概率论第三章第四章习题及答案精品PPT课件
合集下载
概率论与数理统计课件第三章ppt

Y X
y1
y2
...
yj
… pi·
x1 p11 p12 … p1 … p1·
x... 2 p... 21 x... i p... i1
p· p·1
p... 22 p... i2
p·2
…j
… p2
… j...
… …
p...pi·jj
… … … …
…
p... 2· p... i ·
1
j
例1.设袋中有五个同类产品,其中有两个 是次品,每次从袋中任意抽取一个,
设(X,Y)为连续型随机变量,其联合分布函 数和联合概率密度分别为F(x,y)和 f(x,y),则
f X
(x)
d dx
FX
(x)
f (x, y)dy
fY
( y)
d dy
FY
(
y)
f
(x,
y)dx
分别称为(X,Y)关于X和Y的边缘概率密度
函数,简称边缘概率密度。
例2. 设(X,Y)的分布密度是
e(xy) , x 0, y 0
3.1
例1.甲乙掷色子,观察点数。
w1i={甲掷i点} w2j={乙掷j点}
X,Y (i, j)
i,j=(1,2,…,6)
二维随机变量的定义
对于随机试验E,Ω是其样本空间。X(w) 和 Y(w)是定义在样本空间Ω上的两个随机变量, 由它们构成的向量(X,Y)称为二维随机变量 或二维随机向量。
y
w.
Y X
y1
y2
...
yj
…
x1 p11 p12 x... 2 p... 21 p... 22
x... i p... i1 p... i2
概率论与数理统计ppt课件(完整版)

高校教育精品PPT
14
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
(1) 样本空间中的元素只有有限个;
(2) 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子,观察出现的点数.
概率的古典定义:
对于古典概型, 样本空间S={1, 2, … , n}, 设事件A包 含S的 k 个样本点,则事件A的概率定义为
高校教育精品PPT
5
(二) 随机事件
定义 样本空间S的子集称为随机事件, 简称事件. 在一 次试验中, 当且仅当这一子集中的一个样本点出现时, 称 这一事件发生.
基本事件: 由一个样本点组成的单点集. 如:{H},{T}.
复合事件: 由两个或两个以上的基本事件复合而成的事件 为复合事件. 如:E3中{出现正面次数为奇数}.
必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。
不可能事件:空集φ不包含任何样本点, 它在每次试验中 都不发生,称为不可能事件。
高校教育精品PPT
6
例1. 试确定试验E2中样本空间, 样本点的个数, 并给出如
下事件的元素: 事件A1=“第一次出现正面”、事件A2=“ 恰好出现一次正面”、事件A3=“至少出现一次正面”.
(2)A B
A B
(3)A B
S 高校教育精品PPT
9
4.差事件:
事件A-B={x|xA且xB} 称为A与B的差. 当且仅当 A发生, B不发生时事件A-B发生. 即:
A - B A AB
显然: A-A=, A- =A, A-S=
s
A B
(4)A B
高校教育精品PPT
10
5.事件的互不相容(互斥): 若A B ,则称A与B是互不相容的,或互斥的,即
概率论与数理统计课件第三章

f
(x,
y)
1
21 2
1
2
exp
1
2(1 2 )
(x
1)2
2 1
2
(x
1)( y 1 2
2 )
(y
2)2
2 2
其中1、2、1、 2、都是常数,且1 0, 2 0,1 1.
则称(X,Y)服从参数为1、2、1、的二2、维 正态分布,
记为
(X
,Y)
~
N (1,
2
,
2 1
,
2 2
2F(x, y) f (x, y) xy
(5)若(X,Y)为二维连续型随机向量,联合概率密度为f(x,y),则
F(x,y) P{X x,Y y}
返回
X
18
第
页
例5 设二维随机变量(X,Y)的概率密度为
Ae2(x y) , x 0, y 0
f (x, y)
0, 其他
(1)确定常数A;
分别为(X,Y)关于X和Y的边缘分布函数.
返回
X
25
第
页
例1 设二维随机向量(X,Y)的联合分布函数为
(1 e2x )(1 e3y ), x 0, y 0,
F(x, y)
0, 其他.
求边缘分布 FX (x), FY ( y)
当x
0时,FX
(x)
lim (1
y
e2 x
)(1
e3 y
)
1
e2 x
返回
X
14
第
例3 设随机变量Y~N(0,1),令
0, X 1 1,
| Y | 1
0,
|Y
|
概率论第三章习题及答案

02
题目8
一个盒子里有100个球,其中红球有30个,蓝球有40个,黄球有20个,
绿球有10个。随机抽取一个球并记录其颜色,然后放回盒子中。连续抽
取三次,求三次抽取中抽到红球的次数的期望值。
03
题目9
一个袋子中有5个红球和5个蓝球,从中随机抽取3个球,求抽取到红球
的个数X的分布律。
02 答案部分
基础题目答案
在处理复杂事件时,应先分解 为简单事件,再根据概率的加
法原则进行计算。
注意区分必然事件和不可能事 件,它们在概率论中具有特殊
地位。
知识点回顾与巩固
知识点回顾 概率的基本性质:概率具有非负性、规范性、有限可加性。
事件的独立性及其性质。
知识点回顾与巩固
条件概率的定义及其性质。 贝叶斯公式的应用场景和推导方法。
挑战题目解题思路与技巧
总结词
综合运用知识
详细描述
对于挑战题目,需要综合运用概率论中的知识,如随机变量的分布、随机过程的性质等。 要能够准确理解题目的背景和要求,构建合适的概率模型,并运用适当的数学方法进行求 解。
示例
题目问的是“一个袋子中有3个红球和2个白球,每次从中随机取出1个球并放回,连续取 5次。求取出的5个球中至少有3个红球的概率。”解题时,应先计算取出的5个球中都是 白球的概率,再用1减去这个概率,得出至少有3个红球的概率。
未来学习计划与展望
• 学习随机过程的基本概念和性质,了解常见的随 机过程如泊松过程、马尔可夫链等。
未来学习计划与展望
展望
学习概率论与其他数学分支的交叉知识,如统计学、线 性代数等。
将概率论的知识应用于实际问题和科学研究,加深对理 论知识的理解和掌握。
概率论与数理统计(第三版)第三章4协方差与相关系数-PPT精品文档

o 3 X , Y 不相关 E ( XY ) E ( X ) E ( Y ).
3. 相关系数的性质
是一个用来表征 X ,Y之间线性关系紧密 XY
程度的量 .
1 . 1 ρ XY
a , b使 1 的充要条件是 :存在常数 2 ρ XY
P { Y a bX } 1 .
0.3 0.7
0 . 3 0 0 . 7 1 0 . 7
0 . 6 1 0 . 4 2 1 . 4
0 . 9 50 . 7 1 . 4 0.03
c o v (,) X Y E X Y E X E Y
三、 相关系数的意义
1 . 当 ρ 表明 X,Y的线性关系联 XY 较大时
例1 已知 (X,Y)的分布律求Cov(X,Y)
x 0 1 y 1 2 0.15 0.15 0.45 0.25
解: c o v (,) X Y E X Y E X E Y
EX ( Y ) 0 .9 5
x 0 1
EX ( ) EY ( )
y 1 0.15 0.45 0.6
2 0.15 0.25 0.4
3.设X和Y是随机变量,若
E(XkYL)
k, L=1,2,…
存在,
称它为X和Y的k+L阶混合(原点)矩.
k L 4.若 E {[ X E ( X )] [ Y E ( Y )] } 存在,
称它为X和Y的k+L阶混合中心矩.
二、协方差与相关系数的概念及性质
1. 问题的提出
若随机变量 X 和 Y 相ቤተ መጻሕፍቲ ባይዱ独立 ,那么
3 Cov( X X , Y ) Cov( X , Y ) Co X , Y ). 1 2 1 2
概率论第三章部分习题解答PPT课件

D 2 E Y 2 2 Y E 2 Y 2 1 .0 0 ( 0 .2 8 ) 2 4 0 .9504
(3 )E 3 Y E 3 2 X X 2 2 2 3 E 1 2 X E 2 X 2 3 1 .2 1 2 2 .1 0 6 .72 E 3 2 Y 1 4 E [X 2 (3 X )2 ] 1 4 ( 4 0 .4 3 4 0 .2) 8 0 .7 82
11的相关系数定义定理3定理5如果x不相关12十切比雪夫不等式与大数定律1切比雪夫不等式4伯努利大数定律3辛钦大数定律若方差一致有上界独立同分布在独立试验序列中事件a的频率按概率收敛于事件a一批零件有9个合格品与3个废品安装机器时从中任取一个
第三章 随机变量的数字特征
(一)基本内容 一、一维随机变量的数学期望
定义1:设X是一离散型随机变量,其分布列为:
X x 1 x 2 x i
P p(x1) p(x2 ) p(xi )
则随机变量X 的数学期望为: EXxipxi
i
定义2:设X是一连续型随机变量,其分布密度为 f x,
则随机变量X的数学期望为 EX xfxdx
.
1
二、二维随机变量的数学期望
(1)设二维离散随机变量(X,Y)的联合概率函数为p(xi , yj),则
0
.
17
5 设随机变量X 的概率密度为:
f x Ax2eax22 x0 (a0),求系数A及EX与D X.
0 x0
x2
解 f(x)d xA2e xa2d x1
0
令
x2 a2
t,即 xa
t,dx at1 2dt 2
x2
Ax2e a2
dx
0
A a2te tat 1 2d tA a3
(3 )E 3 Y E 3 2 X X 2 2 2 3 E 1 2 X E 2 X 2 3 1 .2 1 2 2 .1 0 6 .72 E 3 2 Y 1 4 E [X 2 (3 X )2 ] 1 4 ( 4 0 .4 3 4 0 .2) 8 0 .7 82
11的相关系数定义定理3定理5如果x不相关12十切比雪夫不等式与大数定律1切比雪夫不等式4伯努利大数定律3辛钦大数定律若方差一致有上界独立同分布在独立试验序列中事件a的频率按概率收敛于事件a一批零件有9个合格品与3个废品安装机器时从中任取一个
第三章 随机变量的数字特征
(一)基本内容 一、一维随机变量的数学期望
定义1:设X是一离散型随机变量,其分布列为:
X x 1 x 2 x i
P p(x1) p(x2 ) p(xi )
则随机变量X 的数学期望为: EXxipxi
i
定义2:设X是一连续型随机变量,其分布密度为 f x,
则随机变量X的数学期望为 EX xfxdx
.
1
二、二维随机变量的数学期望
(1)设二维离散随机变量(X,Y)的联合概率函数为p(xi , yj),则
0
.
17
5 设随机变量X 的概率密度为:
f x Ax2eax22 x0 (a0),求系数A及EX与D X.
0 x0
x2
解 f(x)d xA2e xa2d x1
0
令
x2 a2
t,即 xa
t,dx at1 2dt 2
x2
Ax2e a2
dx
0
A a2te tat 1 2d tA a3
概率论第三章

概率论:
概率论,是研究随机现象数量规律的数学分支。
随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。
例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。
随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。
例如,掷一硬币,可能出现正面或反面。
随机现象的实现和对它的观察称为随机试验。
随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。
典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。
事件的概率是衡量该事件发生的可能性的量度。
虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。
概率论与数理统计第三版:
《概率论与数理统计第三版》是2001年高等教育出版社出版的图书,作者是盛骤。
内容简介:
《概率论与数理统计第三版》分三部分,概率论部分,为读者提供了必要的理论基础;数理统计部分,主要讲述了参数估计和假设检验,并介绍了方差分析和回归分析;随机过程部分,主要讨论了平稳随机过程,还介绍了马尔可夫过程。
编辑推荐:
本书是由1989年8月出版的《概率论与数理统计》第二版修订而成的,内容包括概率论、数理统计、随机过程三部分,每章附有习题.可以作为高等院校工科、理科(非数学专业)各专业的教材使用,也可供工程技术人员参考.。
概率论与数理统计教程(答案及课件)chapter3

,
则有
1 PZ x 2
e
x
du x
故
于是
Z
X
~ N 0 , 1 .
X ~ N , 2
X x FX x P X x P x
根据定理1,只要将标准正态分布的分布函数制 成表,就可以解决一般正态分布的概率计算问题.
2
设 X~ N ( , 2 ) ,
X 的分布函数是
2σ 2
F x
x 1 e 2πσ
( t μ )2
dt , x
正态分布由它的两个参数μ和σ唯一确定, 当μ和
σ不同时,是不同的正态分布。 下面我们介绍一种最重要的正态分布
标准正态分布
3
标准正态分布
7 (3)求P 1 X 2
解
kx , x f ( x ) 2 , 2 0,
0 x3 3 x4 其它
(1) 由
0
1 f ( x )dx 1得k 6
3
4
x
F x
x
f t dt , x
x2 x1
f ( x )dx
利用概率密度可确 定随机点落在某个 范围内的概率
4
若 f (x) 在点 x 处连续 , 则有
F ( x ) f ( x ).
5. 对连续型 r.v X , 有
P (a X b) P (a X b) P (a X b) P (a X b)
F(x) = P(X x) x<0 时,{ X x } = , 故 F(x) =0 0 x < 1 时, 1 F(x) = P{X x} = P(X=0) = 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 多维随机变量及其分布
n
解:(1)P{X n} P{X n,Y m}
m0
n e14 (7.14)m (6.86)nm
m0
m!(n m)!
e14 n
n! (7.14)m (6.86)nm
n! m0 m!(n m)!
e14 (7.14 6.86)n
14n e14
,
n 0,1,2,
P{X n,Y m} e14 (7.14)m (6.86)nm , m!(n m)!
m 0,1,2,, n; n 0,1,2,.
返回主目录
第三章 多维随机变量及其分布
当n 0,1,2,时
P{Y m | X n} P{X n,Y m} P{Y n}
e14 (7.14)m (6.86)nm m!(n m)!
e14 (7.14)m (6.86)nm e14 (7.14)m (6.86)k
m!
nm (n m)! m!
k0 k!
e14 (7.14)m e6.86 (7.14)m e7.14 , m 0,1,2,
m!
m!
P{X n,Y m} e14 (7.14)m (6.86)nm , m!(n m)!
F
(x,
y)
1
1 2
y2
y
1e y
,
0 y x,
1
(x
1)e x
1 2
x2ey
,
0 x y.
返回主目录
第三章 多维随机变量及其分布
25.设随机变量(X,Y)服从区域
D (x, y) : 0 x a,0 y a
上的均匀分布,试求:
(2)M max{X ,Y}的概率密度. (2)解 : 设M的分布函数和概率密度分别 为F (z)和f (z).
i)当z 1时, F (z) 0; ii)当z 2时, F (z) 1;
iii)当1 z 0时,
F(z)
f
(x,
y)
0,
其他.
(1)求常数c (5)求(X,Y)的联合分布函数.
(1)由 f (x, y)dxdy 1可解得c 1.
返回主目录
第三章 多维随机变量及其分布
xy
(5)F(x, y)
f (u, v)dudv
i)当x 0或y 0时, F (x, y) 0;
ii)当y x 0时,
n!
n!
P{X n,Y m} e14 (7.14)m (6.86)nm , m!(n m)!
m 0,1,2,, n; n 0,1,2,.
返回主目录
第三章 多维随机变量及其分布
P{Y m} P{X n,Y m}
nm
e14 (7.14)m (6.86)nm
nm
m!(n m)!
26.设随机变量X与Y相互独立,X的分布律为
PX i 1 i 1,0,1,
3
Y的概率密度为
1, 0 y 1,
fY ( y) 0,
其他.
记Z=X+Y,试求: (2)Z的概率密度.
(2)解 : 设Z的分布函数和概率密度
分别为F (z)和f (z).
返回主目录
第三章 多维随机变量及其分布
F (z) PZ z PX Y z PY z X
m 0,1,2,, n; n 0,1,2,.
返回主目录
第三章 多维随机变量及其分布
(2)当m 0,1,2,时
P{X n | Y m} P{X n,Y m} P{Y m}
e14 (7.14)m (6.86)nm e7.14 (7.14)m
m!(n m)!
m!
(6.86)nm e6.86 , n m, m 1, (n m)!
返回主目录
第三章 多维随机变量及其分布
由题意知( X ,Y )的联合密度函数为
1 a2 ,0 x a,0 y a,
f (x, y) 0,
其它.
F (z) PZ z Pmax{X ,Y} z PX z,Y z
zz
f (x, y)dxdy
i)当z 0时, F (z) 0; ii)当z a时, F (z) 1;
iii)当0 z a时,
F(z)
z 0
z 0
1 a2 dxdy
z2 a2
.
返回主目录
第三章 多维随机变量及其分布
即
0,
F
(
z)
z
2
a2 ,
1,
因此
z 0, 0 z a, z a.
f
(
z)
F
( z )
2z
a2 ,
0,
0 z a, 其它.
返回主目录
第三章 多维随机变量及其分布
第三章 多维随机变量及其分布
9.以XY记其中男婴的个数,设X和Y的联合分布律为
P{X n,Y m} e14 (7.14)m (6.86)nm , m!(n m)!
(1)求边缘分布m律 0,1,2,, n; n 0,1,2,.
(2)求条件分布律 (3)写出X=20时,Y的条件分布律
返回主目录
(3)P{Y m | X 20} C2m0 0.51m0.4920m , m 0,1,2,,20.
P{Y m | X n} Cnm 0.51m0.49nm , m 0,1,2,, n
返回主目录
第三章 多维随机变量及其分布
11.设随机变量(X,Y)的联合概率密度为
cxe y ,0 x y ,
其他.
F ( y, y) lim F (x, y) lim1 (x 1)ex 1 x2ey
x y
xy
2
1 1 y2 y 1ey.
2
iii)当x y 0时,
F (x, y) F ( y, y) 1 1 y2 y 1ey.
2
返回主目录
第三章 多维随机变量及其分布
则
0,
x 0或y 0,
F(x, y) xຫໍສະໝຸດ y uevdudv x
udu
y evdv
0u
0
u
x
u
eu
ey
du
1 (x 1)ex
1
x 2e y .
0
2
xe y ,0 x y ,
f (x, y) 0,
其他.
返回主目录
第三章 多维随机变量及其分布
xe y ,0 x y ,
则
f (x, y) 0,
e
1414
n
n!
Cnm
7.14 14
m
6.86 14
n
m
Cnm 0.51m0.49nm , m 0,1,2,, n
P{X n,Y m} e14 (7.14)m (6.86)nm , m!(n m)!
m 0,1,2,, n; n 0,1,2,.
返回主目录
第三章 多维随机变量及其分布