概率统计第三章答案
概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率统计第三章答案

概率论与数理统计作业8(§3.1~§3.3)一、填空题 1. Y X ,独立同分布323110//PX ,则()().XY E ,Y X P 94951==≤+2. 设X 的密度函数为2(1)01()0x x f x -<<⎧=⎨⎩其它,则()E X 31/,2()E X =61/.3. 随机变量X 的分布率为303040202...P X-,则()E X = -0.2 ,2(35)E X += 13.4 。
4. 已知随机变量X 的分布列为P (X m =)=101, m =2,4,…,18,20,,则 ()E X = 115. 对两台仪器进行独立测试,已知第一台仪器发生故障的概率为1p ,第二台仪器发生故障的概率为2p .令X 表示测试中发生故障的仪器数,则()=X E 21p p + 二、计算题1. 连续型随机变量X 的概率密度为01(,0)()0akx x k a f x ⎧<<>=⎨⎩其它又知()0.75E X =,求k 和a 的值。
解:由(),dx kx dx x f a 11==⎰⎰+∞∞-得,a k11=+ 又 ()0.75E X =,则有(),.dx kx x dx x xf a 75010=⋅=⎰⎰+∞∞-得,.a k7502=+ 故由上两式解得k =3,a =2.2. 对某工厂的每批产品进行放回抽样检查。
如果发现次品,则立即停止检查而认为这批产品不合格;如果连续检查5个产品,都是合格品,则也停止检查而认为这批产品合格。
设每批产品的次品率为p ,求每批产品抽查样品的平均数。
解:设随机变量X 表示每批产品抽查的样品数,则:∴X 的概率分布表如下:3.设二维随机变量()Y X ,的联合密度函数为()⎪⎩⎪⎨⎧≤≤=其它,0142122y x y x y x f1)求()X E ,()Y E 及()XY E ; 2)求X 与Y 的边缘密度函数; 解:1)()();dx x x dy y x x dx dxdy y ,x xf EX x0821421117312112=-=⋅==⎰⎰⎰⎰⎰--+∞∞-+∞∞-()();dx x x dy y x y dx dxdy y ,x yf EY x9747421118212112=-=⋅==⎰⎰⎰⎰⎰--+∞∞-+∞∞-()()();dx x x dy y x xy dx dxdy y ,x xyf XY E x047421119312112=-=⋅==⎰⎰⎰⎰⎰--+∞∞-+∞∞-2)当时,1≤x ()()();x x ydy x dy y ,x f x f x X 62218214212-===⎰⎰+∞∞- 当时,1≥x ().x f X 0=当时,10≤≤y ()();y ydx x dx y ,x f y f yy Y 25227421===⎰⎰-∞+∞- 当时,或01<>y y ().y f Y 0=X )m X (P =4q 521ppq432pq 3pq ;),,,m (pq )m X (P m 43211===-)q p (1=+4545q q pq )X (P =+==4324325101055432p p p p q pq pq pq p EX +-+-=++++=∴()()⎪⎩⎪⎨⎧>≤-=∴.x ,;x ,x x x f X 10182162概率论与数理统计作业9(§3.4~§3.7)一、填空题1. 设随机变量1X ,2X ,3X 相互独立,其中1X 在[0,6]上服从均匀分布,2X 服从1()2e ,3X 服从参数为λ=3的泊松分布,记12323Y X X X =-+,则()D Y = 462. 随机变量Y X ,相互独立,又()⎪⎭⎫ ⎝⎛41,8~,2~B Y P X 则()=-Y X E 2 --2 ,()=-Y X D 2 8 .3. 随机变量~(10,0.6),~(0.6),X B Y P 相关系数1(,)4R X Y =,(,)Cov X Y =__0.3__ . 4、若X ~(,)B n p ,且()12E X =,()8D X =,则n = 36 ,p =31. 二、选择题1. 设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的 BA )不相关的充分条件,但不是必要条件;B )独立的必要条件,但不是充分条件;C )不相关的必要条件,但不是充分条件;D )独立的充分必要条件 2. 设)(~λP X ,且()(1)21E X X --=⎡⎤⎣⎦,则λ= A A )1, B )2, C )3, D )0 3. 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则 2()E Y = CA )1.B )9.C )10.D )6. 4. 将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 与Y 的相关系数等于( A )。
概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第三章

01 1/401/41/2习题4设(X,Y)的联合分布密度为f(x,y)=12πe-x2+y22,Z=X2+Y2,求Z的分布密度.解答:FZ(z)=P{Z≤z}=P{X2+Y2≤z}.当z<0时,FZ(z)=P(∅)=0;当z≥0时,FZ(z)=P{X2+Y2≤z2}=∫∫x2+y2≤z2f(x,y)dxdy=12π∫∫x2+y2≤z2e-x2+y22dxdy=12π∫02πdθ∫0ze-ρ22ρdρ=∫0ze-ρ22ρdρ=1-e-z22.故Z的分布函数为FZ(z)={1-e-z22,z≥00,z<0.Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即 {x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy=∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数. 解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b.∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y, 其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0,ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y},则F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z}=1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0,F2(z)={1-e-βz,z≥00,z<0,故F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试证明:P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则P{a<min{X,Y}≤b}=FZ(b)-FZ(a),FZ(z)=P{min{X,Y}≤z}=1-P{min{X,Y}>z}=1-P{X>z,Y>z}=1-P{X>z}P{Y>z}=1-[P{X>z}]2,代入得P{a<min{X,Y}≤b}=1-[P{X>b}]2-(1-[P{X>a}]2)=[P{X>a}]2-[P{X>b}]2.证毕.复习总结与总习题解答习题1在一箱子中装有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样.我们定义随机变量X,Y如下:X={0,若第一次取出的是正品1,若第一次取出的是次品, Y={0,若第二次取出的是正品1,若第二次取出的是次品,试分别就(1),(2)两种情况,写出X和Y的联合分布律.解答:(1)有放回抽样,(X,Y)分布律如下:P{X=0,Y=0}=10×1012×12=2536; P{X=1,Y=0}=2×1012×12=536,P{X=0,Y=1}=10×212×12=536, P{X=1,Y=1}=2×212×12=136,(2)不放回抽样,(X,Y)的分布律如下:P{X=0,Y=0}=10×912×11=4566, P{X=0,Y=1}=10×212×11=1066,P{X=1,Y=0}=2×1012×11=1066, P{X=1,Y=1}=2×112×11=166,解答:X可取值为0,1,2,3,Y可取值0,1,2.P{X=0,Y=0}=P{∅}=0,P{X=0,Y=1}=C30C21C33/C84=2/70,P{X=0,Y=2}=C30C22C32/C84=3/70, P{X=1,Y=0}=C31C20C33/C84=3/70,P{X=1,Y=1}=C31C21C32/C84=18/70,P{X=1,Y=2}=C31C22C31/C84=9/70,P{X=2,Y=0}=C32C20C32/C84=9/70,P{X=2,Y=1}=C32C21C31/C84=18/70,P{X=2,Y=2}=C32C22C30/C84=3/70,P{X=3,Y=0}=C33C20C31/C84=3/70,P{X=3,Y=1}=C33C21C30/C84=2/70,P{X=3,Y=2}=P{∅}=0,所以,(X,Y)的联合分布如下:(3)由FX(x)=P{X≤x,Y<+∞}=∑xi<x∑j=1+∞pij, 得(X,Y)关于X的边缘分布函数为:FX(x)={0,x<114+14,1≤x<214+14+16+13,x≥2={0,x<11/2,1≤x<21,x≥2,同理,由FY(y)=P{X<+∞,Y≤y}=∑yi≤y∑i=1+∞Pij, 得(X,Y)关于Y的边缘分布函数为FY(y)={0,y<-12/12,-1≤y<01,y≥0.习题6设随机变量(X,Y)的联合概率密度为f(x,y)={c(R-x2+y2),x2+y2<R0,x2+y2≥R,求:(1)常数c; (2)P{X2+Y2≤r2}(r<R).解答:(1)因为1=∫-∞+∞∫-∞+∞f(x,y)dydx=∫∫x2+y2<Rc(R-x2+y)d xdy=∫02π∫0Rc(R-ρ)ρdρdθ=cπR33,所以有c=3πR3.(2)P{X2+Y2≤r2}=∫∫x2+y2<r23πR3[R-x2+y2]dxdy=∫02π∫0r3πR3(R-ρ)ρdρdθ=3r2R2(1-2r3R).习题7设f(x,y)={1,0≤x≤2,max(0,x-1)≤y≤min(1,x)0,其它,求fX(x)和fY(y).解答:max(0,x-1)={0,x<1x-1,x≥1, min(1,x)={x,x<11,x≥1,所以,f(x,y)有意义的区域(如图)可分为{0≤x≤1,0≤y≤x},{1≤x≤2,1-x≤y≤1},即f(x,y)={1,0≤x≤1,0≤y≤x1,1≤x≤2,x-1≤y≤1,0,其它所以fX(x)={∫0xdy=x,0≤x<1∫x-11dy=2-x,1≤x≤20,其它,fY(y)={∫yy+1dx=1,0≤y≤10,其它.习题8若(X,Y)的分布律为则α,β应满足的条件是¯, 若X与Y独立,则α=¯,β=¯.解答:应填α+β=13;29;19.由分布律的性质可知∑i⋅jpij=1, 故16+19+118+13+α+β=1,即α+β=13.又因X与Y相互独立,故P{X=i,Y=j}=P{X=i}P{Y=j}, 从而α=P{X=2,Y=2}=P{X=i}P{Y=j},=(19+α)(14+α+β)=(19+α)(13+13)=29,β=P{X=3,Y=2}=P{X=3}P{Y=2}=(118+β)(13+α+β)=(118+β)(13+13),∴β=19.习题9设二维随机变量(X,Y)的概率密度函数为f(x,y)={ce-(2x+y),x>0,y>00,其它,(1)确定常数c; (2)求X,Y的边缘概率密度函数;(3)求联合分布函数F(x,y); (4)求P{Y≤X}; (5)求条件概率密度函数fX∣Y(x∣y); (6)求P{X<2∣Y<1}.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1求常数c.∫0+∞∫0+∞ce-(2x+y)dxdy=c⋅(-12e-2x)\vline0+∞⋅(-e-y)∣0+∞=c2=1,所以c=2.(2)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞2e-2xe-ydy,x>00,x≤0={2e-2x,x>00,x≤0,fY(y)=∫-∞+∞f(x,y)dx={∫0+∞2e-2xe-ydx,y>00,其它={e-y,y>00,y≤0.(3)F(x,y)=∫-∞x∫-∞yf(u,v)dvdu={∫0x∫0y2e-2ue-vdvdu,x>0,y>00,其它={(1-e-2x)(1-e-y),x>0,y>00,其它.(4)P{Y≤X}=∫0+∞dx∫0x2e-2xe-ydy=∫0+∞2e-2x(1-e-x)dx=13.(5)当y>0时,fX∣Y(x∣y)=f(x,y)fY(y)={2e-2xe-ye-y,x>00,x≤0={2e-2x,x>00,x≤0.(6)P{X<2∣Y<1}=P{X<2,Y<1}P{Y<1}=F(2,1)∫01e-ydy=(1-e-1)(1-e-4)1-e-1=1-e-4.习题10设随机变量X以概率1取值为0, 而Y是任意的随机变量,证明X与Y相互独立.解答:因为X的分布函数为F(x)={0,当x<0时1,当x≥0时, 设Y的分布函数为FY(y),(X,Y)的分布函数为F(x,y),则当x<0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{∅∩(Y≤y)}=P{∅}=0=FX(x)FY(y);当x≥0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{S∩(Y≤y)}=P{Y≤y}=Fy(y)=FX(x)FY(y),依定义,由F(x,y)=FX(x)FY(y)知,X与Y独立.习题11设连续型随机变量(X,Y)的两个分量X和Y相互独立,且服从同一分布,试证P{X≤Y}=1/2.解答:因为X,Y独立,所以f(x,y)=fX(x)fY(y).P{X≤Y}=∫∫x≤yf(x,y)dxdy=∫∫x≤yfX(x)fY(y)dxdy =∫-∞+∞[fY(y)∫-∞yfX(x)dx]dy=∫-∞+∞[fY(y)FY(y)]dy=∫-∞+∞FY(y)dFY(y)=F2(y)2∣-∞+∞=12,也可以利用对称性来证,因为X,Y独立同分布,所以有P{X≤Y}=P{Y≤X},而P{X≤Y}+P{X≥Y}=1, 故P{X≤Y}=1/12.习题12设二维随机变量(X,Y)的联合分布律为若X与Y相互独立,求参数a,b,c的值.解答:关于X的边缘分布为由于X和Y的地位平等,同法可得Y的边缘概率密度是:fY(y)={2R2-y2πR2,-R≤y≤R0,其它.(2)fX∣Y(x∣y)=f(x,y)fY(y)注意在y处x值位于∣x∣≤R2-y2这个范围内,f(x,y)才有非零值,故在此范围内,有fX∣Y(x∣y)=1πR22πR2⋅R2-y2=12R2-y2,即Y=y时X的条件概率密度为fX∣Y(x∣y)={12R2-y2,∣x∣≤R2-y20,其它.同法可得X=x时Y的条件概率密度为fY∣X(y∣x)={12R2-x2,∣y∣≤R2-x20,其它.由于条件概率密度与边缘概率密度不相等,所以X与Y不独立.习题15设(X,Y)的分布律如下表所示求:(1)Z=X+Y; (2)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类似,本质上是利用事件及其概率的运算法则. 注意,Z的相同值的概率要合并.概率(X,Y)X+YXYX/Ymax{X,Y}1/102/103/102/101/101/10 (-1,-1)(-1,1)(-1,2)(2,-1)(2,1)(2,2)--1-2-2241-1-1/2-221-于是(1)max{X,Y} -112pi 1/102/107/10习题16设(X,Y)的概率密度为f(x,y)={1,0<x<1,0<y<2(1-x)0,其他,求Z=X+Y的概率密度.解答:先求Z的分布函数Fz(z),再求概率密度fz(z)=dFz(z)dz.如右图所示.当z<0时,Fz(z)=P{X+Y≤z}=0;当0≤z<1时,Fz(z)=P{X+Y≤z}=∫∫x+y≤zf(x,y)dxdy=∫0zdx∫0z-x1dy=∫0z(z-x)dx=z2-12x2∣0z=12z2;当1≤z<2时,Fz(z)=∫02-zdx∫0z-xdy+∫2-z1dx∫02(1-x)dy=z(2-z)-12(2-z)2+(z-1)2;当z≥2时,∫∫Df(x,y)dxdy=∫01dx∫02(1-x)dy=1.综上所述Fz(z)={0,z<012z2,0≤z<1z(2-z)-12(2-z)2+(z-1)2,1≤z<21,z≥2,故fz(z)={z,0≤z<12-z,1≤z<20,其它.习题17设二维随机变量(X,Y)的概率密度为f(x,y)={2e-(x+2y),x>0,y>00,其它,求随机变量Z=X+2Y的分布函数.解答:按定义FZ(Z)=P{x+2y≤z},当z≤0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫∫x+2y≤z0dxdy=0.当z>0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫0zdx∫0(z-x)/22e-(x+2y)dy=∫0ze-x⋅(1-ex-z)dx=∫0z(e-x-e-z)dx=[-e-x]∣0z-ze-z=1-e-z-ze-z,故分布函数为FZ(Z)={0,z≤01-e-z-ze-z,z>0.习题18设随机变量X与Y相互独立,其概率密度函数分别为fX(x)={1,0≤x≤10,其它, fY(y)={Ae-y,y>00,y≤0,求:(1)常数A; (2)随机变量Z=2X+Y的概率密度函数.解答:(1)1=∫-∞+∞fY(y)dy=∫0+∞A⋅e-ydy=A.(2)因X与Y相互独立,故(X,Y)的联合概率密度为f(x,y)={e-y,0≤x≤1,y>00,其它.于是当z<0时,有F(z)=P{Z≤z}=P{2X+Y≤z}=0;当0≤z≤2时,有F(z)=P{2X+Y≤z}=∫0z/2dx∫0z-2xe-ydy=∫0z/2(1-e2x-z)dx;当z>2时,有F(z)=P{2X+Y≤2}=∫01dx∫0z-2xe-ydy=∫01(1-e2x-z)dx.利用分布函数法求得Z=2X+Y的概率密度函数为fZ(z)={0,z<0(1-e-z)/2,0≤z<2(e2-1)e-z/2,z≥2.习题19设随机变量X,Y相互独立,若X与Y分别服从区间(0,1)与(0,2)上的均匀分布,求U=max{X,Y}与V=min{X,Y}的概率密度.解答:由题设知,X与Y的概率密度分别为fX(x)={1,0<x<10,其它, fY(y)={1/2,0<y<20,其它,于是,①X与Y的分布函数分别为FX(x)={0,x≤0x,0≤x<11,x≥1, FY(y)={0,y<0y/2,0≤y<21,y≥2,从而U=max{X,Y}的分布函数为FU(u)=FX(u)FY(u)={0,u<0u2/2,0≤u<1u/2,1≤u<21,u≥2,故U=max{X,Y}的概率密度为fU(u)={u,0<u<11/2,1≤u<20,其它.②同理,由FV(v)=1-[1-FX(v)][1-FY)]=FX(v)+FY(v)-FX(v)FY(v)=FX(v)+FY(v)-FU(v),得V=min{X,Y}的分布函数为FV(v)={0,v<0v2(3-v),0≤v<11,v≥1,故V=min{X,Y}的概率密度为fV(v)={32-v,0<v<10,其它.注:(1)用卷积公式,主要的困难在于X与Y的概率密度为分段函数,故卷积需要分段计算;(2)先分别求出X,Y的分布函数FX(x)与FY(y), 然后求出FU(u),再求导得fU(u); 同理先求出FV(v), 求导即得fV(v).。
概率统计第三章题解

求(1)X,Y 的边缘分布律; (2)X=3 的条件下,Y 的条件分布律; (3)Y=1 的条件下,X 的条件分布律.
解: (1)X,Y 的边缘分布律见上表. 即
P { X 3, Y k } (2) P{Y k | X 3} , k 0,1,2,3 P { X 3}
K
0
X 和 Y 的联合分布律为
X
0 0 1/8
1 3/8 0
2 3/8 0
3 0 1/8
Y 1
3
3.盒子里装有 3 只黑球,2 只白球,2 只红球,在其中 任取 4 只球,以 X 表示取到黑球的只数,以 Y 表示取到红 球的只数.求 X 和 Y 的联合分布律. 解 X 的可能取值为 0,1,3,Y 的可能取值为 0,1,
由于 X 和 Y 相互独立,因此 X 和 Y 的联合概率密度为
1 1 e 2 , 0 x 1, y 0 f ( x , y ) f X ( x ) fY ( y ) 2 0, 其它
(2)设含有 a 的二次方程为a 2 2 Xa Y 0 ,试求 a 有 实根的概率.
概率统计第三章题解概率统计概率统计简明教程应用概率统计概率统计简明教程pdf概率统计学概率统计pdf理工科概率统计pdf概率统计讲义习题解答概率统计视频
三、习题解答 1.在一箱子中装有 12 只开关,其中 2 只是次品,在其
中取两次,每次任取一只,考虑两种试验: (1)放回抽样, (2)不放回抽样.我们定义随机变量 X、Y 如下:
)dx
1 2 ((1) (0))
=0.1445
14. 设 X 和 Y 是两个相互独立的随机变量,其概率密 度分别为
(1)确定常数k; (2)求P{X<1,Y<3}; (3)求 P{X<1.5};(4)求 P{X+Y 4 }.
概率论与数理统计第三章习题答案

3
3 = ⋅ lim 4 n→∞
1⎡ ⎛1⎞ ⎢1 − ⎜ ⎟ 4⎣ ⎢ ⎝4⎠
0, 1, 2, 5,由题意,显然 ξ ~ B(5,0.2) 解:设 ξ代表设备使用的个数, ξ= ",
2 2 3 2 (1) P (ξ = 2) = C 5 p q = C5 ⋅ (0.2) 2 ⋅ (0.8) 3 = 0.2048
( 2) P (ξ ≤ 2) = P (ξ = 0) +P (ξ = 1) +P (ξ = 2)
2⎡ ⎛2⎞ ⎢1 − ⎜ ⎟ k ∞ 3⎣ ⎢ ⎝3⎠ ⎛2⎞ 而 ∑ ⎜ ⎟ = lim n →∞ 2 k =1 ⎝ 3 ⎠ 1− 3 1 所以, 2 c=1,从而 c = . 2
n −1
⎤ ⎥ ⎥ ⎦
=
2 1− 3
2 3
=2
3 ,以 ξ 表示首次取得成功的试 验 4 次数序号,试写出 ξ 的分布律,并求出 ξ 为偶数的概率 p。 7.设在某种试验中,试验 成功的概率为
0 1 2 = C5 (0.2) 0 (0.8) 5 + C 5 (0.2)1 (0.8) 4 + C 5 (0.2) 2 (0.8) 3 = 0.94208
( 3) P (ξ ≥ 2) = 1 − P (ξ = 0) − P (ξ = 1)
0 1 = 1 − C5 (0.2) 0 (0.8) 5 − C 5 (0.2)1 (0.8) 4 = 0.26272
概率论与数理统计第三、四章答案

第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。
解:由习题二第2题计算结果0112{0}={1}=33p p p p ξξ====,得12201333E ξ=⨯+⨯= 一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。
解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果(见下表),按定义计算周长的数学期望960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,(1)计算圆半径的期望值;(2)(2)E R π是否等于2ER π?(3)能否用2()ER π来计算远面积的期望值,如果不能用,又该如何计算?其结果是什么?解(1)100.1110.4120.3130.211.6ER =⨯+⨯+⨯+⨯=(2)由数学期望的性质有(2)223.2E R ER πππ==(3)因为22()()E R E R ππ≠,所以不能用2()E R π来计算圆面积的期望值。
利用随机变量函数的期望公式可求得222222()()(100.1110.4120.3130.2)135.4E R E R ππππ==⨯+⨯+⨯+⨯= 或者由习题二第31题计算结果,按求圆面积的数学期望1000.11210.41440.31690.2)135.4E ηπππ=⨯+⨯+⨯+⨯=4. 连续随机变量ξ的概率密度为,01(,0)()0,a kx x k a x ϕ⎧<<>=⎨⎩其它又知0.75E ξ= ,求k 和a 的值 解 由1010()11324a a kx dx kx dx a k E kx x dx a ϕξ+∞-∞===+=⋅==+⎰⎰⎰解得 2,3a k ==5.计算服从拉普拉斯分布的随机变量的期望和方差(参看习题二第16题)。
概率论与数理统计第3章复习题(含解答)

《概率论与数理统计》第三章复习题解答1. 设Y X ,的分布律分别为且已知0)(=<Y X P ,4)1(=+>Y X P .(1)求),(Y X 的联合分布律;(2)判定Y X ,独立否;(3)求),min(),,max(,321Y X Z Y X Z Y X Z ==+=的分布律.解:(1) 由0)(=<Y X P 知0)1,1()0,1(==-=+=-=Y X P Y X P ,故0)1,1()0,1(==-===-=Y X P Y X P ;由41)1(=+>Y X P 知41)1,1(=-==Y X P .于是可以填写出如下不完整的联合分布律、边缘分布律表格:再由联合分布律、边缘分布律的关系可填出所余的3个空, 得到(2) 41)1,1(=-=-=Y X P ,而2141)1()1(⋅=-=-=Y P X P ,故Y X ,不独立. (3) 在联合分布律中增加0=X 的一行,该行ij p 均取为0,分别沿路径:对ij p 相加, 得2. 设平面区域G 由曲线xy 1=, 直线2,1,0e x x y ===所围成. ),(Y X 在G 上服从均匀分布, 求)2(X f .解:区域G 的面积.2][ln 12211===⎰e e G x dx xS 故),(Y X 的联合概率密度为⎪⎩⎪⎨⎧><<<=其它 ,0 10,1,21),(2x y e x y x f . ⎪⎩⎪⎨⎧<<===⎰⎰∞∞-其它 ,0 1 ,2121),()(210e x x dy dy y x f x f x X , .41)2( =∴Xf 3. 一个电子仪器由两个部件构成,Y X ,分别表示两个部件的寿命(单位:千小时),已知),(Y X 的联合分布函数为⎩⎨⎧>>---=+---其它 0,0 0 ,1),()(5.05.05.0y ,x e e e y x F y x y x(1) 问Y X ,是否独立;(2)求两个部件的寿命都超过0.1千小时的概率.解:(1) ⎪⎩⎪⎨⎧>-=∞+=-其它 0, 0 ,1),()(5.0x e x F x F x X , ⎪⎩⎪⎨⎧>-=+∞=-其它 0, 0 ,1),()(5.0y ey F y F y Y , 从而有)()(),(y F x F y x F Y X =, 所以Y X ,相互独立.(2) 由Y X ,相互独立知)]1.0(1)][1.0(1[)1.0()1.0()1.0,1.0(≤-≤-=>>=>>Y P X P Y P X P Y X P.)]1.0(1)][1.0(1[1.005.005.0---==--=e e e F F Y X4. 设),(Y X 的联合概率密度⎪⎩⎪⎨⎧><+=其它,0 0,1,2),(22y y x y x f π,⎩⎨⎧≥<=Y X Y X U ,1,0,⎪⎩⎪⎨⎧<≥=Y X Y X V 3 ,13,0,求:(1) ),(V U 的联合分布律;(2))0(≠UV P .解:(1) 0)()3,()0,0(00=Φ=≥<====P Y X Y X P V U P p ;432),()3,()1,0(01===<<====⎰⎰OCD OCDS dxdy y x f Y X Y X P V U P p 扇形扇形π; 612),()3,()0,1(10===≥≥====⎰⎰OAB OABS dxdy y x f Y X Y X P V U P p 扇形扇形π; 1212),()3,()1,1(11===<≥====⎰⎰OBC OBCS dxdy y x f Y X Y X P V U P p 扇形扇形π. 于是有联合分布律:(2) 121)0(11==≠p UV P . 5. 设),(Y X 的联合概率密度为⎩⎨⎧<<<<=其它,010,10 ,1),(y x y x f求:(1))21,21(≤≤Y X P ;(2))21(>+Y X P ;(3))31(≥Y P ;(4))21(>>Y Y X P .解:(1)4121211),()21,21(21,21=====≤≤⎰⎰⎰⎰≤≤G Gy x S dxdy dxdy y x f Y X P ;(2)=>+)21(Y X P 8721212111),(21=-===⎰⎰⎰⎰>+G Gy x S dxdy dxdy y x f ;(3)=≥)31(Y P 32)311(11),(31=-===⎰⎰⎰⎰≥G Gy S dxdy dxdy y x f ;(4)41211212121)21()21,()21(=⋅=>>>=>>Y P Y Y X P Y Y X P .6. 设),(Y X 的联合概率密度为⎪⎩⎪⎨⎧<<<<-=其它 ,0 2,2010 ,20),(x y x x x xcy x f求:(1) 常数c ;(2) )(x f X ;(3) )(x y f X Y ;(4) )128(=≥X Y P .解:(1) ,25)210(20),(1201020102c dx xcdy xx c dx dxdy y x f xx =-=-==⎰⎰⎰⎰⎰∞∞-∞∞-.251 =∴c(2) ⎪⎩⎪⎨⎧<<-=-==⎰⎰∞∞-else x x dy x xdy y x f x f x x X0, 2010 ,50202520),()(2.(3) 2010 <<x 时,0)(≠x f X ,)(x y f X Y 有定义,且⎪⎪⎩⎪⎪⎨⎧<<=--==elsex y xx x x x x f y x f x y f X X Y 0, 2,250202520)(),()( (4) )20,10 (12∈=x ,⎪⎩⎪⎨⎧<<==∴elsey X y f XY 0,126 ,61)12( ,从而 3261)12()128(1288=====≥⎰⎰∞dy dy X y f X Y P X Y .7. 设Y X ,相互独立且都服从]1,0[上的均匀分布, 求Y X Z +=的概率密度.解:⎰∞∞--=dx x z f x f z f Y X Z )()()(, 其中⎩⎨⎧<<=其它x x f X ,0 10 ,1 )(, ⎩⎨⎧<-<=-其它 x z x z f Y ,0 10 ,1 )(. ⎩⎨⎧<<-<<⇔⎩⎨⎧<-<<<⇔≠-z x z x x z x x z f x f Y X 11010100)()(. (区域见图示)(1)10<<z 时, zdx z f zZ =⋅=⎰011)(;(2) 21<≤z 时, z dx z f z Z -=⋅=⎰-211)(11;(3) )2,0(∉z 时, 0)(=z f Z .综上知⎪⎩⎪⎨⎧<≤-<<=其它 z z z z z f Z ,0 21 ,210 , )(.8*. 设),(Y X 的联合概率密度⎩⎨⎧<<=-其它 ,0 0 ,),(yx xe y x f y ,求(1) )21(<<Y X P ,)21(=<Y X P ;(2)Y X Z +=的概率密度;(3) )1),(min(<Y X P .解:(1) ① 102142512121)()()2()2,1()21(22221202102202102---=---=--==<<<=<<-------⎰⎰⎰⎰⎰⎰e e e e e e dxe e x dx e e x dy xe dx dyxe dxY P Y X P Y X P x x xy x y; ②⎪⎩⎪⎨⎧≤>===--∞∞-⎰⎰0 0, 0,21),()(20y y e y dx xe dx y x f y f y y yY , 02)2( 2≠=∴-e f Y ,于是 ⎪⎩⎪⎨⎧<<====--elsex xe xef x f Y x f Y Y X 0, 20 ,22)2()2,()2(22 ,从而 412)2()21(101=====<⎰⎰∞-dy x dx Y x f Y X P Y X . (2) ⎰∞∞--=dx x z x f z f Z ),()(, 其中2000),(zx xx z x x z x f X <<⇔⎩⎨⎧>->⇔≠-. (区域见图示)(1) 0>z 时, ⎰⎰---==2020)()(z xzz x z Z dx xe edx xez f 2)12(zze ze---+=; (2)0≤z 时, 0)(=z f Z .综上知⎪⎩⎪⎨⎧≤>-+=--0 ,0 0,)12()(2z z e ze zf z z Z .(3))1,1(1)1),(min(1)1),(min(≥≥-=≥-=<Y X P Y X P Y X P1111,12111),(1-∞-∞∞-≥≥-=-=-=-=⎰⎰⎰⎰⎰e dx xe dy xe dxdxdy y x f x xyy x .9*. 设),(Y X 的联合概率密度⎩⎨⎧>>=+-其它 ,0 0,0,),()(y x e y x f y x ,求Y X Z -=的概率密度.解:)()()(z Y X P z Z P z F Z ≤-=≤= (1) 0<z 时, 0)()(=Φ=P z F Z ;(2) 0=z 时, 0),()()(0====⎰⎰>=x y Z dxdy y x f X Y P z F(3)0>z 时, 如图⎰⎰⎰⎰⎰⎰∞+---+--+<<-+==zz x zx y x zz x y x zx y z x Z dy e e dxdy e e dxdxdy y x f z F 0),()(⎰⎰∞--+------+-=zz x z x x z zx x dx e e e dx ee )()1(0z zx z z z xz xe dx e e e dx ee e-∞------=-+-=⎰⎰1)()(202综上知⎪⎩⎪⎨⎧≤>-=-0 ,0 0 ,1)(z z e z F z Z , 求导得⎩⎨⎧≤>=-0,0 0,)(z z e z f z Z .10. 设B A ,是两个随机事件, 且,41)(,21)(,41)(===B A P A B P A P 引进随机变量 ⎩⎨⎧=⎩⎨⎧=不发生当发生当 不发生当发生当 B B Y A A X ,0 ,1 , ,0 ,1.判断下列结论的正误, 并给予分析:(1)B A ,互不相容;(2)B A ,相互独立;(3)Y X ,相互独立;(4)1)(==Y X P ;(5)41)1(22==+Y X P . 解:(1)检验0)(=AB P 是否成立. 事实上0812141)()()(≠=⋅==A B P A P AB P , 故B A ,相容, 原结论错. (2)检验)()()(B P A P AB P =是否成立. 事实上由于41)(,41)(==B A P A P ,.)()()()()( A P B P B A P B P AB P ==∴ 即)()()(B P A P AB P =成立, 故B A ,独立, 原结论对.(3)检验Y X ,的联合分布律与边缘分布律之积是否都相等. 事实上81)(11==AB P p ;838121)()()()(01=-=-=-==AB P B P AB B P B A P p ; 818141)()()()(10=-=-=-==AB P A P AB A P B A P p ;83818381100=---=p . 于是有经检验, Y X ,的联合分布律与边缘分布律之积都相等, 故原结论对.(4)只需正确求出)(Y X P =的值. 事实上0218183)(1100≠=+=+==p p Y X P , 故原结论错. (5)只需正确求出)1(22=+Y X P 的值. 事实上41218183)1(100122≠=+=+==+p p Y X P , 故原结论错.。
概率论与数理统计第3章课后题答案

概率论与数理统计第3章课后题答案第三章连续型随机变量3.1 设随机变数 的分布函数为F(x),试以F(x)表示下列概率:(1)P( a);(2)P( a);(3)P( a);(4)P( a) 解:(1)P( a) F(a 0) F(a);(2)P( a) F(a 0);(3)P( a)=1-F(a);(4)P( a) 1 F(a 0)。
3.2 函数F(x) 11 x2是否可以作为某一随机变量的分布函数,如果(1) x(2)0 x ,在其它场合适当定义;(3)- x 0,在其它场合适当定义。
解:(1)F(x)在(- , )设随机变数 具有对称的分布密度函数p(x),即p(x) p( x),证明:对任意的a 0,有(1)F( a) 1 F(a)12ap(x)dx;(2)P( a) 2F(a) 1;(3)P( a) 2 1 F(a) 。
证:(1)F( a)ap(x)dx 1ap(x)dx=1ap( x)dx 1ap(x)dx=1 F(a) 1 (2)P( ap(x)dxap(x)dxa12a0ap(x)dx;ap(x)dx 2 p(x)dx,由(1)知1-F(a)故上式右端=2F(a) 1;12ap(x)dx。
(3)P( a) 1 P( a) 1 [2F(a) 1] 2[1 F(a)]3.5 设F1(x)与F2(x)都是分布函数,又a 0,b 0是两个常数,且a b 1。
证明F(x) aF1(x) b F2(x)也是一个分布函数,并由此讨论,分布函数是否只有离散型和连续型这两种类型?证:因为F1(x)与F2(x1) F2(x2),于是F(x1) aF1(x1) b F2(x1) aF1(x2) b F2(x2) F(x2)F2(x都是分布函数,当x1 x2时,F1(x1) F1(x2),又xlimF(x) lim[aF1(x) b F2(x)] 0xlimF(x) lim[aF1(x) b F2(x)] a b 1xxF(x 0) aF1(x 0) b F2(x 0) aF1(x) b F2(x) F(x)所以,F(x)也是分布函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计作业班级 姓名 学号 任课教师第三章 多维随机变量及其分布教学要求:一、了解多维随机变量的概念,了解二维随机变量的分布函数;二、了解二维离散型随机变量分布律的概念,理解二维连续型随机变量概率密度的概念; 三、理解二维随机变量的边缘概率分布; 四、理解随机变量的独立性概念;五、会求两个独立随机变量的简单函数的分布(和、极大、极小).重点:二维离散型随机变量的联合分布律及二维连续型随机变量的边缘概率密度,随机变量的独立性.难点:边缘分布,随机变量的独立性,随机变量的函数的分布.练习一 二维随机变量及其分布1.填空题(1)设二维随机变量),(Y X 的分布函数为),(y x F ,且d c b a <<,,则=≤}{a X P ()+∞,a F ; =≥}{d Y P ()d F ,1∞+-;=≤<≤<},{d Y c b X a P ),(),(),(),(c a F c b F d a F d b F +--.(2)设二维连续型随机变量),(Y X 的概率密度为),(y x f ,则其分布函数),(y x F =⎰⎰+∞∞-+∞∞-dxdy y x f ),(;若G 是xoy 平面上的区域,则点),(Y X 落在G 内的概率,即}),{(G Y X P ∈⎰⎰=Gdxdy y x f ),((3)若二维随机变量),(Y X 的概率密度为)1)(1(),(22y x Ay x f ++= )0,0(>>y x ,则系数A =,42π=<}1{X P 21. (4)设二维随机变量),(Y X 的分布函数(),3arctan 2arctan ,⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=y C x B A y x F则常数 A =21π, B =2π, C =2π.2.将2个球随机地放入3个盒子,设X 表示第一个盒子内放入的球数,Y 表示有球的 盒子个数.求二维随机变量),(Y X 的联合概率分布.解:按古典概型,2个球随机地放入3个盒子中共有91313=C C 种取法,X 的所有可能取值为0,1,2,Y 的所有可能取值为1,2,则: 922194}0|1{}0{}1,0{=⋅=======X Y P X P Y X P , 922194}0|2{}0{}2,0{=⋅=======X Y P X P Y X P ,0094}1|1{}1{}1,1{=⋅=======X Y P X P Y X P ,94194}1|2{}1{}2,1{=⋅=======X Y P X P Y X P ,91191}2|1{}2{}1,2{=⋅=======X Y P X P Y X P ,0091}2|2{}2{}2,2{=⋅=======X Y P X P Y XP .分布律为:3.设盒内产品有2件次品,3件正品,每次从中任取一件产品,不放回地取两次。
用X 表示第一次取得次品的件数,用Y 表示第二次取得次品的件数,求X 和Y 的联合分布律.解:()Y X ,的所有可能取值为 ()0,0 ;()1,0 ;()0,1 ;()1,1 .由乘法公式可得:1034253}0|0{}0{}0,0{=⋅=======X Y P X P Y X P , 1034253}0|1{}0{}1,0{=⋅=======X Y P X P Y X P ,1034352}1|0{}1{}0,1{=⋅=======X Y P X P Y X P ,1014152}1|1{}1{}1,1{=⋅=======X Y P X P Y X P .所以()Y X ,的分布律为:4. 设二维随机变量),(Y X 的概率密度为()()⎩⎨⎧>>=+-其它;,0,0,0,,23y x Ae y x f y x(1)求系数A ;(2)求}20,10{≤<≤<Y X P ;(3)求分布函数),(y x F .解:(1)由,1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 得162131020032030)23(==⎥⎦⎤⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡-=⋅=+∞-+∞∞+--∞+-∞+∞++-⎰⎰⎰⎰A e e A dy edx eA dxdy Aey x yxy x所以 6=A .(2)()dx e e dy edx Y X P y x y x 2021310223][36}20,10{--+-⎰⎰⎰-==≤<≤<()[])1)(1(1)1(33410341034--------=--=-=⎰e e e e dx ee xx(3)()⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰⎰⎰∞-∞-+-∞-∞-其它;x y y y x x xydy dx y x dy e dx dy y x f dx y x F ,0,0,0,6),(),(0230()()⎩⎨⎧>>--=--.,0,0,0,1123其它y x e e y x5.设二维随机变量),(Y X 的概率密度(6),02, 24,(,)0,k x y x y f x y --<<<<⎧=⎨⎩其它.(1)求常数k ;(2) 求}3,1{<<Y X P ;(3) 求}4{≤Y X P +.解:(1)由,1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 得⎰⎰--4220)6(dx y x k dy ()dy x x y k 242226⎰⎥⎦⎤⎢⎣⎡--=⎰--=42)2212(dy y k []1810422==-=k yy k .所以8/1=k(2)⎰⎰--=<<1032)6(81}3,1{dx y x dy Y X P ()dy x x y 13222681⎰⎥⎦⎤⎢⎣⎡--=83)211(8132=-=⎰dy y(3) ⎰⎰=∈=≤Gdxdy y x f G Y X P X P ),(}),{(}4Y {+()()dy x x y dx y x dyyy--⎰⎰⎰⎥⎦⎤⎢⎣⎡--=--=4042242402681681 ()()()().3246148142142814232422=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡-+-=⎰y y dy y y练习二 二维随机变量的边缘分布1.填空(1)设二维随机变量),(Y X 的联合分布律为X Y且=≥}1{Y P 45.0.(2)设二维随机变量),(Y X 的分布律为,则a =41,b =61,==}0{XY P 32,==}{Y X P 127 . (3)设二维随机变量),(Y X 的概率密度为⎩⎨⎧<<<<=其它;,0,,10,),(2x y x x C y x f则常数C =6;边缘概率密度=)(x f X 其它.,10,0),(62<<⎩⎨⎧-x x x =)(y f Y 其它.,1y 0,0),y y (6<<⎩⎨⎧- (4)设二维随机变量),(Y X 的分布函数为其它.,0,0,0),1()1(),(2>>⎩⎨⎧-⋅-=--y x e e y x F y x则边缘分布函数=)(x F X ();0,12>--x e x ,=)(y F Y ();0,1>--y e y ;边缘概率密度=)(x f X ⎩⎨⎧>-其它;,0,0,22x e x =)(y f Y ⎩⎨⎧>-.,0,0,其它y e y 2.盒子里装有3只黑球、2只白球、2只红球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X ,Y 的联合分布律以及),(Y X 的边缘分布律.解:按古典概型计算,从7只球中取4只,共有3547=C 种取法,在取的4只球中,黑球有i 只,红球有j 只(剩下j i --4只为白球)的取法为4,2,1,0,3,2,1,0,4223≤+==⋅⋅--j i j i C C C ji j i ,于是0}2,3{}0,1{}1,0{}0,0{============Y X P Y X P Y X P Y X P35135}2,0{222203====C C C Y X P , 35635}1,1{221213====C C C Y X P , 35635}2,1{122213====C C C Y X P , 35335}0,2{220223====C C C Y X P ,351235}1,2{121223====C C C Y X P , 35335}2,2{022223====C C C Y X P ,35235}0,3{120233====C C C Y X P , 35235}1,3{021233====C C C Y X P .分布律为:3. 将一枚硬币掷三次,以X 表示前两次中出现正面的次数,以Y 表示3次中出现正面的次数,求X ,Y 的联合分布律以及),(Y X 的边缘分布律.解:由于X 服从二项分布B(2,1/2), Y 所有可能取的值为0,1,2,3.当)2,1,0(==i i X 时,Y 取1,+i i 的概率都为1/2,而取1,+i i 以外的值是不可能的,故:0}0,1{}3,0{}2,0{=========Y X P Y X P Y X P , 0}1,2{}0,2{======Y X P Y X P , 812141}0|0{}0{}0,0{=⋅=======X Y P X P Y X P , 812141}0|1{}0{}1,0{=⋅=======X Y P X P Y X P ,412121}1|1{}1{}1,1{=⋅=======X Y P X P Y X P ,412121}1|2{}1{}2,1{=⋅=======X Y P X P Y X P ,812141}2|2{}2{}2,2{=⋅=======X Y P X P Y X P ,812141}2|3{}2{}3,2{=⋅=======X Y P X P Y XP所得分布律为:二维随机变量(,)X Y 的概率密度4.设⎩⎨⎧<<=-它.其,,00,),(y x e y x f y 为求边缘概率密度)(),(y f x f Y X . 解:⎰⎰∞+∞--+∞-⎩⎨⎧>=⎪⎩⎪⎨⎧>==.,0,0,,00,),()(其它其它,x e x dy e dy y x f x f x x y X⎰⎰∞+∞---⎩⎨⎧>=⎪⎩⎪⎨⎧>==.,0,0,,0,0,),()(0其它其它,y ye y dx e dx y x f y f y y y Y5.设二维随机变量(,)X Y 的概率密度为⎩⎨⎧<<<=它.其,0,10,6),(y x x y x f ,(1)求边缘概率密度)(),(y f x f Y X ; (2)求(1)P X Y +≤. 解:(1) 其它.其它,,10,0),1(6,0,10,6),()(1<<⎩⎨⎧-=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-x x x x xdy dy y x f x f x X⎰⎰∞+∞-⎩⎨⎧<<=⎪⎩⎪⎨⎧<<==.,0,10,3,0,10,6),()(20其它其它,y y y xdx dx y x f y f y Y(2) ⎰⎰⎰⎰-==≤+2/1016),(}1{xxGxdy dx dxdy y x f Y X P()[].41341262102310=+-=+-=⎰x x dx x x练习三 二维随机变量的条件分布(选做)1.填空(1)设二维离散型随机变量),(Y X 的联合分布律为则===}0|1{Y X P .11655.030}0{}0,1{=====.Y P Y X P(2)设二维随机变量),(Y X 的概率密度为其它.,1,0,),(22<<⎩⎨⎧=y x y cx y x f则时,当10≤<y =)|(|y x f Y X 其它.,,0,23)(),(2/32y x y y x y f y x f Y <<-⎪⎩⎪⎨⎧=-==≥}21|41{X Y P 1. 2. 设二维离散型随机变量),(Y X 的联合分布律为:求}0|1{==Y X P ,}2|1{==Y X P ,}1|1{==X Y P .解: 2/12/14/1}0{}0,1{}0|1{========Y P Y X P Y X P ;5/224/512/1}2{}2,1{}2|1{========Y P Y X P Y X P ;11/324/118/1}1{}1,1{}1|1{========X P Y X P X Y P3. 设二维随机变量),(Y X 的概率密度为()⎩⎨⎧<<<=.,0,10,,1,其它x x y y x f求条件概率密度)|(|x y f X Y ,)|(|y x f Y X .解:由于 ⎰⎰∞+∞--⎪⎩⎪⎨⎧⎩⎨⎧<<=<<⋅==.,0,10,2,0,10,1),()(其它其它,x x x dx dy y x f x f xx X⎰⎰⎰∞+∞--⎩⎨⎧<-=⎪⎪⎩⎪⎪⎨⎧<<-⋅<<⋅==.,0,1,1,0,01,1,10,1),()(11其它其它,y y y dx y dx dx y x f y f yyY所以当10<<x 时,⎪⎩⎪⎨⎧<==.,0,,21)(),()|(|其它x y x x f y x f x y f X X Y当1<y 时,⎪⎩⎪⎨⎧<<-==.,0,1,11)(),()|(|其它x y yy f y x f y x f Y Y X练习四 随机变量的相互独立性1.填空(1)设随机变量X 与Y 相互独立且服从同一分布:3/)1()()(+====k k Y P k X P ,1,0=k ,则==}{Y X P 95. (2)设随机变量X 与Y 的联合分布律为则=+b a 31.若X 与Y 相互独立,则=a 92,=b 91. (3)设两个随机变量X 与Y 相互独立,X 服从均匀分布)51,0(U ,Y 服从指数分布)5(E ,则),(Y X 的概率密度=),(y x f ⎪⎩⎪⎨⎧><<-.,0,0,50,5其它y x e x2. 某班车在起点站的上车人数X 服从参数为)0(>λλ的泊松分布,每位乘客在中途下车的概率为)10(<<p p ,且乘客中途下车与否相互独立.以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率. (2)二维随机变量),(Y X 的概率分布.解:(1) 由题设知,此条件概率服从二项分布,因此有,2,1,0,0,)1(}|{=≤≤-===-n n m p p C n X m Y P m n mm n(2) 利用乘法公式,得}|{}{},{n X m Y P n X P m Y n X P ==⋅====nmn mmnn e p p C λλ!)1(---=, ,2,1,0,0=≤≤n n m 3.设二维随机变量),(Y X 的概率密度为其它.,10,0,15),(2<<<⎩⎨⎧=y x y x y x f(1)求边缘概率密度)(x f X 和)(y f Y ;(2)判断X 与Y 是否相互独立.解:(1)()⎰∞+∞-⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧<<-=<<==.,0,10,1215,0,10,15),()(222其它其它,x x x x y x dy y x f x f X⎰⎰∞+∞-⎪⎩⎪⎨⎧⎩⎨⎧<<=<<==.,0,10,5,0,10,15),()(202其它其它,y y y ydx x dx y x f y f y Y(2)由于),()()(y x f y f x f Y X ≠,所以X 与Y 不相互独立.4. 设X 和Y 是两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为,()⎪⎩⎪⎨⎧≤>=-;0,0,0,212y y e y f yY (1)求X 和Y 的联合概率密度(,)f x y ;(2)设含有t 的二次方程为022=++Y Xt t ,试求t 有实根的概率.解:(1)因为X 的概率密度为其它.,10,0,1)(<<⎩⎨⎧=x x f X且X 与Y 相互独立,故),(Y X 的概率密度为⎪⎩⎪⎨⎧><<=-.,0,0,10,21),(2其它y x e y x f y(2) t 的二次方程022=++Y Xt t 有实根的充要条件为判别式0442≥-=∆Y X ,亦即Y X≥2.而{⎰⎰⎰⎰-==∈=≥122221),(}),{(}x yGdy e dx dxdy y x f G Y X P Y XP dx e dx e dx e x x x y⎰⎰⎰----=⎪⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡-=1021020102222111445.0)]0()1([21=Φ-Φ-=π练习五 两个随机变量的函数的分布1.填空(1X Y X 的分布律为则随机变量),max(Y X Z =与Y X W +=的分布律分别为:(2)设二维连续型随机变量),(Y X 的概率密度为),(y x f ,若X 与Y 相互独立,则Y X Z +=的分布函数=)(z F Z ⎰⎰≤+zy x dxdy y x f ),(;概率密度=)(z f Z dy y f y z f Y X ⎰+∞∞--)()( 或=)(z f Z dx x z f x f Y X ⎰+∞∞--)()((这两个公式也被称为卷积公式).(3)设随机变量X 与Y 相互独立,且)1,0(~N X ,)1,1(~N Y ,则~Y X +)21(,N ;=≤+}1{Y X P21. 2. 设X 和Y 是两个相互独立的随机变量,其概率密度分别为其它.,100,,1)(≤≤⎩⎨⎧=x x f X 其它.-Y,00,,e )(>⎩⎨⎧=y y f y求随机变量Y X Z +=的概率密度. 解:利用公式dy y f y z f z f Y X Z ⎰+∞∞--=)()()(,按函数)(),(y f x f Y X 的定义知,仅当⎩⎨⎧≥≤-≤,0,10y y z 即0,1>≤≤-y z y z 时,上述积分才不等于零.所以()()⎪⎩⎪⎨⎧≥-<<-=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥⋅<<⋅=-----⎰⎰.,01,1,10,1,0,1,1,10,110其它,其它,z e e z e z dy e z dy e z f z z z z yzyZ 3. 设随机变量(,)X Y 的概率密度为()()⎪⎩⎪⎨⎧>>+=+-其它;,0,0,0,21),(y x e y x y x f y x(1)问X 和Y 是否相互独立? (2) 求Y X Z +=的概率密度.解:(1) ()()⎰⎰∞+∞-+∞+-⎪⎩⎪⎨⎧>+==.,0,0,21),()(0其它x dy e y x dy y x f x f y x X其中()()()()()()()().0,2121212121210000>+=⎥⎦⎤⎢⎣⎡-=++⎥⎦⎤⎢⎣⎡+-=+-∞++--+∞+-+∞+-+-+∞⎰⎰x e x e xe y x d e e y x dy e y x x y x x y x y x y x故 ⎪⎩⎪⎨⎧>+=-.,0,0,21)(其它x e x x f xX同理可求得 ()⎪⎩⎪⎨⎧>+=-.,0,0,21其它y e y y f yY显然),()()(y x f y f x f Y X ≠,所以X 和Y 不相互独立. (2) 由公式⎰+∞∞--=dy y y z f z f Z ),()(可知仅当⎩⎨⎧>>-,0,0y y z 即⎩⎨⎧><,0,y z y 时才不会 等于零,所以()()()()⎪⎩⎪⎨⎧>+-=⎪⎩⎪⎨⎧>-=⎰⎰+--.,0,0,21.,0,0,,00其它其它z dy e y y z z dy y y z f z f z y y z z Z ⎪⎩⎪⎨⎧>=-.,0,0,212其它z e z z4. 设随机变量X 与Y 相互独立,且都在区间],[b a 上服从均匀分布,求 (1)),max(1Y X Z =的概率密度; (2)),min(2Y X Z =的概率密度. 解:(1)由于X 与Y 相互独立且具有相同的分布,所以},{}),{m a x (}{)(11z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤= 2)]([)()(}{}{z F z F z F z Y P z X P X Y X ==≤⋅≤=,而 ()⎪⎩⎪⎨⎧>≤≤--<=;,1,,,,0b z b z a a b az a z z F X则 ()()⎪⎩⎪⎨⎧≤≤--===其它;0,,2)()(2)]'([)(211b z a a b a z z f z F z F z f X X Z Z(2) 由于X 与Y 相互独立且具有相同的分布,所以}),{min(1}),{min(}{)(22z Y X P z Y X P z Z P z F Z >-=≤=≤=}{}{1},{1z Y P z X P z Y z X P >>-=>>-= }){1})({1(1z Y P z X P ≤-≤--=)](1)][(1[1z F z F Y X ---=2)](1[1z F X --=则 ()()⎪⎩⎪⎨⎧≤≤--=-⋅--==.,0,,2)]([)](1[2)]'([)(222其它b z a a b z b z f z F z F z f X X Z Z综合练习题一、填空题1. 已知随机变量X 与Y 的边缘分布律在下表中已给出,且1}0{==XY P ,请推断X 与Y 的联合分布律:2.设二维随机变量),(Y X 的联合分布律为已知随机事件}0{=X 与}1{=+Y X 相互独立,则a =0.4,b =0.1.3. 设二维随机变量),(Y X 服从G 上的均匀分布,区域G 由曲线2x y =与x y =所围,则),(Y X 的概率密度函数为()⎪⎩⎪⎨⎧∈=其它,,0,,,61),(G y x y x f ,=<}21{XP 721.4. 设二维连续型随机变量),(Y X 的两个分量X 与Y 相互独立,且服从同一分布,则=<}{Y X P 21.5. 设X 和Y 是两个随机变量,且73}0,0{=≥≥Y X P ,74}0{}0{=≥=≥Y P X P , 则=≥}0),{max(Y X P }0),{max(1<-Y X P }0Y 0{}0,0{1≥≥=<<-=或X P Y X P }0,0{}0{}0{≥≥-≥+≥=Y X P Y P X P 7/37/47/4-+=75=. 二、计算题1. 8件产品中有5件一等品,2件二等品,1件三等品,从中任取4件,若X 为4件产品中的一等品件数,Y 为4件产品中的二等品件数. (1)求二维随机变量),(Y X 的联合分布律与边缘分布律;(2)判断X 与Y 是否相互独立;(3)求}0|1{==Y X P .解: (1)(2)不相互独立. (3)0}0|1{===Y X P .3.设随机变量(,)X Y 的概率密度为⎩⎨⎧≤≤≤=其它.1,00,,),(y x Axy y x f ,(1)求常数A ;(2)求)1(≥+Y X P ;解: (1) 由(),8121),(1210110Adx x x A dy xy dx A dxdy y x f x=-===⎰⎰⎰⎰⎰+∞∞-+∞∞-得.8=A (2)(){}⎰⎰-==∈=≥+1211658,}1{yyxydx dy G Y X P Y X P . 3.设二维随机变量(,)X Y 的概率密度为⎩⎨⎧<<<<=其它;,0,20,10,1),(x y x y x f(1)求(,)X Y 的边缘概率密度)(),(y f x f Y X ,并判断X 与Y 是否相互独立;(2)求Y X Z -=2的概率密度)(z f Z .解:(1) ⎪⎩⎪⎨⎧⎩⎨⎧<<=<<==⎰⎰∞+∞-.,0,10,2,0,10,),()(20其它其它,x x x dy dy y x f x f xX⎪⎩⎪⎨⎧<<-=⎪⎩⎪⎨⎧<<⋅==⎰⎰∞+∞-.,0,20,21,0,20,1),()(12其它其它,y yy dx dx y x f y f y Y(2) 由于),()()(y x f y f x f Y X ≠,所以X 与Y 不相互独立. (3)由于dxdy y x f D Y X P z Y X P z Z P z F zD z Z ⎰⎰=∈=≤-=≤=),(}),{(}2{}{)(所以当20<<z 时, 41)(22012z z dy dx z F zx ZZ -=-=⎰⎰-,21)(z z f Z -=; 当2≥z 或当0≤z 时, ,0)(=z F Z 0)(=z f Z ,即 ⎪⎩⎪⎨⎧<<-=.,0,20,21)(其它z zz f Z 4.设二维随机变量(,)X Y 的概率密度为⎩⎨⎧∞<<<<=+-其它.,1,000,,),()(y x be y x f y x ,(1)试确定常数b ;(2)求边缘概率密度)(),(y f x f Y X ; (3)判断X 与Y 是否相互独立;(4)求函数max{,}Z X Y =的概率密度.解:(1) 由,1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 可得 ()(),111011=-=⋅=-+∞--+-+∞⎰⎰⎰⎰e b dy e dx e b dy bedx y xy x所以111--=eb .于是 (2) ()⎪⎩⎪⎨⎧<<-=⎪⎩⎪⎨⎧<<-==--∞++--∞+∞-⎰⎰.,0,10,1.,0,10,11),()(101其它其它x e e x e e dy y x f x f x y x X ()⎪⎩⎪⎨⎧⎩⎨⎧>=>-==-+--∞+∞-⎰⎰.,0,0,,0,0,11),()(101其它其它,y e y dx e e dx y x f y f y y x Y(3) 由于),()()(y x f y f x f Y X =,所以X 与Y 相互独立, (4) },{}),{m a x (}{)(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=)()(}{}{z F z F z Y P z X P Y X =≤⋅≤=,而 ⎰⎰∞-----⎪⎪⎩⎪⎪⎨⎧≥<≤--<=⎪⎪⎩⎪⎪⎨⎧≥<≤-<==zz z x X X z z e ez z z dx e e z dx x f z F .1,1,10,110,0,1,1,10,1,0,0)()(101 ⎩⎨⎧≤>-=⎪⎩⎪⎨⎧≤>==-∞--⎰⎰.0,0,0,1,0,0,0,)()(0z z e z z dy e dy y f z z F z zz y Y Y故()()⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---;1,1,10,11,0,012z e z e e z z F zzZ ()()⎪⎪⎩⎪⎪⎨⎧≥<≤--<=----.1,,10,112,0,01z e z e e e z z f z z z Z .。