识与技能:使学生理解相似多边形的定义,掌握定义中的两个条件,理解 相似比的意义.
学 (2)过程与方法:经历相似多边形概念的形成过程,进一步发展学生归纳、类比、 交流等方面的能力.
(让学生独立作出判断,并说明理由.通过这个易出错的例子,使学生认识到直观有时是 不可靠的,需要通过定义的两个条件进行判断.) 三、课堂小结 通过这节课的学习你有什么收获? (学生自由回答,培养学生的语言表达力) 学生归纳总结:相似多边形的概念既是性质又是判定,运用性质时对应顶点字母写在对应 的位置上,同时知道相等角所对边是对应边,对应边所对角是对应角。相似比有顺序要求 四、能力评估 1.下面两个矩形相似,则它们对应边的比是_____ 2 如图,两个正八边形的边长分别为 a 和 b,它们相似吗?为什么? 3.如图,矩形草坪长 20m,宽 10m,沿草坪四周外围有 1m 宽的环形小路.小路内外边缘的矩形 相似吗?
目 (3)情感与能力:经历自主探究、合作交流等学习方式的学习及激励评价,让学 生在学习中锻炼能力.

重点
理解相似多边形的定义,掌握定义中的两个条件.
难点
利用定义判断两个多边形是否相似.
课题 板 定义 书 例题讲解 设 课堂练习 计
教 后 这个年龄阶段的学生有很强的好奇心,并且有较强的观察能力,因而教学过程中 反 思 尽可能多给学生表现的机会,激发学生探究意识。
(2)如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成 比例吗? (通过对两个典型范例的分析,加深对相似多边形的本质特征的理解.让学生充分发表看 法,然后老师总结。) 4.巩固新知:(巩固相似多边形的定义这一最基本的判断方法。) 例 下列每组图形是相似多边形吗?试说明理由。 (1)正三角形 ABC 与正三角形 DEF; (2)正方形 ABCD 与正方形 EFGH.

最新北师大版九年级数学上册教案(完美版)第四章3 相似多边形

最新北师大版九年级数学上册教案(完美版)第四章3 相似多边形

3相似多边形【知识与技能】1.了解相似多边形的概念和性质.2.在简单情形下,能根据定义判断两个多边形相似.3.会用相似多边形的性质解决简单的几何问题.【过程与方法】理解相似多边形的概念和性质,并能熟练运用.【情感态度】激发学习兴趣,培养想象力,挖掘学生潜力.【教学重点】相似多边形的定义和性质.【教学难点】如何判断两个多边形是否相似.一、情境导入,初步认识如图:四边形A1B1C1D1是四边形ABCD经过相似变换所得的图象.请分别求出这两个四边形的对应边的长度,并分别量出这两个四边形各个内角的度数.然后与你的同伴讨论:这两个四边形的对应角之间有什么关系?对应边之间有什么关系?【教学说明】培养学生从图片直观地获取信息的能力,并通过亲身体验归纳总结相似图形的共同特点.由此自然地引出课题——相似多边形.二、思考探究,获取新知1.相似多边形:各对应角相等、各对应边成比例的两个多边形叫做相似多边形.对应顶点的字母写在对应的位置上,如四边形A1B1C1D1∽四边形ABCD.相似多边形对应边的比叫做相似比.图中四边形A1B1C1D1与四边形ABCD的相似比为k=1/2.2.观察下面两个图,判断:它们形状相同吗?它们是相似图形吗?这两个五边形是_____________________________________,即_______________________________________.3.问题:如果两个多边形相似,那么它们的对应角有什么关系?对应边呢?相似多边形的性质:____________________________________________.【教学说明】通过对各种相似图形特点的一个自然感知的过程,使学生都能用自己的语言归纳总结出相似多边形的特点.【归纳结论】相似多边形的对应角相等,对应边成比例.相似用“∽”表示,读作“相似于”.三、运用新知,深化理解1.下列每组图形的形状相同,它们的对应角有怎样的关系?对应边呢?(1)正三角形ABC与正三角形DEF;(2)正方形ABCD与正方形EFGH.解:(1)由于正三角形每个角都等于60°,所以∠A=∠D=60°,∠B=∠E=60°,∠C=∠F= 60°.由于正三角形三边相等,所以AB∶DE=BC∶EF=CA∶FD;(2)由于正方形的每个角都是直角,所以∠A=∠E=90°,∠B=∠F=90°,∠C=∠G=90°,∠D=∠H=90°,由于正方形的四边相等,所以AB ∶EF=BC ∶FG=CD ∶GH=DA ∶HE.2.两个相似多边形,其中一个多边形的周长和面积分别是10和8,另一多边形的周长为25,则另一个多边形的面积是________.解答:两个相似多边形的周长的比等于相似比,因而相似比是10∶25=2∶5, 而面积的比等于相似比的平方,设另一个多边形的面积是x ,则8:x=(2∶5)2,解得:x=50,即另一个多边形的面积是50.3.两个相似的五边形,一个五边形的各边长分别为1,2,3,4,5,另一个的最大边长为10,则后一个五边形的最短边的长为________.分析:根据相似多边形的对应边的比相等可得.解:两个相似的五边形,最长的边是5,另一个最大边长为10,则相似比是5∶10=1∶2,根据相似五边形的对应边的比相等,设后一个五边形的最短边的长为x ,则1∶x=1∶2,解得:x=2,即后一个五边形的最短边的长为2.4.如图,四边形ABCD ∽四边形A ′B ′C ′D ′,则∠1=_____,AD=_____.解析:根据相似多边形对应边之比相等,对应角相等可得.解答:四边形ABCD ∽四边形A ′B ′C ′D ′,则∠1=∠B=70°,A D D C AD DC ''''=. 即21183244AD ==,解得AD=28,∠1=70°. 5.设四边形ABCD 与四边形A1B1C1D1是相似的图形,且A 与A 1、B 与B 1、C 与C 1是对应点,已知AB=12,BC=18,CD=18,AD=9,A 1B 1=8,则四边形A 1B 1C 1D 1的周长为________.解析:四边形ABCD 与四边形A 1B 1C 1D 1是相似的图形,则根据相似多边形对应边的比相等,就可求得A 1B 1C 1D 1的其它边的长,就可求得周长.解答:∵四边形ABCD 与四边形A 1B 1C 1D 1是相似的图形, ∴11111111AB BC CD DA A B B C C D D A ===. 又∵AB=12,BC=18,CD=18,AD=9,A 1B 1=8,∴11111112181898B C C D D A ===, ∴B 1C 1=12,C 1D 1=12,D 1A 1=6,∴四边形A 1B 1C 1D 1的周长=8+12+12+6=38.【教学说明】学生在应用中更深层次认识相似多边形的基本涵义;初步掌握相似多边形的对应角相等,对应边成比例的性质.四、师生互动,课堂小结通过本节课的学习,你有何收获?还有哪些疑问?【教学说明】鼓励学生结合本节课的学习过程,谈谈自己的收获与感想,让学生学会疏理、归纳和总结.1、布置作业:教材“习题4.4”中第1 、2 题.2、完成练习册中相应练习.本节课是在探索相似多边形的过程中,进一步发展学生归纳、类比、反思、交流、论证等方面的能力,提高数学思维水平,体会反例的作用及直觉的不可靠性.。

北师大版九年级上册数学教案:4.1成比例线段

北师大版九年级上册数学教案:4.1成比例线段
其次,在新课讲授环节,我尽量用简单明了的语言解释成比例线段的概念和性质,并通过案例分析和实例演示,帮助学生理解。从学生的反馈来看,这种方法效果还不错。但我也注意到,部分学生在理解比例的基本性质时仍存在困难。在今后的教学中,我需要更加关注这部分学生,通过个别辅导和反复练习,帮助他们克服困难。
在实践活动环节,分组讨论和实验操作使学生能够将理论知识与实际操作相结合,加深了对成比例线段的理解。但我也发现,部分小组在讨论过程中存在依赖思想,个别成员不够积极参与。为了提高学生的参与度,我打算在下次活动中增加一些互动环节,鼓励每个学生都发表自己的观点。
-掌握比例的基本性质:包括比例的倒数性质(如果a:b=c:d,则b:a=d:c)、交叉相乘性质(如果a:b=c:d,则ad=bc)等。这些性质是解决比例问题的关键,需要在教学中反复强调,并通过练习题巩固。
-应用比例知识解决实际问题:培养学生将比例知识应用于实际情境中,如计算线段长度、解决比例分配问题等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了成比例线段的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对成比例线段的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解成比例线段的基本概念。成比例线段指的是两条线段之间存在一个常数k,使得一条线段的长度是另一条线段长度的k倍。它在几何图形的相似性、比例尺的计算等方面具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。假设图中有两条线段AB和CD,已知AB的长度是CD的两倍,我们将通过这个案例来展示成比例线段在实际中的应用,以及它如何帮助我们解决问题。

九年级数学上册第4章图形的相似教学案北师大版

九年级数学上册第4章图形的相似教学案北师大版

九年级数学上册第4章图形的相似教学案(新版)北师大版(总121页)-本页仅作为预览文档封面,使用时请删除本页-第四章图形的相似1.了解线段的比、成比例线段,掌握比的性质及平行线分线段成比例的基本事实.2.了解相似多边形和相似比.3.探索并理解三角形相似的条件和性质.4.了解相似三角形判定定理的证明.5.了解图形的位似,能够利用位似将一个图形放大或缩小.6.探索并了解多边形的各顶点坐标(有一个顶点为原点,有一条边在横轴上)分别扩大或缩小相同倍数时所对应的图形与原图形的位似关系.7.了解黄金分割的意义,以及相似图形在现实生活中的应用.在研究与图形相似有关的问题中,经历观察、操作、类比、归纳、交流等过程,进一步发展几何直观和推理能力,发展发现问题、提出问题、解决问题的能力,积累数学活动经验.在探索问题、合作交流的过程中,进一步体会数学与自然及人类社会的密切联系和数学的价值,增强应用意识.基于《标准》的要求和学生的基础,本章设计的总体思路是以数形结合为基本方法,以合情推理能力与演绎推理能力的培养为主线,在生动的问题情境和丰富的数学活动中,了解比例的基本性质、线段的比、成比例线段;掌握平行线分线段成比例的基本事实;类比三角形全等,探索三角形相似的条件;了解相似三角形的判定定理和性质定理;了解图形的位似,体会多边形的顶点坐标分别扩大或缩小相同倍数时所对应的图形与原图形的位似关系;会利用图形的相似解决一些简单的实际问题.第1节“成比例线段”、第2节“平行线分线段成比例”,教科书从观察生活中的图案到观察几何图形,进而认识形状相同的图形.通过引导学生思考如何描述形状相同的图形的不同之处,引出学习线段的比的必要性和线段的比的概念,在此基础上,结合图形引出成比例线段、比例的性质,以及平行线分线段成比例等内容,从而为后面研究相似三角形做好准备.第3节“相似多边形”,教科书结合具体的形状相同的图形,明确对应角、对应边的概念,继而给出相似多边形、相似比的概念,接着通过若干具体活动进一步巩固对相似多边形概念的理解.第4节“探索三角形相似的条件”,根据相似多边形的定义,顺势引出相似三角形的概念,接着,类比三角形全等条件的探索,展现三角形相似条件的探索,明确给出相似三角形的三个判定定理,另外,本节借助相似三角形,介绍了黄金分割、黄金比及其计算过程.考虑到相似三角形判定定理的证明是《标准》规定的选学内容,教科书在得出三角形相似的条件2之后,设计了第5节“相似三角形判定定理的证明”,将相似三角形判定定理的证明单独成节,是为了方便教师在教学中根据学情灵活安排.在相似三角形判定定理之后,设计了一节活动课,即第6节“利用相似三角形测高”,介绍了利用相似三角形测量旗杆高度的几种方法.第7节“相似三角形的性质”,研究相似三角形对应高的比、对应中线的比、对应角平分线的比与相似比的关系,以及周长比、面积比与相似比的关系.第8节“图形的位似”,介绍位似图形的概念,利用位似图形将一个图形放大或缩小,研究多边形的顶点坐标分别扩大或缩小相同倍数时所对应的图形与原图形的位似关系.【重点】1.成比例线段的性质.2.相似三角形的判定和性质.3.相似形知识在生活中的应用.【难点】1.比例的性质.2.相似多边形的判定.1.数学教学是数学活动的教学,因此建议设置丰富的问题情境,展现知识的发生、发展过程.因此,本章在研究的过程中应注重知识内容与研究方法上的联系与区别,应关注“对应”关系的确定(对应边的关系、对应角的关系等),注重基本模型的识别与应用.2.应注重站在系统的高度,突显类比的方法,梳理相关知识,帮助学生建立知识体系;重视渗透研究几何图形的基本问题和方法,进一步把握“特殊与一般”的关系,进一步明确“性质定理与判定定理”的互逆关系,进一步发展学生合情推理与演绎推理的能力.3.注重数学思想的教学,关注对证明思路的启发,学会数学的思考,提倡证明方法的多样性;关注数学教学的生活意义与模型价值,培养学生应用意识,提倡采用数学实践活动的方式让学生用数学,感受数学的应用价值.1成比例线段2课时2平行线分线段成比例1课时3相似多边形1课时4探索三角形相似的条件4课时*5相似三角形判定定理的证明1课时6利用相似三角形测高1课时7相似三角形的性质2课时8图形的位似2课时1成比例线段3通过现实情境了解线段的比和成比例线段的概念,理解并掌握比例的性质.通过现实情境,进一步发展学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的密切联系.学会与他人合作交流,通过有关比的计算,让学生懂得数学的作用,从而增强学生学习数学的信心.【重点】线段的比和成比例线段,以及比例线段的基本性质.【难点】比例线段的基本性质的运用.第课时1.了解线段的比和成比例线段的概念.2.理解比例线段的基本性质.通过生活情境理解相关概念.增强学生对数学知识来源于生活的认识.【重点】成比例线段的概念.4【难点】比例线段的基本性质.【教师准备】课堂教学用的投影图片.【学生准备】测量长度的直尺,放大镜等.导入一:出示如图所示的两面大小不同的国旗,让学生比较这两面国旗有什么不同.[设计意图]以接近学生生活实际的国旗为背景,对学生进行爱国主义教育,同时提出国旗中蕴含着数学知识,激发学生的学习积极性,从而自然引入本节课内容.导入二:埃及法老阿美西斯想要测量金字塔的实际高度,可是没有一个埃及人能测出来.古希腊学者泰勒斯对法老阿美西斯说:“我只需找一个特殊的时刻,就能测出金字塔的高度.”泰勒斯在金字塔前竖立一根1 m长的木棒,他不断测量木棒的影长,当木棒的影子的长正好是1 m时,特殊时刻来了,如图所示,设金字塔的塔基宽为2b m,在塔外的影长为a m,落在塔内的影长恰为塔基宽的一半,这意味着金字塔的影长为a+b,因为木棒的高度与影长的比为1∶1,所以在同一时间同一地点的金字塔的高度与影长之比也应为1∶1,所以金字塔的高度为(a+b)m.[过渡语]形状相同、大小不同的两个图形之间存在着怎样的对应关系呢(1)学生测量两面国旗对角线的长度后,教师总结:描述两面国旗大小之间的关系,我们可以借助于两条线段的比来说明.如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB∶CD=m∶n,或写成.其中线段AB,CD分别叫做这个线段比的前项和后项,如果把表示成比值k,那么=k,或AB=k·CD.两条线段的比实际上就是两个数的比.如图所示,五边形ABCDE与五边形A'B'C'D'E'形状相同,AB=5 cm,A'B'=3 cm,AB∶A'B'=5∶3,就是线段AB和线段A'B'的比,这个比值刻画了这两个五边形的大小关系.5(2)问题思考:AB∶A'B'=5∶3,这时线段A'B'与线段AB的比是多少呢[知识拓展](1)求线段的比时,线段的长度单位要统一.(2)线段的比没有单位,所以线段的比与所采用的长度单位无关.(3)两条线段的比有先后顺序,前项和后项不能颠倒.二、成比例线段[过渡语]如果两个图形完全一样,只是大小不同,这两个图形上的对应线段之间存在什么关系呢思路一如图所示,设小方格的边长为1,四边形ABCD与四边形EFGH的顶点都在格点上.(1)AB,AD,EF,EH的长度分别是多少(2),,,的值相等吗【总结】四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.【思考】上图中还有哪些线段是比例线段[知识拓展]在理解比例线段时,应注意三点:(1)比例线段是特指四条线段之间的关系,两条线段不能是比例线段,三条线段中的任意一条线段都不能重复使用时,三条线段也不能是比例线段,而五条或五条以上的线段中,只能判断其中的某四条线段能否是成比例线段.(2)成比例线段是有顺序的.即若a,b,c,d是成比例线段,则a∶b=c∶d,而不能写成a∶b=d∶c.(3)为了讨论问题方便,我们再给出两个相关的定义:①比例的内项与外项:如果四条线段a ,b,c,d是比例线段,那么把线段b,c叫做比例内项,把线段a,d叫做比例外项.②第四比例项:如果四条线段a,b,c,d是成比例线段,那么线段d叫做线段a,b,c的第四比例项.下列四组线段中,是成比例线段的是 ()cm,6 cm,7 cm,8 cmcm,6 cm,2 cm,5 cmcm,4 cm,6 cm,8 cm6cm,8 cm,15 cm,10 cm〔解析〕∵≠,∴不是成比例线段,故选项A错误;∵≠,∴不是成比例线段,故选项B 错误;∵≠,∴不是成比例线段,故选项C错误;∵,∴是成比例线段,故选项D正确.故选D.思路二【活动1】建立比例线段的概念.【投影图片】如图所示,AB=50,BC=25,A'B'=20,B'C'=10,求证.证明:∵=2,=2,∴.引导学生分析得出四条线段AB,BC,A'B',B'C'是成比例线段.(1)题目的已知中共有几条线段分别是哪几条(2)其中的线段AB,BC的比是多少线段A'B',B'C'的比是多少其中线段AB与BC的比与线段A'B'与B'C'的比有何关系(3)我们称AB,BC,A'B',B'C'这四条线段是成比例线段,简称比例线段.(4)请同学们根据这个例子想一想,什么样的四条线段叫做成比例线段(5)学生叙述,教师板书比例线段的定义:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.【活动2】熟悉比例线段的概念.(1)定义告诉我们判定四条线段是成比例线段的方法:(其中的一个比例式)⇒a,b,c,d四条线段成比例;(2)定义告诉我们若已知四条线段成比例,则一定有比例式:a,b,c,d四条线段成比例⇒(唯一的一个比例式).与比例线段有关的概念:(1)项、内项、外项、第四比例项.a,b,c,d叫做组成比例的项,b,c叫做比例内项,a,d叫做比例外项,d叫做a,b,c的第四比例项.(2)比例中项.若作为比例内项的是两条相同的线段,即或a∶b=b∶c,那么线段b叫做线段a,c的比例中项.三、探索比例线段的基本性质计算下列比例式的两个内项的积与两个外项的积.(1);(2)∶3.通过计算,同学们发现了什么规律【学生活动】两个内项的积与两个外项的积相等.7【教师活动】我们把上面成比例的四个数用字母表示,即,用什么方法来说明两个内项的积与两个外项的积相等【学生活动】学生独立思考1分钟后,分组交流探讨“如果,那么ad=bc”.【教师活动】教师巡视指导,特别关注学生此时是否积极参与.【学生活动】各组汇报交流讨论的结果,教师板书出现的解决方案,由学生说明其理由.学生可能出现的解决方案:(1)等式两边同时乘bd.(2)设=k,则a=bk,c=dk,因此ad=(bk)d=b(dk)=bc.【教师活动】我们又如何把乘积的形式化成比例的形式【学生活动】学生共同回答“等式两边同时除以bd”.【教师活动】我们把以上两个方面综合起来,就是比例线段的基本性质.比例线段的基本性质:如果,那么ad=bc;如果ad=bc(a,b,c,d都不为0),那么.[设计意图]从特殊情况出发,使学生对比例线段的基本性质有一个直观的认识,再让学生以一般的形式探索和推导,让全体学生充分参与,一步一步得出比例线段的基本性质,体现了“从特殊到一般”的教学思想.【教师活动】根据上面的方法你能由推导出下列比例式吗(1);(2);(3);(4);(5);(6);(7).(教材例1)一块矩形绸布的长AB=a m,宽AD=1 m,按照如图所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即,那么a的值应当是多少解:根据题意可知,AB=a m,AE=a m,AD=1 m.由,得,即a2=1,∴a2=3.开平方,得a=(a=-舍去).【问题思考】如果换成,那么a的值应当是多少81.在四条线段a,b,c,d中,如果a与b的比等于,那么这四条线段a,b ,c,d叫做成比例线段,简称.在a∶b=c∶d中,a,d叫做比例,b,c叫做比例.如果四条线段a,b,c,d是成比例线段,那么线段d叫做线段a,b,c的.答案:c与d的比比例线段外项内项第四比例项2.如果选用量得两条线段AB,CD的长度分别是m,n,那么就说这两条线段的比AB∶CD=m∶n,其中,线段AB,CD分别叫做这个线段比的和.答案:同一个长度单位前项后项3.如果,那么;如果ad=bc(a,b,c,d都不为0),那么.答案:ad=bc第1课时1.两条线段的比2.成比例线段3.比例线段的基本性质一、教材作业【必做题】教材第79页习题的1,2题.【选做题】教材第79页习题的3题.二、课后作业【基础巩固】1.下列说法中错误的是()A.线段的比就是指它们的长度之比B.只要两条线段的长度采用同一单位,那么两条线段的比与所采用的单位无关C.求两条线段的比,一定要用同一单位,如果单位不同,应先化成同一单位,再求它们的比D.两条线段的比与两个数的比一样有正有负92.一根旗杆长6 m,在正午的阳光下,其影长为80 cm,则旗杆的长与它的影子的长度之比为()A. B. C. D.3.下列四组线段中,成比例的是()=3,b=6,c=2,d=5=1,b=,c=,d==4,b=8,c=5,d=10=2,b=,c=,d=24.一条线段的长度是另一条线段长度的,则这两条线段的比为.5.四条线段a,b,c,d成比例,且a=14 cm,b=16 cm,c=13 cm,则d=.【能力提升】6.下列各组线段中,能成比例的是(),6,7,9 ,5,6,8,6,9,18 ,2,3,47.已知线段a,b,c,d是比例线段,其中a=6 cm,b=4 cm,c=12 cm,求线段d的长.【拓展探究】8.已知三个数,a=1,b=2,c=,请你再添一个数d,使它们能构成比例式,写出这个比例式.(至少写两个)【答案与解析】4.或5.(解析:由比例的基本性质可知,若四条线段成比例,则必有两条线段长度之积等于另两条线段长度之积,所以判断时只需看最小数与最大数之积是否等于另两数之积便可作出判断.如3×9≠6×7,2×8≠5×6,3×18=6×9,1×4≠2×3,故选C.)7.解:因为a,b,c,d是比例线段,所以a∶b=c∶d,即d==8,所以线段d的长为8 cm.8.解:如:d=2或,比例式为或.答案不唯一.本课时的知识要点是强调线段对应成比例,这一点在教学的过程中得到了有效的贯彻.在理解比例线段的基础上,由特殊上升到一般,接着探讨了比例线段的基本性质.理解比的意义和比例线段,是灵活运用比例线段的基本性质的前提.在知识的讲解和例题、习题的讲练过程中,都渗透着对这个问题的处理.10比例线段的比不是固定不变的.比例线段强调的是比例的大小,随着比的顺序的变化,比值也会随之变化,这一点在教学中没有特别地强调.这一点不强调,不利于学生今后理解图形的相似比.以国旗的长和宽为例,强调长和宽是一对比例线段,它们的比值是不变的.以一面国旗来讲,这里强调的是长和宽的比.从两面国旗的角度看,小国旗和大国旗的长和宽是四条对应成比例的线段.随堂练习(教材第79页)1.提示:在地图上,图上长度与实际长度的比叫比例尺.如:用同一张洗出的不同尺寸的两张照片上对应线段的比相同,按照图纸严格建造的楼房的窗户的长与宽与图纸上相应的长与宽的比相同等.2.解:长线段∶短线段=5∶1.3.解:因为a,b,c,d是成比例线段,所以a∶b=c∶d,即3∶2=6∶d,所以d=4(cm).习题(教材第79页)1.解:因为在ΔABC中,∠B=90°,AB=BC=10 cm,所以AC=10 cm.因为ED=EF=12 cm,DF=8 cm,所以,.2.解:∵,∴.解得AD=.∴AD的长为 cm.3.解:由题意可知,∵AE=AB,∴,即AB2=2AD2,∴=2,∴,即原来矩形的长边与短边的比是∶1.关于成比例线段应注意以下两点:(1)线段的比是指两条线段长度之间的比的关系,而成比例线段是指四条线段长度之间的比的关系.(2)线段的比有顺序性,四条线段成比例也有顺序性.如是线段a,b,c,d成比例,而不是线段a,c,b,d成比例.通常成比例的四条线段a,b,c,d的单位应该一致,但有时为了计算方便,a,b的单位一致,c,d的单位一致也可以,为什么解:例如:a=30 cm,b=50 cm,c=3 m,d=5 m,我们可以把四条线段的长度单位都化成厘米,即a=30 cm,b=50 cm,c=300 cm,d=500 cm,则,,因此;我们也可以求出,,所以.第课时理解等比的性质.通过具体数字和证明领会等比性质.鼓励和培养学生的探索精神.【重点】等比的性质.【难点】等比性质的变形及灵活运用.【教师准备】等比性质的推导过程和课堂小结的投影图片.【学生准备】复习比例线段和比例的性质.导入一:小明给小刚提出一个很有意思的问题.他说:“数学来源于生活.因此,数学中的许多定理都可以用生活中的常识来解释,请你利用一个生活常识来解释:若=…=(b+d+…+n≠0),则.”小刚想了想说:“若有含糖a kg的糖水b kg,含糖c kg的糖水d kg,含糖e kg的糖水f kg……它们的浓度相等,把这些糖水混合到一起后,浓度不变,表示方法为:.”小刚所举的例子有什么数学根据呢导入二:如图所示,已知=2,你能求出的值吗[过渡语]你能计算出导入二问题的结果吗【学生活动】学生独立思考1分钟后,分组交流探讨.【教师活动】教师巡视指导,特别关注学生此时是否积极参与.【学生活动】各组汇报交流讨论的结果,教师板书出现的解决方案,由学生说明其理由.学生可能出现的解决方案:因为=2,所以AB=2EF,BC=2FG,CD=2GH,DA=2HE.所以=2.【猜想】用数字验证:,,故成立.【教师活动】用数字验证的结论可靠吗【学生活动】学生独立思考1分钟后,分组交流探讨.【教师活动】教师巡视指导,特别关注学生此时是否积极参与.【学生活动】各组汇报交流讨论的结果,教师板书出现的解决方案,由学生说明其理由.学生可能出现的解决方案:设=…==k,∴a=bk,c=dk,…,m=nk.∴=k=.【结论】等比性质:如果=…=(b+d+…+n≠0),那么.(教材例2)在ΔABC与ΔDEF中,已知,且ΔABC的周长为18 cm,求ΔDEF的周长.解:∵,∴.∴4(AB+BC+CA)=3(DE+EF+FD),即DE+EF+FD=(AB+BC+CA).又∵ΔABC的周长为18 cm,即AB+BC+CA=18 cm,∴DE+EF+FD=(AB+BC+CA)=×18=24(cm),即ΔDEF的周长为24 cm.【思考】(1)吗(2)吗(3)如果AB+BC=10 cm,DE+EF等于多少[设计意图]学到的知识要会应用升华,通过学生练习,使学生掌握运用比例的基本性质、等比性质来求值和说理的方法;通过归纳学生的各种解题方法,达到一题多解的目的,培养学生多角度的开放性思维能力.[知识拓展](1)将比例式转化为乘积式是有规律的,并不是比例式的四个字母中任意两个字母的乘积都等于另外两个字母的乘积,这个规律是:比例的外项乘积等于内项乘积.(2)用等比性质时,要注意b+d+…+n≠0这个条件.(3)比例的其他性质:合比性质:如果,那么.更比性质:如果,那么或.反比性质:如果,那么.1.已知2a=3b,则=.答案:2.若3x-5y=0,则=.答案:3.若(b+d≠0),则的值为.答案:4.已知,则=.答案:5.在ΔABC和ΔADE中,,且ΔABC的周长为36 cm,则ΔADE的周长为.答案:21 cm第2课时1.等比性质2.等比性质的证明一、教材作业【必做题】教材第81页习题的1,2题.【选做题】教材第81页习题的3题.二、课后作业【基础巩固】1.已知,那么下列等式中不一定正确的是()=5b B.+b=7 D.2.若,则等于()A. B. C. D.3.若,则的值是()A. B. C. D.4.已知直角三角形的两条直角边长的比为a∶b=1∶2,斜边长为4 cm,那么这个三角形的面积是()cm2 cm2 cm2 cm25.若2x-5y=0,则y∶x=,=.6.已知,b+d+f=50,那么a+c+e=.7.如果,那么=.【能力提升】8.如果成立,那么下列各式一定成立的是()A. B.C. D.9.若,则=.10.若,则=.11.已知,求.【拓展探究】12.设a,b,c是ΔABC的三条边,且,判断ΔABC为何种三角形,并说明理由.【答案与解析】∶57.9.11.解法1:由,得,,所以,即=9.解法2:设=k,则x=2k,y=3k,z=4k,显然k≠0,否则x=y=z=0,分式无意义.所以=9.12.解:ΔABC为等边三角形.理由如下:设a,b,c是ΔABC的三条边,∴a+b+c≠0.∵,∴=0,∴a=b=c,∴ΔABC为等边三角形.等比的性质及其变形是本课时的知识难点,为了突破这个难点,必须让学生领会等比性质的推导过程.在推导等比性质的过程中,放手让学生用自己的方法去证明和推导等比性质,加上老师恰到好处的提示和点拨,使学生深刻领会等比性质的推导过程.等比性质的变形是在课堂练习和习题当中体现的内容,是学生课后探究尝试的内容,在本课时的教学过程中,过早地交代和涉及了相关的知识,加大了本课时的课时容量,也会给学生造成知识掌握上的困难.在引导学生探究等比性质的时候,应该遵循从特殊到一般的认识规律,先让学生选择具体的数字或者任意的线段长度进行尝试,有了一定的感性认识之后,最终探索等比性质的一般形式,并适时强调等比性质成立的条件.随堂练习(教材第80页)解:由于(b+d≠0),因此根据等比性质得.习题(教材第81页)1.解:由于且b+d+f≠0,因此根据等比性质得.2.解:AB=2,DE=,BC=2,DC=,AC=2,EC=.CΔABC∶CΔEDC=(2+2+2)∶()=2∶1.3.解:正确.设=k,则a=bk,c=dk,所以=k+1,=k+1,所以.同理,.(1)有关比例的证明题.已知,求证.〔解析〕这是一道有关比例的证明题,利用比例的基本性质证明.证明:因为,所以a(c-b)=b(a-c),即ac-ab=ab-bc,所以ac+bc=2ab,两边同时除以abc,得.[解题策略]解此题时,要注意a≠0,b≠0,c≠0这个隐含条件,所以在等式两边可以同时除以abc.(2)用代换思想解比例问题.若c≠0,3a=5b+2c,a+b=4c,求a∶b∶c.〔解析〕上面两个等式可看成方程,两个方程中有三个未知数,无法直接求解,应把其中一个字母看成已知数,用含有这个字母的式子表示另两个字母.解:由题意得解得所以a∶b∶c=b∶b∶b=7∶3∶3.(2014·牡丹江中考)若x∶y=1∶3,2y=3z,则的值是()C.〔解析〕∵x∶y=1∶3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴=-5.故选A.若2a=3b=4c,且abc≠0,则的值是()〔解析〕设2a=3b=4c=12k(k≠0),则a=6k,b=4k,c=3k,所以=-2.故选B.2平行线分线段成比例1.理解平行线分线段成比例基本事实及其推论,初步熟悉平行线分线段成比例的应用.2.通过有关比的计算,激发学生学习数学、探索问题的兴趣,培养学生进行一定的问题研究的能力.通过教学,培养学生的观察、分析、概括能力,了解特殊与一般的辩证关系.学会与他人合作交流.【重点】理解平行线分线段成比例基本事实及其推论.【难点】成比例的线段中对应线段的确认.【教师准备】教材图4-6,图4-7的投影图片.【学生准备】复习两条线段的比、比例线段的概念及比例的性质,并预习新课内容.导入一:如图(1)所示,梯子是施工过程中经常使用的工具,因为它的实用性和稳定性都很好,所以梯子的应用非常广泛,大到施工工地,小到日常家居,都能看到梯子的身影.如图(2)所示的梯子在生产过程中因为工作失误导致“左右不对称”,不过AB=BC=…,AD∥BE∥CF∥…,这些都符合要求,那么DE和EF相等吗导入二:我们已经学习了成比例线段,请同学们回忆一下,什么叫成比例线段能不能举几个例子说一说这里给出四条线段,我们需要计算才能知道它们成不成比例,这节课我们将要学习不用计算,就知道它们成不成比例的方法,你们想知道是什么吗[过渡语]在什么情况下的四条线段对应成比例呢【探索活动一】平行线分线段成比例的基本事实出示教材图4-6.在图4-6中,小方格的边长均为1,直线l1∥l2∥l3,分别交直线m,n于点A1,A2,A3,B1,B2,B3.问题1计算线段A1A2,A2A3,B1B2,B2B3的长度.问题2等于吗问题3等于吗问题4将l2向下平移到如图4-7所示的位置,直线m,n与l2的交点分别为A2,B2,你在问题1,2,3中发现的结论还成立吗如果将l2平移到其他位置呢问题5在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗(问题提示:经过计算,在图4-6中,A1A2=,A2A3=4,B1B2=,B2B3=4,利用此数据可得问题2,问题3中的两条线段的比均相等.对于问题4的探索,可同样采取前3个问题的办法) [设计意图]学生对于理解“平行线分线段成比例”这一基本事实有一定的困难,这里的体验活动正好让他们对这一基本事实有一个直观理解.利用直观的操作培养学生大胆猜测、从实践中得出结论的能力,充分体现了教师为主导,学生为主体的教学原则.基本事实的总结:【文字叙述】两条直线被一组平行线所截,所得的对应线段成比例.【符号表述】如图所示,直线l1,l2,l3截直线a,b,且l1∥l2∥l3,则.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 图形的相似1.成比例线段(一)教学目标1、了解相似形、线段的比概念;2、会求两条线段的比, 应用线段的比解决实际问题。

重点与难点:重点:理解线段比的概念及其求解。

难点:求线段的比,注意线段长度单位要统一。

教学过程一.设置情境,引入新课通过用幻灯片展示生活的的图片,引入本章的学习内容—相似图形。

二.新课讲解1.请在下面图形中找出形状相同的图形?你发现这些形状相同的图形有什么不同?2. 引入线段的比:如果选用同一个长度单位量得两条线段的长度分别是m ,n ,那么就说这两条线段的比(),或写成nmCD AB =其中分别叫做这个线段比的前项和后项.如果把n m 表示成比值k,那么k CDAB=,或·.两条线段的比实际上就是两个数的比。

五边形 与五边形A ’B ’C ’D ’E ’形状相同,5,A ’B ’=3。

: A ’B ’=5 : 3,就是线段与线段A ‘B ’的比。

这个比值刻画了这两个五边形的大小关系。

3.想一想:两条线段长度的比与所采用的长度单位有没有关系?通过上面的活动学生应该对这个问题有了一定的认识:两条线段长度的比与所采用的长度单位无关.但要采用同一个长度单位. 4.做一做:如图,设小方格的边长为1,四边形与四边形的顶点都在格点上,那么,,,的长度分别是多少?分别计算 值。

你发现了什么?四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.上图中是成比例线段,也是成比例线段。

5.议一议:如果四个数成比例,即,那么吗?反过来如果,那么四个数成比例吗?比例的基本性质如果 = ,那么。

如果(都不等于零),那么=。

6.例题1: 如图,一块矩形绸布的长1m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即 ,那么a 的值应当是多少? 三.随堂练习1、一条线段的长度是另一条线段长度的5倍,则这两条线段之比是2、一条线段的长度是另一条线段长度的53,则这两条线段之比是3、已知a 、b 、c 、d 是成比线段469,则4、如果y x 52=,那么yx EFEHAD AB EF AD EH AB ,,,b a dc ba dc ABAD AD AE =四.想一想生活中还有哪些利用线段比的事例?你能举例吗?房屋装修平面图,手机模型,汽车模型,深圳世界之窗,建筑物的效果图等等。

五.回顾与思考这节课我们学习了哪些知识?你有什么收获?你有什么发现、探索?六.布置作业习题第1题教学反思1、教师可以根据学生的实际情况进行适当调整,设置出适合个人教学的情境。

书上的情境设置应该是适用于广大地区的,老师也可以根据自己身边的熟悉的事物来设置情境,或是就用教科书上的情境。

具有地方特色的教学资源,不仅丰富了学生对家乡风景的认识和了解,也上学生感受到数学知识在生活中的应用。

2、教学中穿插了让同桌之间用不同的单位测量课本的长与宽(精确到0.1),并求出这两条线段的长度之比。

添加这个环节目的是对学生得出“两条线段长度的比与所采用的长度单位无关”的结论埋下伏笔。

学生已经有了全等图形和比例的知识作为铺垫,生活中也存在大量相似图形的例子,所以学生学习起来不会很难,可以大胆的放手让学生自己去动手操作、动脑思考,老师可以在适当的时候给予帮助和补充。

3、教材上的例题可以交给学生自学,然后通过随堂联系加以巩固。

如果不能达到预期效果,时间允许的话可以补充相关的练习。

1.成比例线段(二)教学目标:1.了解线比例线段的基本性质;2.理解并掌握比例的基本性质及其简单应用;3.发展学生从数学的角度提出问题、分析问题和解决问题的能力。

重点与难点:重点:让学生理解并掌握比例的基本性质及其简单应用。

难点:运用比例的基本性质解决有关问题。

教学过程 一.温故知新复习:(1)成比例线段定义(2)比例的基本性质(3)若 3m = 2n ,你可以得到n m 的值吗?mn呢? 二.探究新知(1)如图,已知21==AE CE AD BD ,你能求出AEAECE AD AD BD +=+ 的值吗?如果CE AB BC AB = ,那么CECEAC BD BD AB -=-有怎么样的关系?在求解过 程中,你有什么发现?已知,a ,b ,c ,d ,e ,f 六个数。

(2) 如图,HGADFG CD EF BC HE AB ,,,的值相等吗?HG FG EF HE ADCD BC AB ++++++ 的值又是多少?在求解过程中,你有什么发现?成立吗?为什么?和那么如果d d c b b a d d c b b d c b -=-+=+=a ,a已知,a ,b ,c ,d ,e ,f 六个数。

三.知识应用例题:四.随堂练习五.巩固提高:4、如图,已知每个小方格的边长均为1,求的长,并计算△与△的周长比。

六.小结成立吗?为什么?那么如果b a f d b e c f d b f e d c b =++++≠++==a ),0(a 的周长。

求,的周长为且中,若与、在;与求、已知DEF ABC FD CA EF BC DE AB DEF ABC b a ∆∆===∆∆+=cm 18,43)2(bb -a b b a ,32)1(.),0(.,b a n d b m c a n d b n m d c b a dd c b b a d c b a =++++++≠++===±=±= 那么等比性质:如果那么合比性质:如果的值。

、已知dc ),0(321++≠+==b ad b d c b a 什么?这两个结论正确吗?为那么、如果那么),(、如果、小明认为..b )2(a b a .00b a )1(:2dcb a d dc b a cd c d c d c b a =+=++=+≠+≠+=_____,9171==+yx y y x 则、若____23,412的值为则、若b b a b a +=的值)的值()求(、已知:ca cb bc b cb a +-+++==32a 2a 1.7533通过本节课的学习,我们了解了成比例线段的合比性质及等比性质,并在合比性质及等比性质的推导过程中,培养了推理能力,也学会了运用比例线段的基本性质解决问题,比例线段的知识将对我们今后的学习有重要的帮助。

七.布置作业习题第1-2题2.平行线分线段成比例教学目标:1. 理解并掌握平行线分线段成比例的基本事实及其推论,并会灵活应用。

2.通过应用,培养识图能力和推理论证能力。

重点与难点重点:平行线分线段成比例定理和推论及其应用。

难点:平行线分线段成比例定理及推论的灵活应用,平行线分线段成比例定理的变式。

教学过程一.复习设疑,引入新课提问:什么是成比例线段?你能不通过测量快速将一根绳子分成两部分,使得这两部分的比是2:3?二.小组活动,探究定理1. 探究活动一:如图(1)小方格的边长都是1,直线a ∥b∥ c ,分别交直线于 A1,A2,A 3,B1,B2,B3。

(1)计算12122323,A AB BA AB B你有什么发现?(2)将b向下平移到如下图2的位置,直线m,n与直线b的交点分别为A2,B2。

你在问题(1)中发现的结论还成立吗?如果将b平移到其他位置呢?(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?归纳:平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例2.议一议:提问:1.如何理解“对应线段”?2.平行线分线段成比例定理的符号语言如何表示?3.“对应线段”成比例都有哪些表达形式?若a ∥b ∥ c ,则12122323A A B B A A B B =。

由比例的性质还可以得到:12121313A A B B A A B B =,23231212A A B B A A B B =,23231313A A B B A A B B =等。

2.探究活动二:如图3,直线a ∥b ∥ c ,分别交直线于 A 1,A 2,A 3,B 1,B 2,B 3 。

过点A 1作直线n 的平行线,分别交直线b ,c 于点C 2,C 3。

(如图4 ),图4中有哪些成比例线段?(图3) (图4)推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例。

3.探究活动三:直线l1234、l5、l6被l1、l2、l3所截且则图中还有哪些线段相等? 思考:当平行线之间的距离相等时,对应线段的比是多少?2.如何不通过测量,运用所学知识,快速将一根绳子分成两部分,使这两部分之比是2:3? 三.灵活应用例1、如图,在△中,E 、F 分别是和上的点,且 ∥, (1).如果 = 7, = 4 ,那么的长是多少? (2).如果 = 10, 6, = 5 ,那么的长是多少? 四.课堂练习: 1、如图,已知l 123,(1).在图(1)中 = 5, = 7 ,4,求的长。

(2).在图(2)中 = 6, = 7 ,5,求的长。

2、如图,在△中,D 、E 分别是和上的点,且 ∥, (1).如果 = 3.2, = 1.2 ,2.4,那么的长是多少? (2).如果 = 5, 3, = 4 ,那么的长是多少?五.课堂小结:l 4 l 3l 2l 6ABC D EF M NOl1 A BC EFA B C DE F(1)A B C DE F(2)本节课你有哪些收获?1、两条直线被一组平行线所截,所得的对应线段成比例;2、平行于三角形一边的直线与其他两边相交,截得的对应线段成比例。

六.布置作业:知识技能 1、2、3.相似多边形教学目标1.经历相似多边形概念的形成过程,了解相似多边形的含义2.在探索相似多边形本质特征的过程中,进一步发展学生观察、操作、归纳、类比等多方面的能力,提高学生的数学思维水平。

3.使学生体会团队合作精神,充分认识数学与人类生活的密切联系,体验数学活动充满探索与创造。

教学过程一.课前准备图片收集(提前布置)以小组为单位,开展收集活动:(1)各尽所能收集生活中各类相似图形(在必要的情况下,教师可以对学生选择的对象给予一定的要求,使调查更接近本课教学)。

二. 情境引入(获取信息,体会特点)1、各小组派代表展示自己课前所收集得到的资料(可以是照片、资料、也可以是亲自仿制),并解说从从中获取的信息及对于现实生活的实际意义(选3—4个小组代表讲解)2、教师展示课件(播放动画)A 1B 1C 1D 1E 1F 1ABCDEF通过前面的展示和播放两个五边形的对应内角相等及图形的放大缩小动画,提出问题:(1)在上图两个多边形中,你认为有相等的内角吗?如果有,请你把他一一表示出来?(2)在上图两个多边形中, 你认为相等内角的两边是否成比例? 如果有,请你把他一一表示出来? (3)在上述两问题中,你如何描述这些你所列的角和边的关系?三.例题讲解例:下列每组图形形状相同,它们的对应角有怎样的关系?对应边呢?(1)正三角形与正三角形(2)正方形与正方形 (一)例题讨论及讲解1.要求学生根据题目提出的问题结合所学的知识,画出图形、小组讨论,得出结果。

相关文档
最新文档