二次函数和四边形

合集下载

二次函数平行四边形对角线公式

二次函数平行四边形对角线公式

二次函数平行四边形对角线公式平行四边形是一个具有两对平行边的四边形,它具有一些特殊的性质。

其中之一是对角线的长度以及它们之间的关系可以使用二次函数的公式来计算。

在本文中,我们将探讨平行四边形对角线的公式,推导该公式,并给出一个详细的解释。

首先,我们定义一个平行四边形,并将其四个角分别标记为A、B、C和D。

设对角线AC和BD相交于点O。

我们用d1表示对角线AC的长度,用d2表示对角线BD的长度。

现在,我们的目标是找到d1和d2之间的关系。

我们可以从两个三角形ABC和CDA入手来推导此公式。

首先,我们观察到这两个三角形是相似的,因为它们有一组相等的角(∠A和∠C)。

由此,我们可以写出一个比例关系:d1/d2=BC/AD(1)接下来,我们关注三角形ABC和三角形ODB。

这两个三角形也是相似的,因为它们具有一组相等的角(∠ABC和∠ODB)。

同样,我们可以写出以下比例关系:BC/OD=AB/OD+AC(2)然而,我们的目标是找到d1和d2之间的关系,而不是BC和OD之间的关系。

为了解决这个问题,我们需要找到一个化简公式来消除BC和OD。

我们注意到,三角形ODB的两个边长为OD和OB。

这两个边长构成了平行四边形的两条边。

因此,我们可以将它们表示为两条边的长度之和:OD=d1+d2OB=d2将这两个长度代入到比例关系(2)中,我们可以得到新的比例关系:BC/d2=AB/(d1+d2+AC)(3)现在,我们需要解决一个问题,即:如何获取AB和AC的表达式,以便将其代入比例关系中。

我们继续研究平行四边形,并注意到四个角A、B、C和D是共享的。

因此,对角线AC和BD是对角线AD和BC的平分线。

我们可以利用这些信息来找到AB和AC的表达式。

让我们先来看对角线AD。

根据平分线定理,我们可以得到以下关系:AB/BD=AC/CD(4)同样,我们注意到对角线BD是对角线AC和BD的平分线,因此:AB/AC=BD/CD(5)观察比例关系(4)和(5),我们可以看到CD是一个共同的值。

53 二次函数中的四边形综合问题

53 二次函数中的四边形综合问题

晦,∴
켈 晦,
∵△PHC∽△BDP,∴
= 켈=
3,以 P、C、B 为顶点的三角形与△AOC 不相
似. 综上所述:P、C、B 为顶点的三角形与△AOC 相似,此时点 P 的坐标(1,﹣4).
5、如图,在平面直角些标系中,二次函数 y=ax2+bx﹣ 3 的图象经过点 A(﹣1,0),C(2,0),与 y 轴
根据题意,点 E(2,1),
∴EF=CF=2,
∴EC=2,
根据菱形的四条边相等,
∴ME=EC=2 2 ,∴M(2,1-2 2 )或(2,1+2 2 )
当 EM=EF=2 时,M(2,3)
∴点 M 的坐标为 M1(2,3),M2(2,1﹣2 2 ),M3(2,1+2 2 ).
4、如图,在平面直角坐标系中,二次函数 y=x2+bx+c 的图象与 x 轴交于 A、B 两点,B 点的坐标为(3,0), 与 y 轴交于点 C(0,﹣3),点 P 是直线 BC 下方抛物线上的任意一点. (1)求这个二次函数 y=x2+bx+c 的解析式. (2)连接 PO,PC,并将△POC 沿 y 轴对折,得到四边形 POP′C,如果四边形 POP′C 为菱形,求点 P 的坐 标. (3)如果点 P 在运动过程中,能使得以 P、C、B 为顶点的三角形与△AOC 相似,请求出此时点 P 的坐标.
∴ 5 t2 15 t= 5 , 4 42
解得 t1=1,t2=2,
∴当 t=1 或 2 时,四边形 BCMN 为平行四边形,
3
①当 t=1 时,MP= ,PC=2,
2 5
∴MC= =MN,此时四边形 BCMN 为菱形,
2
②当 t=2 时,MP=2,PC=1,

二次函数与四边形动点问题(含答案)

二次函数与四边形动点问题(含答案)

72x =B(0,4) A(6,0)E FxyO二次函数与四边形一.二次函数与四边形的形状例1.(浙江义乌市) 如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.练习1.(河南省实验区) 23.如图,对称轴为直线72x =的抛物线经过点 A (6,0)和 B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E的坐标;若不存在,请说明理由.A练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.(1)求抛物线2l 的函数关系式;(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形?(3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30的直角三角形?若存,求出点M 的坐标;若不存在,说明理由.练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.5-4- 3-2-1- 1 2 3 455 4 3 2 1 A EBC '1- O2l 1lx y二.二次函数与四边形的面积例1.(资阳市)25.如图10,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x 轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线Px …-3 -2 1 2 …y …-52-4 -520 …(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围.练习1.(辽宁省十二市2007年第26题).如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);(2)求出过A,B,C三点的抛物线的表达式;(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.图10练习3.(吉林课改卷)如图,正方形ABCD 的边长为2cm ,在对称中心O 处有一钉子.动点P ,Q 同时从点A 出发,点P 沿A B C →→方向以每秒2cm 的速度运动,到点C 停止,点Q 沿A D →方向以每秒1cm 的速度运动,到点D 停止.P ,Q 两点用一条可伸缩的细橡皮筋联结,设x 秒后橡皮筋扫过的面积为2cm y .(1)当01x ≤≤时,求y 与x 之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x 值;(3)当12x ≤≤时,求y 与x 之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时POQ ∠的变化范围;(4)当02x ≤≤时,请在给出的直角坐标系中画出y 与x 之间的函数图象.练习4.(四川资阳卷)如图,已知抛物线l 1:y =x 2-4的图象与x 轴相交于A 、C 两点,B 是抛物线l 1上的动点(B 不与A 、C 重合),抛物线l 2与l 1关于x 轴对称,以AC 为对角线的平行四边形ABCD 的第四个顶点为D .(1) 求l 2的解析式;(2) 求证:点D 一定在l 2上;(3) □ABCD 能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值.B CPO D QA BPCO DQ Ay32 1 O1 2 x三.二次函数与四边形的动态探究例1.(荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,3),点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合.(1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q ,使△PEQ 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.例2.(2010年沈阳市第26题)、已知抛物线y =ax2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.图2OC A Bxy DPE F 图1FE PD y xBA C O例3..(湖南省郴州) 27.如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线A 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S '表示矩形NFQC 的面积.(1) S 与S '相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少? (3)如图11,连结BE ,当AE 为何值时,ABE ∆是等腰三角形.练习1.(07年河池市)如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自 变量t 的取值范围,当t 为何值时,S 的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,xN MQ PHGFEDCBA图11QPN M HGFED CBA图10若不存在,说明理由.练习2..(江西省) 25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的顶点C 的坐标,它们分别是(52),, , ;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,,,,(20)H c ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.x图1x图2x图3)x图4答案:一.二次函数与四边形的形状例1.解:(1)令y=0,解得11x =-或23x =∴A (-1,0)B (3,0);将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x-1), E (2(,23)x x x --∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++ ∴当12x =时,PE 的最大值=94(3)存在4个这样的点F,分别是1234(1,0),(3,0),(4(4F F F F - 练习 1.解:(1)由抛物线的对称轴是72x =,可设解析式27(2y a x k =-+.把A 、B 两点坐标代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==- 故抛物线解析式为22725(326y x =--,顶点为725(,).26-(2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725(326y x =--,∴y<0,即 -y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF 的对角线, ∴2172264(2522OAES SOA y y ==⨯⨯⋅=-=--+.因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的5-4-3-2-1-12 3D554 32 1 ACEM BC '1-O 2l 1l xy取值范围是1<x <6. ①根据题意,当S = 24时,即274()25242x --+=.化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4). 点E 1(3,-4)满足OE = AE ,所以OEAF 是菱形; 点E 2(4,-4)不满足OE = AE ,所以OEAF 不是菱形. ② 当OA ⊥EF ,且OA = EF 时,OEAF 是正方形,此时点E 的 坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E , 使OEAF 为正方形.练习2.解:(1)由题意知点C '的坐标为(34)-,.设2l 的函数关系式为2(3)4y a x =--.又点(10)A ,在抛物线2(3)4y a x =--上,2(13)40a ∴--=,解得1a =.∴抛物线2l 的函数关系式为2(3)4y x =--(或265y x x =-+). (2)P 与P '始终关于x 轴对称, PP '∴与y 轴平行.设点P 的横坐标为m ,则其纵坐标为265m m -+,4OD =,22654m m ∴-+=,即2652m m -+=±.当2652m m -+=时,解得36m =±.当2652m m -+=-时,解得32m =±.∴当点P 运动到(362)-,或(362)+,或(322)--,或(322)+-,时, P P OD ' ∥,以点D O P P ',,,为顶点的四边形是平行四边形.(3)满足条件的点M 不存在.理由如下:若存在满足条件的点M 在2l 上,则90AMB ∠=,30BAM ∠=(或30ABM ∠=),114222BM AB ∴==⨯=.过点M 作ME AB ⊥于点E ,可得30BME BAM ∠=∠=.112122EB BM ∴==⨯=,3EM =,4OE =. ∴点M 的坐标为(43)-,. 但是,当4x =时,246451624533y =-⨯+=-+=-≠-.∴不存在这样的点M 构成满足条件的直角三角形.练习3. [解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的5-4-3-2- 1-1 2 3 4554 3 2 1 AEBC '1- O 2l1lxy对称点分别为(40)D ,,(20)C ,,(08)F -,. 设抛物线2C 的解析式是 2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,.解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-. (2)由(1)可计算得点(31)(31)M N --,,,.过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+. 根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形.所以2ADN S S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤. (3)781444S t ⎛⎫=--+ ⎪⎝⎭,(04t <≤). 所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形. 由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222OD ON OH NH ==+.所以22420t t +-=.解之得1222t t ==,(舍). 所以在运动过程中四边形MDNA可以形成矩形,此时2t =.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

二次函数与四边形知识点

二次函数与四边形知识点

二次函数与四边形知识点一、二次函数介绍二次函数是数学中的一种重要的函数形式,其数学表达式一般为f(x) = ax^2 + bx + c,其中a、b、c是实数且a不等于0。

二次函数的图像通常是一个抛物线,其开口方向和开口程度取决于a的正负和大小。

二、二次函数的性质 1. 零点:二次函数的零点是函数图像和x轴的交点,即满足f(x) = 0的x值。

求二次函数的零点可以通过求解二次方程ax^2 + bx + c = 0来得到。

2.判别式:二次函数的判别式是D = b^2 - 4ac。

判别式的值可以用来判断二次函数的零点情况。

当判别式大于0时,方程有两个不相等的实根;当判别式等于0时,方程有两个相等的实根;当判别式小于0时,方程没有实根。

3.领域:二次函数的定义域是实数集,值域的情况则取决于二次函数图像的位置和开口方向。

三、四边形介绍四边形是由四条线段组成的平面图形,是几何学中的一种基本图形。

四边形的特点是有四个顶点、四条边和四个内角。

常见的四边形有矩形、正方形、平行四边形、菱形等。

四、四边形的性质 1. 矩形:矩形是一种具有四个直角的四边形。

矩形的特点是相对的边相等,对角线相等且相互平分。

2.正方形:正方形是一种特殊的矩形,具有四个相等的边和四个直角。

3.平行四边形:平行四边形具有两对平行的边。

平行四边形的特点是对边相等、对角线互相平分。

4.菱形:菱形是一种具有两对相等边的四边形。

菱形的特点是对角线互相垂直且平分。

五、二次函数与四边形的关系 1. 矩形面积问题:可以利用二次函数来解决矩形的最大面积问题。

例如,给定一个固定的周长,如何确定矩形的长和宽,使得矩形的面积最大化?通过建立二次函数,可以通过求解二次方程的最大值问题来解决这个问题。

2.平行四边形面积问题:平行四边形的面积可以通过二次函数来表示。

例如,给定平行四边形的底和高,可以利用二次函数的性质来求解平行四边形的面积。

3.菱形面积问题:菱形的面积也可以通过二次函数来表示。

专题10 二次函数与四边形的综合-中考数学函数考点全突破

专题10 二次函数与四边形的综合-中考数学函数考点全突破

一、考点分析:二次函数的综合题中在第二三小问比较常考到四边形的问题,这类题目主要考察两种题型:1.四边形的面积最值问题 2.特殊平行四边形的存在性问题,这类包括平行四边形,矩形菱形等。

二、解决此类题目的基本步骤与思路1.四边形面积最值问题的处理方法:核心步骤:对于普通四边形要转化成两个三角形进行研究,然后用求三角形面积最值问题的方法来求解2对于特殊平行四边形问题要先分类,(按照边和对角线进行分类)3.画图,(画出大致的平行四边形的样子,抓住目标点坐标)4. 计算(利用平行四边形的性质以及全等三角形的性质)三、针对于计算的方法选择1.全等三角形抓住对应边对应角的相等2.在利用点坐标进行长度的表示时要利用两点间距离公式3.平行四边形的对应边相等列相关的等式4.利用平行四边形的对角线的交点从而找出四个点坐标之间的关系X A+X C=X B+X D Y A+Y C=Y B+Y D (利用P是中点,以及中点坐标公式)A(x1,y1)、B(x2,y2),那么AB中点坐标就是(,)处理矩形菱形的方法与平行四边形方法类似注意事项:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想 3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。

4.利用点坐标表示线段长度时注意要用大的减去小的。

四、二次函数问题中四边形面积最值问题1.如图,已知抛物线213y x bx c =++经过ABC V 的三个顶点,其中点(0,1)A ,点(9,10)B -,//AC x 轴,点P 是直线AC 下方抛物线上的一个动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;【解析】:(1)用待定系数法求出抛物线解析式即可;(2)设点P (m , m2+2m+1),表示出PE=﹣m2﹣3m ,再用S 四边形AECP=S △AEC+S △APC=AC ×PE ,建立函数关系式,求出最大值即可设点P (m ,m 2+2m+1)∴E(m ,-m+1)∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是此时点P(﹣,﹣). *网2.抛物线y=-x2+6x交x轴正半轴于点A,顶点为M,对称轴MB交x轴于点B,过点C(2,0)作射线CD交MB于点D(D在x轴上方),OE∥CD交MB于点E,EF∥x轴交CD的延长线于点F,作直线MF.(1)求点A,M的坐标;(2)当BD为何值时,点F恰好落在该抛物线上?(3)当BD=1时,①求直线MF的表达式,并判断点A是否落在该直线上;②延长OE交FM于点G,取CF中点P,连结PG,△FPG,四边形DEGP,四边形OCDE的面积分别记为S1,S2,S3,则S1∶S2∶S3=__3∶4∶8__.解:(1)令y=0,则-x2+6x=0,解得x1=0,x2=6,∴A(6,0),∴对称轴是直线x=3,∴M(3,9);(3)①当BD=1时,BE=3,∴F(5,3).设MF 的表达式为y =kx +b ,将M (3,9),F (5,3)代入, 得⎩⎪⎨⎪⎧9=3k +b ,3=5k +b ,解得⎩⎪⎨⎪⎧k =-3,b =18, ∴y =-3x +18.∵当x =6时,y =-3×6+18=0, ∴点A 落在直线MF 上; ②∵BD =1,BC =1, ∴△BDC 为等腰直角三角形, ∴△OBE 为等腰直角三角形,五、二次函数中特殊平行四边形的存在性问题(一)例题演示已知:如图,在平面直角坐标系xOy 中,直线与x 轴、y 轴的交点分别为A 、B ,将∠OBA 对折,使点O 的对应点H 落在直线AB 上,折痕交x 轴于点C . (1)直接写出点C 的坐标,并求过A 、B 、C 三点的抛物线的解析式;(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;【解析】:(1)点A的坐标是纵坐标为0,得横坐标为8,所以点A的坐标为(8,0);点B的坐标是横坐标为0,解得纵坐标为6,所以点B的坐标为(0,6);由题意得:BC是∠ABO的角平分线,所以OC=CH,BH=OB=6。

(完整word版)二次函数与平行四边形的存在问题

(完整word版)二次函数与平行四边形的存在问题

二次函数与平行四边形的存在问题【知识梳理】1、平行四边形的性质是什么?2、在坐标系中,平行四边形又有哪些性质?3、解决问题的策略:①根据要求画出满足要求的图形,然后根据几何性质计算未知量②分类讨论,根据对角线“共中点"的性质直接计算。

1.(2011•盘锦)如图,二次函数y=ax2+bx的图象经过A(1,﹣1)、B(4,0)两点.(1)求这个二次函数解析式;(2)点M为坐标平面内一点,若以点O、A、B、M为顶点的四边形是平行四边形,请直接写出点M的坐标.2.(2011•内江)如图抛物线y=x2﹣mx+n与x轴交于A、B两点,与y轴交于点C(0.﹣1).且对称抽x=l.(1)求出抛物线的解析式及A、B两点的坐标;(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3.若存在,求出点D的坐标;若不存在.说明理由(使用图1);(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2).3.(2010•河南)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.4.(2011•凉山州)如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,﹣4),其中x1,x2是方程x2﹣4x﹣12=0的两个根.(1)求抛物线的解析式;(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M 的坐标;(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点F的坐标,若不存在,请说明理由.。

二次函数与平行四边形--专题训练

二次函数与平行四边形--专题训练

二次函数与平行四边形分类标准:讨论对角线例如:请在抛物线上找一点p使得A、B、C、P四点构成平行四边形,则可分成以下几种情况(1)当边AB是对角线时,那么有(2)当边AC是对角线时,那么有(3)当边BC是对角线时,那么有1.在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.2.抛物线y=-x2+2x+3与x轴相交于A.B两点(点A在B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A,B,C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF//DE交抛物线于点F,设点P的横坐标为m:①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形;②设△BCF的面积为S,求S与m的函数关系式.3.如图,已知抛物线y=ax2+bx﹣1与x轴的交点为A(﹣1,0),B(2,0),且与y轴交于C点.(1)求该抛物线的表达式;(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由.(3)已知点P是直线y=1x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q为顶点的四边形为平行四边2形时,求出相应的点P和点Q的坐标.4.综合与探究如图,抛物线y=ax2+bx+6经过点A(-2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D 的横坐标为m(1<m<4).连接AC,BC,DB,DC,(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的3时,求m的值;4(3)在(2)的条件下,若点M是x轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.5.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.6.如图,直线y=﹣34x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+34x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值;(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.7.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.8.如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(3,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.9.如图1,抛物线y=ax2+bx+2与轴交于A,B两点,与轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.(1)求抛物线的表达式;(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系是(不必写出m的取值范围),并求出l的最大值;(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的M的坐标;若不存在,请说明理由.10.如图,抛物线y=−x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D,已知A(−1,0),D(5,−6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF//y轴交直线l于点F,求PE+PF 的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.11.如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.12.如图,抛物线y=ax2+9x+c(a≠0)与x轴相交于点A(−1,0)和点B,与y轴相交于点C(0,3),作直线BC.4(1)求抛物线的解析式;(2)在直线BC上方的抛物线上存在点D,使∠DCB=2∠ABC,求点D的坐标;(3)在(2)的条件下,点F的坐标为M在抛物线上,点N在直线BC上,当以D,F,M,N为顶点的四边形是平行四边形时,请直接写出点N的坐标.13.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(−3,0),B(1,0)两点,与y轴交于点C(0,−3),(1)求二次函数的表达式;(2)D是二次函数图象上位于第三象限内的点,求点D到直线AC的距离取得最大值时点D的坐标;(3)M是二次函数图象对称轴上的点,在二次函数图象上是否存在点N.使以M、N、B、O为顶点的四边形是平行四边形?若有,请写出点N的坐标(不写求解过程).14.如图,在平面直角坐标系中抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(−2,0),直线BC的解析式为y=−+2.(1)求抛物线的解析式;(2)过点A作AD//BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移2个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形,若存在,直接写出点N的坐标;若不存在,请说明理由.谢谢大家。

第二十二章二次函数专题复习—平行四边形的存在性问题课件

第二十二章二次函数专题复习—平行四边形的存在性问题课件
方法一:平移法 总结: x1-x2= x4-x3,y1-y2= y4-y3等 方法二:中点公式法
总结:x1+x3= x2+x4,y1+y3= y2+y4
三、一招制胜法
如图,在平面直角坐标系中,□ABCD的顶点坐标分别为 A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),则4个顶点坐标之间的 关系是什么?
四、解决两类问题
例2 已知,抛物线y=-x2+x+2 与x轴的交点为A、B,与x轴的交点为C,点
M是平面内一点,判断有几个位置能使以点M、A、B、C为顶点的四边形是 平行四边形,请写出相应的坐标.
先求出A(-1,0),B (2,0),C(0,2)
M1(3,2), M2 (-3,2),M3 (1,-2)
方法一:利用线段平移
总结:x1-x2= x4-x3,y1-y2= y4-y3 或者 x4-x1= x3-x2,y4-y1= y3-y2 等
二、探究两个解题方法
如图,在平面直角坐标系中,□ABCD的顶点坐标分别为 A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),已知其中3个顶点的坐 标,如何确定第4个顶点的坐标?
设P(m, m2-2m-3),Q (a, 0).
Q1(1,0),Q2(3,0),Q3(4 7,0),Q4(4 7,0)
四、解决两类问题
例6 如图,平面直角坐标中,y=-0.25x2+x与x轴相交于点B (4,0),点C 在抛物线的对称轴上,点D在抛物线上,且以点O、B、C、D为顶点的四 边形是平行四边形,写出相应的点D的坐标.
如图,已知□ABCD中A (-2,2),B (-3,-1),
C (3,1),则点D的坐标是__(4__,__4_)_.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图,抛物线322+--=x x y 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点。

(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N 。

若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ 。

过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方)。

若FC=22DQ ,求点F 的坐标。

2、(2014•莱芜)如图,过A (1,0)、B (3,0)作x 轴的垂线,分别交直线y=4﹣x 于C 、D两点.抛物线y=ax 2+bx+c 经过O 、C 、D 三点。

(1)求抛物线的表达式;(2)点M 为直线OD 上的一个动点,过M 作x 轴的垂线交抛物线于点N ,问是否存在这样的点M ,使得以A 、C 、M 、N 为顶点的四边形为平行四边形?若存在,求此时点M 的横坐标;若不存在,请说明理由;(3)若△AOC 沿CD 方向平移(点C 在线段CD 上,且不与点D 重合),在平移的过程中△AOC 与△OBD 重叠部分的面积记为S ,试求S 的最大值。

3、(2014•宜昌)如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B 在x轴正半轴上,且AP=OB=t,0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c。

(1)填空:△AOB≌△_________ ≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0,_________ );(2)求点C的坐标,并用含a,t的代数式表示b;(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;(4)当抛物线开口向上,对称轴是直线x=2﹣,顶点随着t的增大向上移动时,求t的取值范围。

4、(2014•温州)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标;(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S。

①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M ,N 中恰好只有一个点落在四边形ADEC 的内部(不包括边界)时,直接写出S 的取值范围。

5、(2013•荆州)如图,已知:如图①,直线y=﹣x+与x 轴、y 轴分别交于A 、B 两点,两动点D 、E 分别从A 、B 两点同时出发向O 点运动(运动到O 点停止);对称轴过点A 且顶点为M 的抛物线y=a (x ﹣k )2+h (a <0)始终经过点E ,过E 作EG∥OA 交抛物线于点G ,交AB 于点F ,连结DE 、DF 、AG 、BG .设D 、E 的运动速度分别是1个单位长度/秒和个单位长度/秒,运动时间为t 秒。

(1)用含t 代数式分别表示BF 、EF 、AF 的长;(2)当t 为何值时,四边形ADEF 是菱形?判断此时△AFG 与△AGB 是否相似,并说明理由; (3)当△ADF 是直角三角形,且抛物线的顶点M 恰好在BG 上时,求抛物线的解析式。

6、(2013•自贡)如图,已知抛物线22-+=bx ax y 与x 轴交于A 、B 两点,与y 轴交于C点,直线BD 交抛物线于点D ,并且D (2,3),21t a n=∠D B A 。

(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C 、A ,求四边形BMCA 面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线 AC相切的圆,若存在,求出圆心Q的坐标,若不存在,请说明理由。

7、(2013•嘉兴)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD。

作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?8、(2013•重庆)如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。

(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标。

9、如图①,直线l:(0,0)y mx n m n =+<>与x,y 轴分别相交于A ,B 两点,将△AOB 绕点O 逆时针旋转90°,得到△COD ,过点A ,B ,D 的抛物线P 叫做l 的关联抛物线,而l 叫做P 的关联直线。

(1)若l:22y x =-+,则P 表示的函数解析式为 ,若P:234y x x =--+,则l 表示的函数解析式为 ; (2)求P 的对称轴(用含m,n 的代数式表示);(3)如图②,若l:24y x =-+,P 的对称轴与CD 相交于点E ,点F 在l 上,点Q 在P 的对称轴上.当以点C ,E ,Q ,F 为顶点的四边形是以CE 为一边的平行四边形时,求点Q 的坐标; (4)如图③,若l:4y mx m =-,G 为AB 中点,H 为CD 中点,连接GH ,M 为GH 中点,连接OM.若l ,P 表示的函数解析式。

10、(2014•山西)综合与探究:如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,A 、C 两点的坐标分别为(4,0),(﹣2,3),抛物线W 经过O 、A 、C 三点,D 是抛物线W 的顶点。

(1)求抛物线W 的解析式及顶点D 的坐标;(2)将抛物线W 和▱OABC 一起先向右平移4个单位后,再向下平移m (0<m <3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC 的重叠部分的面积为S ,试探究:当m 为何值时S 有最大值,并求出S 的最大值;(3)在(2)的条件下,当S 取最大值时,设此时抛物线W′的顶点为F ,若点M 是x 轴上的动点,点N 时抛物线W′上的动点,试判断是否存在这样的点M 和点N ,使得以D 、F 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由。

11、如图,抛物线经过A (-1,0),B (5,0),C (0,25)三点。

(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA+PC 的值最小,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A 、C 、M 、N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由。

12、如图,抛物线y=ax2+2ax (a<0)位于x 轴上方的图象记为F 1 ,它与x 轴交于P 1 、O 两点,图象F 2与F 1关于原点O 对称, F 2与x 轴的另一个交点为P 2 ,将F 1与F 2同时沿x 轴向右平移P 1P 2的长度即可得F 3与F 4 ;再将F 3与F 4 同时沿x 轴向右平移P 1P 2的长度即可得F 5与F 6 ……按这样的方式一直平移下去即可得到一系列图象F 1 ,F 2 ,…… ,Fn ,我们把这组图象称为“波浪抛物线”。

⑴ 当a=-1时,① 求图象F1的顶点坐标;②点H(2014,-3) (填“在”或“不在”)该“波浪抛物线”上;若图象Fn 的顶点Tn对应的解析式为,其自变量x的取值范围为。

⑵设图象Fm、Fm+1的顶点分别为Tm 、Tm+1 (m为正整数),x轴上一点Q的坐标为(12 ,0)。

试探究:当a为何值时,以O、Tm 、Tm+1、Q四点为顶点的四边形为矩形?并直接写出此时m的值。

13、(2013•嘉兴)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴。

(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?14、(2013•重庆)如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。

(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标。

15、(2014眉山)如图,已知直线33y x =-+与x 轴交于点A ,与y 轴交于点C ,抛物线2y ax bx c =++ 经过点A 和点C ,对称轴为直线l :1x =-,该抛物线与x 轴的另一个交点为B 。

(1)求此抛物线的解析式;(2)点P 在直线l 上,求出使△PAC 的周长最小的点P 的坐标; (3)点M 在此抛物线上,点N 在y 轴上,以A 、B 、M 、N 为顶点的四边形能否为平行四边形?若能,直接写出所有满足要求的点M 的坐标;若不能,请说明理由。

相关文档
最新文档