长安大学电子课程设计温度测量与控制

合集下载

温度测量控制系统课程设计(张仁红)

温度测量控制系统课程设计(张仁红)

任务书一.课程设计内容设计题目:温度测量控制系统设计内容:1.设计一个独立的两路温度测量控制系统。

2.温度控制在38℃--40℃之间,测温精度±0。

1℃。

3.要求显示测量的温度信号。

二.课程设计应完成的工作1.设计文本不少于5000字;2.图纸:A3电路原理图一张。

3.文本格式:(1)封面;(2)任务书;(3)摘要;(4)目录;(5)引言(绪论或前言);(6)设计正文(选题背景、方案论证、设计过程,结果分析与仿真、总结);(7)参考文献。

三.课程设计进程安排序号课程设计各阶段名称日期、周次1 查找资料,进行方案论证 3.15~3.17第3周2 输入电路的设计 3.18~3.19第3周3 控制单元和显示电路的设计 3.22~3.24第4周4 设计说明书的撰写 3.25~3.26第4周四、设计资料及参考文献[1]孙梅生电子技术基础课程设计[M].高等教育出版社.1990年[2]江晓安模拟电子技术[M].西安:电子科技大学出版社.2007年[3]江晓安数字电子技术[M].西安:电子科技大学出版社.2008年[4]王毓银数字电路逻辑设计[M].北京:高等教育出版社1999年[5]李建忠单片机原理及应用[M].西安电子科技大学出版社 2005摘要本文采用了AD590作为温度传感器把热信号转变成电信号,电信号再经过放大,经过模数转换再输入到CPU。

控制器采用PID控制算法,温度控制的原理是通过调整晶闸管的导通时间来调节加热主回路的有效电压,从而达到温度控制的目的。

系统由AT89C51单片微机、温度传感器、A/D转换器、键盘及显示电路、晶闸管触发电路等组成的控制器和被控对象电阻炉构成一个闭环控制系统。

系统控制程序采用模块化设计结构,主要包括主程序、中断服务子程序、控制算法子程序等。

系统采用过零触发等技术,省去了传统的D/A转换元件,简化了电路,并且提高了系统的可靠性。

关键字:AT80C51、AD590、A/D0809、光耦合器件任务书 (1)摘要 (2)目录 (3)引言 (4)一方案论证与比较 (5)1.0 采用DSP控制的温度控制系统 (5)1.1采用单片控制的温度控制系统 (5)1.2 方案比较 (6)1.3 方案总结 (7)二硬件电路 (8)2.0 温度传感器 (8)2.1 模数转换器ADC0809 (9)2.2 单片机控制核心部分 (10)2.3 输出显示 (11)2.4 加热电路 (12)2.5 降温电路 (13)三软件编程 (14)致谢 (18)参考文献 (19)附录 (20)电子技术的飞速发展,给人类的生活带来了根本的变革,特别是随着大规模集成电路的产生而出现了微型计算机,根式将人类社会带入了一个新的时代。

温度控制系统(课程设计)

温度控制系统(课程设计)

长安大学《单片机原理及接口技术》课程设计(简易温度控制系统)专业:电气工程及其自动化学号: 2804060132姓名:任晴利指导老师:段晨东时间: 2008.12.22~2009.01.03目录目录。

题目。

摘要。

需求分析。

方案比较。

硬件设计。

硬件电路设计。

总体电路设计。

软件设计。

调试及结果分析。

附录1 电路程序。

附录2 电路总图。

题目:简易温度控制系统一.任务设计并制作一个简易的单片机温度自动控制系统(见图一)。

控制对象为自定。

图一 恒温箱控制系统二.要求设计要求如下(1)温度设定范围为40℃~90℃,最小区分度为1℃(2)用十进制数码显示实际温度。

(3)被控对象温度采用发光二极管以光柱形式和数码形式显示。

(4)温度控制的静态误差≤2℃。

扩充功能:控制温度可以在一定范围内设定,并能实现自动调整,以保持设定的温度基本保持不变(测量温度时只要求在现场任意设置一个检测点)。

恒温箱 执行器 可编程 控制器 显示器 变送器 设置键盘 电源 220V AC 温度传感器摘要本系统以A T89S52单片机芯片为核心,组成温度测量和控制系统,采用DS18B20数字温度传感器对温度进行实时采样,并将测量结果用数码管实显示,可以运用键盘按钮对温度进行设定,并且驱动加热器或制冷器将温度调整到设定温度,其功能完善,人机界面良好,可靠性高,AbstractThe system to single-chip AT89S52 chip as the core, the composition of the control of temperature control system of the adoption of digital temperature sensor DS18B20 temperature sampling, real-time display with digital temperature control, you can use the keyboard for temperature regulation, the use of heater and cooler temperature adjustments to improve its functions, a good man-machine interface, high reliability一、需求分析根据题目的具体要求,经过阅读思考,可对题目的具体任务、功能、技术指标等作如下分析。

电子技术温度测量控制

电子技术温度测量控制

课程设计名称:电子技术课程设计题目:温度测量与控制器学期:2015-2016学年第2学期专业:电气工程及其自动化班级:电气14-5姓名:史晓玉学号: 1405040514指导教师:谢国民辽宁工程技术大学课程设计成绩评定表课程设计任务书一、设计题目温度测量与控制器二、设计任务1. 能测量和控制特定场所(如玻璃工坊)温度的控制器。

2. 温度控制范围:0-90℃,控制精度为±1℃。

3. 控制输出通道双向晶闸管或继电器;每组转换节点可外接交流220V,10A电源工作。

三、设计计划电子技术课程设计共1周。

第1天:选题,查资料;第2天:方案分析比较,确定设计方案;第3~4天:电路原理设计与电路仿真;第5天:编写整理设计说明书。

四、设计要求1. 要求有两种或以上方案比较、设计。

2. 对所设计的电路全部或部分进行仿真,使之达到设计任务要求。

3. 画出整体电路图,写出设计说明书。

指导教师:谢国民时间:年月日目录1方案设计与分析 (1)1.1总体方案确定................................ 错误!未定义书签。

1.2方案选择.................................... 错误!未定义书签。

1.3电路设计框图及功能描述 (1)2单元电路设计与参数计算 (11)2.1正、负12V直流稳压电源的设计 ................ 错误!未定义书签。

2.2测温电桥 (11)2.3放大器电路 (12)2.4温度显示电路 (12)2.5温度比较电路 (12)2.6温度控制电路 (13)2.7温度执行电路 (13)3总体电路图 (14)4电路仿真调试 (14)4.1直流稳压电源 (14)4.2温度检测控制电路 (15)4.3总电路仿真 (16)5.课程设计体会 (17)参考文献 (18)摘要控制系统一般由温度检测部分和温度控制部分组成。

温度检测部分主要用来接收当前系统中的温度,然后发送到控制部分;温度控制系统主要是用来控制外部环境系统的,它接受来自温度检测部分的信号,然后与所要控制的温度信号进行比较,从而决定是否需要加热。

电子技术课程设计 温度测量与控制器

电子技术课程设计  温度测量与控制器

电子技术课程设计温度测量与控制器电子技术课程设计--温度测量与控制器电子技术课程设计题目名称:班级:学号:姓名:指导教师:日期:温度测量与控制器一、设计主题温度测量与控制器二、设计任务和要求温度是表征物体冷热程度的物理量,在工农业生产或科学研究中,经常需要对系统进行温度测量,并对系统温度进行自动控制和调节。

下面设计并制作了一个测量和控制系统温度的电路。

电路要求为:① 测量温度和控制温度可以数字显示。

②测量温度范围为0?c~120?c,精度为?0.5?c。

③控制温度连续可调,精度为?1?c。

④温度超过额定值时,产生声、光报警信号。

三、主题分析和内容总结题目分析:温度测控电路是实际应用中广泛使用的一种测量电路。

主要设计要运用基本的模拟电子技术和数字电子技术的知识,同时综合温度传感器的相关应用,实现温度测量与控制电路的设计。

内容摘要:本次设计以数字电子技术的基础知识为主:用电压比较器来实现温度控采用555组成的多谐振荡器实现声光报警装置,采用内置解码器的四输入数码管对温度进行解码和显示,由集成芯片完成A/D转换。

同时,应用了模拟电子技术中滤波和放大电路的相关知识:a/D转换前的低通滤波器用于滤波干扰信号,放大电路用于使信号幅度与元件的工作范围相匹配。

基于传感器知识,设计了由热敏电阻组成的电桥电路,实现了温度的测量和转换。

四、整体构思和方案选择方案选择:方案一:由555定时器组成多谐振荡电路,时钟电路产生100ms频率时时钟现在变成了计数器中每100毫秒计数一次的数字,然后根据温度分成频率。

每100ms锁存一次锁存电路,锁存后计数器可被清除。

方案二:系统框图如图1所示,温度传感器测量温度,转换成电压信号后经过滤波消除干扰信号,放大电路将所测信号幅度与后续电路的工作范围做一匹配,所得有用信号经过a/d转换专职转换成数字信号。

此数字信号有三条路径:一、进入超限报警装置与所设定的温度范围进行比较,若超限则发出声光报警;二、经过码制转换后进入数码管显示当前所测温度;三、进入数字比较器与输入的控制温度进行比较,产生温度控制机构的工作信号,同时显示输入的控制温度。

(整理)温度测量与控制课程设计

(整理)温度测量与控制课程设计

电子技术课程设计题目名称:温度测量与控制器班级:学号:姓名:指导教师:日期:一、 设计题目温度测量与控制器二、 设计任务与要求温度是表征物体冷热程度的物理量,在工农业生产或科学研究中,经常需要对某一系统的温度进行测量,并能自动地控制、调节该系统的温度。

下面设计并制作对某一系统的温度进行测量与控制的电路。

电路要求为:① 被测温度和控制温度均可数字显示。

② 测量温度范围为C 0︒~C 120︒,精度为C 0.5±︒。

③ 控制温度连续可调,精度为C 1±︒。

④ 温度超过额定值时,产生声、光报警信号。

三、 题目分析和内容摘要题目分析:温度测量与控制电路是在实际应用中相当广泛的测量电路。

本次设计主要运用基本的模拟电子技术和数字电子技术的知识,同时综合温度传感器的相关应用,实现温度测量与控制电路的设计。

内容摘要:本次设计以数字电子技术的基础知识为主:用电压比较器来实现温度控制装置,采用555构成的多谐振荡器来实现声光报警装置,用内置译码器的四输入数码管译码显示温度,A/D 转换应用集成芯片完成。

同时运用到模拟电子技术中的滤波放大电路的相关知识: 在A/D 转换前置低通滤波器,来滤除干扰信号,应用放大电路来实现信号幅度与元器件工作范围的匹配。

综合传感器知识,设计决定采用热敏电阻构成的桥式电路来实现温度的测量与转换。

四、整体构思和方案选择方案选择:方案一:由555定时器组成多谐振荡电路,时钟电路产生100ms频率时钟,现在就变成了每100ms计数器内所计的数再经分频来作为温度。

每100ms 到来时,对锁存器电路锁存,锁存以后才能对计数器进行清零。

方案二:系统框图如图1所示,温度传感器测量温度,转换成电压信号后经过滤波消除干扰信号,放大电路将所测信号幅度与后续电路的工作范围做一匹配,所得有用信号经过A/D转换专职转换成数字信号。

此数字信号有三条路径:一、进入超限报警装置与所设定的温度范围进行比较,若超限则发出声光报警;二、经过码制转换后进入数码管显示当前所测温度;三、进入数字比较器与输入的控制温度进行比较,产生温度控制机构的工作信号,同时显示输入的控制温度。

模拟电子技术课程设计 平均气温测量系统的设计讲解

模拟电子技术课程设计    平均气温测量系统的设计讲解

1 综述电子技术是当今科技发展的热点,各先进国家无不把它放在优先的发展的地位。

电子技术是电类专业的一门重要的技术基础课,课程地显著特点之一是它的实践性。

要想很好的掌握电子技术,除了掌握基本器件的原理,电子电路的基本组成及分析方法外,还要掌握电子器件及基本电路的应用技术,课程设计就是电子技术教学中的重要环节。

温度和人类的生产、生活有着密切的关系,同时也是工业生产中最常见最基本的工艺参数,例如机械、电子、石油、化工等各类工业中广泛需要对温度的检测与控制。

并且随着人们生活水平的提高,人们对自己的生存环境越来越关注,而空气中温度的变化与人体的舒适度和情绪都有直接的影响,所以对温度的检测就非常有必要了。

本文介绍了利用AD590作为温度传感器,通过温度—电压转换及求和电路,K —℃电路,驱动报警电路,放大电路和比较电路实现检测显示三处平均气温功能以及与给定气温比较并进行声光报警功能。

李宇明:平均温度测量系统的设计2 程序设计框图设计平均气温测量系统,首先使用三个AD590温度传感器分别测量三个不同地点的气温,使用反相运算电路将传感器传出的三个电流信号求平均值并转化为电压信号。

然后将华氏温度与电压的关系使用错误!未找到引用源。

℃变换电路变为摄氏温度与电压的关系并将电压信号进行放大。

此时用改装过刻度的电压表可直接读出温度值。

此后将放大后的电压信号接至比较器,经过电压比较后由比较器错误!未找到引用源。

决定是否二极管以及报警器是否工作,从而实现声光报警的功能。

其程序设计框图2-1如下:图2-1 平均气温测量系统的程序设计框图3 电路原理设计及计算3.1 温度传感器的选取:3.1.1 AD590温度传感器简介本文采用AD590作为温度传感器。

AD590是美国ANALOG DEVICES公司的单片集成两端感温电流源,其输出电流与绝对温度成比例。

在4 V至30 V电源电压范围内,该器件可充当一个高阻抗、恒流调节器,调节系数为1 µA/K。

课程设计---数字式温度测量控制电路的设计

课程设计---数字式温度测量控制电路的设计

目次1、引言 (1)1.1、设计任务 (1)1.2、设计要求 (1)2、设计方案: (2)3、温度传感器 (3)3.1、热电偶的测温原理 (3)3.2、K型热电偶特点 (4)4、冷端补偿 (5)5、放大电路 (6)5.1、0P07的功能和管脚图 (6)6、线性校正 (8)6.1、LM324的管脚图和管脚说明 (9)7、设定电路 (11)8、迟滞比较器 (12)8.1、电路组成 (12)8.2、门限电压的估算: (13)8.3、传输特性 (13)9、驱动电路 (15)9.1、继电器 (15)10、A/D转换电路 (17)10.1、ICL7107的引脚图 (17)10.2、ICL7107的工作原理 (18)11、显示 (19)12、电源 (21)12.1电源电路的电路图 (21)12.2电路分析 (21)结论 (23)致谢 (25)参考文献 (26)附录A (27)附录B (28)1、引言温度是一个基本物理量,也是一个与人们的生活环境、生产活动密切相关的重要物理量。

温度的测量和控制技术应用十分广泛。

在工农业生产和科学研究中,经常需要对某一系统的温度进行测量,并能自动地控制、调节该系统的温度。

通过该设计我们可以直观看到温度视数变化,根据实际系统的需要调节系统温度。

1.1、设计任务进一步熟悉模拟和数字设计方法和规范,并进一步巩固所学模拟电子及相关知识,达到综合应用电子技术的目的,培养设计开发以及动手实践等能力,学会阅读相关科技文献,查找器件手册与相关参数,独立思考分析,完整理总结设计报告。

了解温度传感器件的功能,学会在实际电路中应用。

进一步熟悉集成运算放大器的线性和非线性应用。

了解检测温度的传感器种类不同,采用的测量电路和要求不同,执行器、开关等的控制方式也不同。

运用电子技术来实现温度测量和控制任务,完成温度测量和控制电路的连接和调试。

学会对电子电路的检测和排除电路故障,进一步熟悉常用电子仪器的使用,提高分析问题和解决问题的能力。

温度测量与控制系统课程设计报告

温度测量与控制系统课程设计报告

目录课程设计题目及要求: (2)一、任务可行性分析 (2)二、温度测量流程图及程序 (2)[1]主程序流程图 (2)[2] C语言程序的关键程序段及说明 (3)三、温度控制流程图及程序 (5)[1]主程序流程图 (5)[2] C语言程序的关键程序段及说明 (6)四、总结(对自己工作的评价、改进与提高的设想等) (9)课程设计报告课程设计题目及要求:温度测量与控制系统对于给定的硬件系统编写相应的软件,实现基本的温度测量与显示功能,测量精度为0.1度。

然后在此基础上利用电阻加温进行温度控制。

利用键盘操作实现温度的设定,使受控元件的温度可以保持在设定温度附近(30-99度)。

发挥部分(1):用不同的方法进行温度控制,并比较优缺点。

(2):在外界干扰下(小风扇吹风)能够尽快达到新的稳定点。

设计报告要求:(1)任务可行性分析(所需要的功能如何实现)。

(2)程序结构流程框图。

(3) C语言程序的关键程序段及说明。

(4)总结(对自己工作的评价、改进与提高的设想等)。

(5)源程序电子文档。

一、任务可行性分析本设计利用温度传感器DS18B20将读取温度并将数据传递给中央处理模块SST89E516RD2,然后通过数码管将读取的温度显示出来,显示温度为四位,前两位为整数,后两位为小数。

在此基础上利用热电阻加温进行温度控制,先用短路块接通J5(如下图)的两个引脚,给电路板上电之后,电阻R6、R7便开始加热,温度传感器DS18B20就置于两个加热电阻之间,实时读取热电阻的温度,并写入SST89E516RD2中,利用单片机提供的四个按键实现对控制参数的设定,起初显示设定温度,可以通过按键增减来修改设定温度,确认后,数码管显示测量所得温度。

然后通过软件控制的方式控制电阻的加热与否,即若温度低于设定温度,则电阻加热,反之不加热。

二、温度测量流程图及程序[1]主程序流程图[2] C语言程序的关键程序段及说明(1)DS18B20的初始化:初始化是DS18B20的底层基本操作之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长安大学电子技术课程设计(温度测量与控制电路)专业电气工程与其自动化班级32040901姓名李朝指导教师田莉娟日期2011年6月30日前言温度测量与控制电路广泛应用于生产生活中的各个方面,特别是在工业生产中,温度自动控制已经成为一个相当成熟的技术。

本次课程设计给我们创造了良好的学习机会:一是查阅资料将自己所学的数字电子技术,模拟电子技术,以与传感器的相关知识综合运用,二是系统了解温度监测特别是工业上的温度控制的详细过程,为日后的学习和工作增长知识,积累经验。

在确定课设题目,经仔细分析问题后,实现温度的测量与控制方法很多,大致可以分为两大类型,一种是以单片机为主的软硬件结合方式,另一种是用简单芯片构成实现电路。

由于单片机知识的匮乏,我们决定用后者实现。

共同确定了总的电路结构,将设计分为三部分,李朝负责温度传感部分,谌新力负责温度显示和温度范围控制部分,肖阳负责温度控制执行电路和声光报警部分。

温度传感部分由热电偶构成的温度传感器,数字显示和设定控制部分由模数转换器AD574A、281024 CMOS EEPROM、锁存器74LS175等组成,声光报警和温控加热降温执行电路主要用时基芯片555构成的多谐振荡器和单稳态电路组成。

在确定了单元电路的设计方案后,我们在总结出总体方案框图的基础上,应用Multisim11.0仿真软件画出了各单元模块电路图,最后汇总电路图。

由于缺少实践经验,并且知识有限,所以本次设计中难免存在缺点和错误,敬请老师批评指正。

李朝2010年6月20日目录温度测量与控制电路 (4)摘要 (4)一、系统综述和总体方案论证与选择 (5)二、单元电路设计 (6)(一)温度传感模块 (6)(2)冷接点温度补偿方法的选择 (11)(3)滤波方法的讨论 (16)(4)电路的改进 (17)(5)仿真模拟 (18)(二)声光报警 (20)(三)温度控制执行 (21)三、结束语 (21)四、参考文献 (22)五、元器件明细 (23)六、收获体会 (31)七、鸣谢 (32)八、【附录】 (32)评语 ........................................................................................................ 错误!未定义书签。

温度测量与控制电路摘要温度测量与控制电路是在实际应用中相当广泛的测量电路。

本次设计主要运用基本的模拟电子技术和数字电子技术的知识,从基本的单元电路出发,实现了温度测量与控制电路的设计。

总体设计中的主要思想:一、达到设计要求;二、尽量应用所学知识;三、设计力求系统简单可靠,有实际价值。

温度传感采用热电偶和温度补偿原理。

大家共同商议共同确定了总的电路结构,将设计分为三部分,李朝负责温度传感部分,谌新力负责温度显示和温度范围控制部分,肖阳负责温度控制执行电路和声光报警部分AD转换部分使用集成芯片AD574A;二进制到8421BCD码的转换用EEPROM 281024实现;显示译码部分用74LS48和数码管实现;温度控制范围设定采用数字设定方式,用74LS160十进制加计数器和锁存器74LS175实现;温度的判断比较数值比较器74LS85的级联实现;通过使用74LS160和ADG508F实现了多路温度循环监测功能。

声光报警加入了单稳态。

温度控制执行部分采用555构成的单稳态电路,提高了加热系统与降温系统的稳定性和实用性。

关键词温度传感器 A/D转换控制温度声光报警二进制转BCD 译码显示技术要求1、测量温度范围为200C~1650C,精度 0.50C;2、被测量温度与控制温度均可数字显示;3、控制温度连续可调;4、温度超过设定值时,产生声光报警。

一、系统综述和总体方案论证与选择方案A.如图1-1所示,温度传感器部分将温度线性地转变为电压信号,经过滤波放大,一路输入A/D转换电路,经过译码进行数字显示,另一路与滑变分压经过电压比较器进行比较输出高低电平指示信号,温度控制执行模块和声光报警部分。

图1-1 总体方案A方案B.如图1-2所示,温度传感和A/D转换,译码显示,温控执行和报警均与方案A相同,不同处在于控制温度设定方式和温度超限判断方式。

方案A的超限判断模块和控制温度设定主要使用模拟信号,该方案易受外界干扰如使用环境温度等因素,另外由滑变设定温度不易调节精确,实际中,若采用电池供电,电源电压的变化会影响其温控范围的准确性。

方案B主要采用数字芯片逻辑控制实现,其工作的稳定性准确性和功能扩展性较强。

图1-2 总体方案B二、单元电路设计(一)温度传感模块关于温度传感方法的选择常用的具有传感功能的电路,有利用铂电阻,利用二极管,利用三级管,利用铂电阻,或直接利用现有的具有温度传感功能的芯片。

1利用铂电阻测温度原理:铂电阻的组织随温度的变化而变化,通过电阻两端电压的变化来反映温度的变化。

把电阻两端电压变化的信号经过处理后,就可以和预设电压进行比较,并显示。

其电路如图1-1所示图1-1 铂电阻测温电路的传感部分(其中R1为铂电阻)排除理由:热电阻在一定的范围内,有良好的线性关系,但是这个范围很窄,达不到课题要求的范围。

而如果进行电阻线性化,则电路更加复杂,而且由于测温需要相对精确,为避免过多电路造成噪声等不利影响,将这个方案排除。

2 利用二极管测温度原理:和铂电阻相似,但是利用的是二极管电压随温度变化而变化。

使用中可以利用桥路将其连接(如图1-2所示),并用放大器放大后输出。

这样的测温电路简易且实用。

排除理由:灵敏度不高,变化范围太窄,线性化不是很好。

3 利用三极管测温度原理:利用了硅晶体管的基极和发射极之间的负温度系数,如图1-3所示。

图1-3三级管测温度电路图排除理由:灵敏度不高,可以用作判断报警,但不宜用于测量温度。

4现有的温度传感芯片原理:现有的芯片如LM335,AD590,LTC1052等。

排除理由:其工作电压范围最大为125℃,超过后虽然也有一定的线性关系,但若用于精度较高的测量温度电路就不太可行了。

5热电偶测温法原理:如果两种不同成分的均质导体形成回路,直接测温端叫做测量端,接线端子叫做参比端,当两端存在温差时,就会在回路中产生电流,即塞贝克效应。

热电势的大小只与热电偶导体材质以与两端温度有关。

与热电偶导体的长度和直径无关。

热电偶测温电路是以热点偶为基础进行测温。

采用理由:热偶在很大范围内线性非常明显,且测温范围广,响应速度快,抗干扰性强,所以最终选择了用热电偶组成传感电路。

(二)传感电路的整体思路说明图2 传感电路(改进前)设计思路框架图如下:思路说明:K型热电偶作为主要的测温元件,其温度与电压的关系已知且稳定,线性化很好。

由于点偶的特殊性,要对其进行冷接点补偿(详细内容在第四部分说明)。

由于补偿选择的方案会产生很小的一部分噪声,所以要滤波(详细内容在第五部分)。

由放大,加入另一电压信号,比例减法这三个部分构成了运算电路,这个电路不是单纯的放大,而是根据K型热敏的温度与电压的关系所设计的电路,这样就是把温度一比一地用电压表示出来(详细内容在第三部分)。

最后没有输出1 mV/℃的信号而是输出一个23.84mV/℃的信号,是为了接下来的电路控制和显示电路的需要。

(三)电路运算的说明注意:这里的运算电路与热电偶本身温度与电压的关系函数互为反函数思路说明:对于热点偶,其电压与温度满足U=0.226T-0.707其中电压对应为第一级放大的输入电压,也就是进行过温度补偿之后的电压,单位为毫伏,T为热力学温度。

由于课题要求得到摄氏温度,所以进行换算得U=0.226(t+273.5)-0.707.从温度经过热电偶转化成电压,就是利用了这个公式。

然后求这个函数的反函数,得到t=(100U-6100.4)/22.6.这个函数就是运算电路所实现的函数。

这样一来,测得的温度值比如是x,经过热偶的电压与温度的关系式后,得到一个电压,设为y,满足y=f(x).再经过后面的运算电路,又出现新的电压,此时运算后的电压(设为z)与运算前的电压满足关系式z=g(y),f与g分别对应U=0.226(t+273.5)-0.707和t=(100U-6100.4)/22.6,他们互为反函数,故x=z.这样就实现了把温度的单位变成毫伏的转化,且每毫伏对应一度。

如果把输出的电压直接接在毫伏表上,上面显示的读数,就是温度,不用再做任何的换算。

但是由于后面电路对显示和判断的需要,进行了一次放大,放大到每摄氏度对应24.32mV(这个数值是负责显示数据的同学提供的)。

根据得到的公式t=(100U-6100.4)/22.6,可以看出,需要进行放大,减法,除法的运算。

由此公式算出的数据单位为,1mV/℃,为了使最后输出为23.84mV/℃,则还需一次放大。

这样,运算电路的构成如下:首先用一个同相比例电路,实现100倍的放大,再由滑动变阻器提供6100.4mV的电压,最后减法运算,除法运算和乘法运算,用一个比例减法运算器一次完成。

同相比例运算满足:A=1+R4/R3,这里取R4=99千欧姆,R3=1千欧姆。

提供电压用的是200欧姆大小的滑动变阻器接在9V的电压上。

然后两者进行比例减法运算。

对于比例减法运算电路,当R1=R2,R5=R6时,放大倍数为R6/R1(U2-U1),U1为变阻器上取得的电压,U2为一级放大传来的电压。

由公式可知,当比例减法的比值为1:22.6时,得到1mV/℃的输出,而为了得到23.84mV/℃的输出,则把比值调整为23.84:22.6.最终选择R1=R2=226欧,R5=R6=238.4欧。

总之,整个运算电路,把温度通过一个函数(热点偶的电压与温度关系函数)转变为电压信号,再通过这个函数的反函数(运算电路)把电压变成温度对应的变压,可以说是通过整个电路,给温度换了单位,把摄氏度换为毫伏,且1毫伏对应1摄氏度。

最后为了显示和控制的需要,进行了一次放大。

(2)冷接点温度补偿方法的选择1冷接点补偿的原因:热电偶是两种不同材料组成在一起形成的。

如果热电偶的两端放在不同的温度区域中,会产生一定的电势。

热偶输出的是两个端口温度差的函数。

通常温度到的一端成为热端(或工作端),温度低的那端称为冷端(或自由端),则输出电压为U=f(T2-T1)若冷端为0,则输出电压为测试温度(热端)的单值函数。

但实际中,冷端的温度不为零,则要进行补偿,是其在相应的温度下的电压为零度时的电压。

如果精度要求不高时,可以近似忽略,但是精度要求高时,必须进行冷接点补偿。

2冷接点补偿的总体思路:查资料得知,K点偶所需的补偿电压为41.269μV/℃,可使其两端电压变为0℃时两端的电压大小,从而达到补偿的效果3冷接点补偿的具体方法的选择:常见的补偿方法有:冷端恒温法,补偿导线法,数字补偿,查表法,不平衡电桥法,计算法,传感器温度补偿法。

相关文档
最新文档