2023年九年级中考数学专题练习——二次函数与特殊的四边形(附答案)
2023年九年级数学下册中考数学专题训练:角度问题(二次函数综合)【含答案】

2023年九年级数学下册中考数学专题训练:角度问题(二次函数综合)一、解答题1.如图,直线y =x ﹣3与x 轴、y 轴分别交于B 、C 两点,抛物线y =x 2+bx +c 经过B 、C ,且与x 轴另一交点为49A ,连接AC .(1)求抛物线的解析式;(2)点E 在抛物线上,连接EC ,当∠ECB +∠ACO =45°时,求点E 的横坐标;(3)点M 从点A 出发,沿线段AB 由A 向B 运动,同时点N 从点C 出发沿线段CA 由C 向A 运动,M ,N 的运动速度都是每秒1个单位长度,当N 点到达A 点时,M ,N 同时停止运动,问在坐标平面内是否存在点D ,使M ,N 运动过程中的某些时刻t ,以A ,D ,M ,N 为顶点的四边形为菱形?若存在,直接写出t 的值;若不存在,说明理由.2.已知抛物线y=ax ²+bx +c 经过点A (-6,0)、B (2,0)和C (0,3),点D 是该抛物线在第四象限上的一个点,连接 AD 、AC 、CD ,CD 交x 轴于E .(1)求这个抛物线的解析式;(2)当S △DAE =S △ACD 时,求点 D 的坐标;14(3)在(2)的条件下,抛物线上是否存在点P ,使得△PAD 中的一个角等于2∠BAD ?若存在,直接写出点P 的坐标;若不存在,请说明理由.3.如图1,直线y =ax ²+4ax +c 与x 轴交于点A (-6,0)和点B ,与y 轴交于点C ,且OC =3OB(1)直接写出抛物线的解析式及直线AC 的解析式;(2)抛物线的顶点为D ,F 为抛物线在第四象限的一点,直线AF 解析式为,求∠CAF -∠CAD 的度数.123y x =--(3)如图2,若点P 是抛物线上的一个动点,作PQ ⊥y 轴垂足为点Q ,直线PQ 交直线AC 于E ,再过点E 作x 轴的垂线垂足为R ,线段QR 最短时,点P 的坐标及QR 的最短长度.4.已知顶点为A (2,一1)的抛物线与y 轴交于点B ,与x 轴交于C 、D 两点,点C 坐标(1,O );(1)求这条抛物线的表达式;(2)连接AB 、BD 、DA ,求cos ∠ABD 的大小;(3)点P 在x 轴正半轴上位于点D 的右侧,如果∠APB =45°,求点P 的坐标.5.如图1,抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点C()2102y x bx c c =++<作轴,与抛物线交于另一点D ,直线与相交于点M .CD x ∥BC AD(1)已知点C 的坐标是,点B 的坐标是,求此抛物线的解析式;()04-,()40,(2)若,求证:;112b c =+AD BC ⊥(3)如图2,设第(1)题中抛物线的对称轴与x 轴交于点G ,点P 是抛物线上在对称轴右侧部分的一点,点P 的横坐标为t ,点Q 是直线上一点,是否存在这样的点P ,使得是以点G 为直角顶点的直角三角形,且满足BC PGQ △,若存在,请直接写出t 的值;若不存在,请说明理由.GQP OCA ∠=∠6.抛物线与x 轴相交于A ,B 两点(点A 在点B 的左侧),与y 轴的正半轴相交于点C ,点D 为223y ax ax a =--抛物线的顶点,点O 为坐标原点.(1)若是直角三角形,求抛物线的函数表达式;ABC (2)王亮同学经过探究认为:“若,则”,王亮的说法是否正确?若你认为正确,请加以证明:a<02∠=∠DCB ABC 若是错误的,说明理由;(3)若第一象限的点E 在抛物线上,四边形面积的最大值为,求a 的值.ABEC 2547.如图,抛物线经过,两点,与x 轴交于另一点A ,点D 是抛物线的顶点.22y ax ax c =++(1,0)B (0,3)C(1)求抛物线的解析式及点D 的坐标;(2)如图1,点E 在抛物线上,连接并延长交x 轴于点F ,连接,若是以为底的等腰三角形,求DE BD BDF BD 点E 坐标.(3)如图2,连接、,在抛物线上是否存在点M ,使,若存在,求出M 点的坐标;若不存AC BC ACM BCO ∠=∠在,请说明理由.8.抛物线的顶点坐标为,与x 轴交于点两点,与y 轴交于点C ,点M 是抛物线上的动2y ax bx c =++(1,4),(3,0)A B 点.(1)求这条抛物线的函数表达式;(2)如图1,若点M 在直线BC 上方抛物线上,连接AM 交BC 于点E ,求的最大值及此时点M 的坐标;MEAE (3)如图2,已知点,是否存在点M ,使得?若存在,求出点M 的坐标;若不存在,请说明理(0,1)Q 1tan 2MBQ ∠=由.9.如图,一次函数y =x﹣2的图象与x 轴交于点A ,与y 轴交于点B ,点D 的坐标为(﹣1,0),二次函数12y =ax 2+bx+c (a≠0)的图象经过A ,B ,D 三点.(1)求二次函数的解析式;(2)如图1,已知点G (1,m )在抛物线上,作射线AG ,点H 为线段AB 上一点,过点H 作HE ⊥y 轴于点E ,过点H 作HF ⊥AG 于点F ,过点H 作HM ∥y 轴交AG 于点P ,交抛物线于点M ,当HE•HF 的值最大时,求HM 的长;(3)在(2)的条件下,连接BM ,若点N 为抛物线上一点,且满足∠BMN =∠BAO ,求点N 的坐标.10.已知二次函数.()20y ax bx c a =++>(1)若,,求方程的根的判别式的值;12a =2b c ==-20ax bx c ++=(2)如图所示,该二次函数的图像与x 轴交于点、,且,与y 轴的负半轴交于点C ,()1,0A x ()2,0B x 120x x <<点D 在线段OC 上,连接AC 、BD ,满足 ,.ACO ABD ∠=∠1b c x a -+=①求证:;AOC DOB ≅ ②连接BC ,过点D 作于点E ,点在y 轴的负半轴上,连接AF ,且,DE BC ⊥()120,F x x -ACO CAF CBD ∠=∠+∠求的值.1cx 11.如图,在平面直角坐标系中,已知抛物线的图象与x 轴交于点A ,B 两点,点A 坐标为,243y ax x c =-+()3,0点B 坐标为,与y 轴交于点C .()1,0-(1)求抛物线的函数解析式;(2)若将直线绕点A 顺时针旋转,交抛物线于一点P ,交y 轴于点D ,使,求直线函数解析AC BAP BAC ∠=∠AP 式;(3)在(2)条件下若将线段平移(点A ,C 的对应点M ,N ),若点M 落在抛物线上且点N 落在直线上,求AC AP 点M 的坐标.12.在平面直角坐标系中,抛物线与轴交于点和点(点在点的左侧),与轴交212y x bx c =-++x (2,0)A -B A B y 于点.(0,3)C (1)求抛物线的表达式;的坐标,并直接写出此时直线的表达式.D DC (3)在(2)的条件下,点为轴右侧抛物线上一点,过点作直线的垂线,垂足为,若,E y E DC P ECP DAB ∠=∠请直接写出点的坐标.E 13.已知函数y =(n 为常数).22()1()222x nx n x n n n x x x n ⎧-++≥⎪⎨++<⎪⎩(1)当n =5时,①点P (4,b )在此函数图象上,求b 的值.②求此函数的最大值.(2)当n <0时,作直线x =n 与x 轴交于点P ,与该函数图象交于点Q ,若∠POQ =45°,求n 的值.23(3)若此函数图象上有3个点到直线y =2n 的距离等于2,求n 的取值范围.14.如图,已知抛物线y =ax 2+4(a ≠0)与x 轴交于点A 和点B (2,0),与y 轴交于点C ,点D 是抛物线在第一象限的点.(1)当△ABD 的面积为4时,①求点D 的坐标;②联结OD ,点M 是抛物线上的点,且∠MDO =∠BOD ,求点M 的坐标;(2)直线BD 、AD 分别与y 轴交于点E 、F ,那么OE +OF 的值是否变化,请说明理由.15.如图,已知,抛物线经过A 、B 两点,交y 轴于点C .点P 是第一象限内抛物线(2,0),(3,0)A B -24y ax bx =++上的一点,点P 的横坐标为m .过点P 作轴,垂足为点M ,PM 交BC 于点Q .过点P 作,垂足PM x ⊥PN BC ⊥为点N .(1)求抛物线的函数表达式;(2)请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?(3)连接PC ,在第一象限的抛物线上是否存在点P ,使得?若存在,请直接写出m 的值;若290BCO PCN ∠+∠=︒不存在,请说明理由.16.如图1,在平面直角坐标系中.抛物线与x 轴交于和,与y 轴交于点C ,连接22y ax bx =++(4,0)A -(1,0)B .,AC BC(1)求该抛物线的解析式;(2)如图2,点M 为直线上方的抛物线上任意一点,过点M 作y 轴的平行线,交于点N ,过点M 作x 轴的AC AC 平行线,交直线于点Q ,求周长的最大值;AC MNQ △(3)点P 为抛物线上的一动点,且,请直接写出满足条件的点P 的坐标.45ACP BAC ∠=︒-∠17.抛物线经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B .23y ax bx a =+-(1)求此抛物线的解析式;(2)已知点D 在第四象限的抛物线上,求点D 关于直线BC 对称的点D’的坐标;(m,-m-1)(3)在(2)的条件下,连结BD ,问在x 轴上是否存在点P ,使,若存在,请求出P 点的坐标;PCB CBD ∠=∠若不存在,请说明理由.参考答案:1.(1)y =x 2﹣x ﹣34913(2)或1543916(3)存在,t =或或754415845222.(1);(2);(3)P 点坐标为综上所述:2134y x x =--+(21)D -+-1P,、、、(617-)2P (-5.00.,175)()3 3.47, 3.48P -4(220P -)5P ,.(14.22,33.30)--6(9.74,30.47)P -3.(1)抛物线的解析式为y =-x ²-2x +6,直线BC 的解析式为y =x +612(2)45°(3)点P 的坐标为(,3)或(,3),QR 的最短长度为4.(1)y =x 2﹣4x +3;(23)P (3+,0)5.(1)2142y x x =--(2)11(3)t =t =6.(1)2=y x (2)王亮的说法正确(3)23a =-7.(1)抛物线的解析式为:,223y x x =--+(1,4)D -(2)720(,39E -(3)存在,或()4,5M --57(,)24M -8.(1);223y x x =-++(2);;916315,24⎛⎫ ⎪⎝⎭(3)存在;或(0,3)829,749⎛⎫-- ⎪⎝⎭9.(1)y =x 2﹣x﹣2;(2)2;(3)(1,﹣3)或(﹣,)12325317910.(1) (2)①1;②=2=8∆1c x 11.(1)224233y x x =--(2)223y x =-+(3)或或()3,8-104,3⎛⎫ ⎪⎝⎭102,3⎛⎫- ⎪⎝⎭12.(1);(2)D (2,2),;(3点E 的坐标为(1,3)或211322y x x =-++132y x =-+(,)113179-13.(1)①b =;②此函数的最大值为;92458(2)n 的值是-或-;15232(3)或423n -<<-463n <<-6n =+14.(1)①;②;(2)不变化,值为8)2D ()2M 15.(1)222433y x x =-++(2),当时,有最大值22655PN m m =-+32m =910答案第3页,共3页(3)存在,74m =16.(1)213222y x x =--+(2)6+(3)或()5,3--2375,749⎛⎫- ⎪⎝⎭17.(1)2y x 2x 3=--(2)(0,-1)(3)(1,0)(9,0)答案第4页,共1页。
2023年九年级中考数学专题训练:二次函数综合(含简单答案)

2023年九年级中考数学专题训练:二次函数综合一、单选题1.已知抛物线()2330y x x c x =++-≤≤与直线2y x =-有且只有一个交点,若c 为整数,则c 的值有( ) A .1个B .2个C .3个D .4个2.方程231x x +=的根可视为函数3y x的图象与函数1y x=的图象交点的横坐标,那么用此方法可推断出方程321x x +=-的实数根x 所在的范围是( ) A .112x -<<-B .1123x -<<-C .1134x -<<-D .104x -<<3.如图,已知二次函数()()5144y x x =-+-的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,Р为该二次函数在第一象限内的一点,连接AP ,交BC 于点K ,则APPK的最小值为( )A .94B .2C .74D .544.如图.抛物线y =ax 2+c 与直线y =mx +n 交于A (﹣1,p ),B (3,q )两点,则不等式ax 2+mx +c >n 的解集为( )A .x >﹣1B .x <3C .x <﹣3或x >1D .﹣1<x <35.如图,抛物线y =12-x 2+7x ﹣452与x 轴交于点A ,B ,把抛物线在x 轴及共上方的部分记作C 1将C 1向左平移得到C 2,C 2与x 轴交于点B ,D ,若直线y =12-x +m 与C 1,C 2共3个不同的交点,则m 的取值范是( )A .52928m << B .12928m << C .54528m << D .14528m <<6.在平面直角坐标系中,对图形F 给出如下定义:若图形F 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,如图中的矩形ABCD 的坐标角度是90°.现将二次函数()213y ax a =≤≤的图象在直线1y =下方的部分沿直线1y =向上:翻折,则所得图形的坐标角度α的取值范围是( )A .3060α︒≤≤︒B .120150α︒≤≤︒C .90120α︒≤≤︒D .6090α︒≤≤︒7.二次函数y =2x 2﹣2x +m (0<m < 12),如果当x =a 时,y <0,那么当x =a ﹣1时,函数值y 的取值范围为( ) A .y <0B .0<y <mC .m <y <m +4D .y >m8.如图,抛物线21322y x x =-++的图象与坐标轴交于点A ,B ,D ,顶点为E ,以AB为直径画半圆交y 负半轴交于点C ,圆心为M ,P 是半圆上的一动点,连接EP . ①点E 在①M 的内部;①CD 的长为32①若P 与C 重合,则①DPE =15°;①在P 的运动过程中,若AP =PE =①N 是PE 的中点,当P 沿半圆从点A 运动至点B 时,点N 运动的路径长是π.则正确的选项为( )A .①①①B .①①①C .①①①D .①①①二、填空题9.如图,已知抛物线24y x x c =-+的顶点为D ,与y 轴交于点C ,过点C 作x 轴的平行线AC 交抛物线于点A ,过点A 作y 轴的平行线AB 交射线OD 于点B ,若OA OB =,则c 的值为_____________.10.已知抛物线()2123y x m x m =-+++以及平面直角坐标系中的点()1,1E --、()3,7F ,若该抛物线与线段EF 只有一个交点,则m 的取值范围是________.11.在平面直角坐标系中,抛物线215y x bx c =-+(0b >,b 、c 为常数)的顶点为A ,与y 轴交于点B ,点B 关于抛物线对称轴的对称点为C .若ABC 是等腰直角三角形,则BC 的长为________.12.如图,2=23y x x --与x 轴交于A ,B 两点(A 在左边)与y 轴交于C 点,P 是线段AC 上的一点,连结BP 交y 轴于点Q ,连结OP ,当OAP △和PQC △的面积之和与OBQ △的面积相等时,点P 的坐标为______.13.如图,在平面直角坐标系中,抛物线214y x mx =-+与x 轴正半轴交于点A ,点B是y 轴负半轴上一点,点A 关于点B 的对称点C 恰好落在抛物线上,过点C 作//CD x 轴,交抛物线于点D ,连结OC 、AD .若点C 的横坐标为4-,则四边形OCDA 的面积为___________.14.若243P m m m ++(,)是一个动点(m 为实数),点Q 是直线4y x =-上的另一个动点,则PQ 长度的最小值为_____.15.已知抛物线2=23y x x --与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点(6,)D y 在抛物线上,E 是该抛物线对称轴上一动点,当BE 十DE 的值最小时,ACE △的面积为是____16.已知:如图,抛物线的顶点为M ,平行于x 轴的直线与该抛物线交于点A ,B (点A 在点B 左侧),我们规定:当AMB 为直角三角形时,就称AMB 为该抛物线的“优美三角形”.若抛物线26y ax bx =++的“优美三角形”的斜边长为4,求a 的值______.三、解答题17.抛物线23y ax bx =++顶点为点(1,4)D ,与x 轴交于点A 、B ,与y 轴交于点C ,点P 是抛物线对称轴上的一个动点.(1)求a 和b 的值;(2)是否存在点P ,使得以P 、D 、B 为顶点的三角形中有两个内角的和等于45°?若存在,求出点P 的坐标;若不存在,说明理由.18.如图,已知直线443y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线2y ax bx c =++经过A ,C 两点,且与x 轴的另一个交点为B ,对称轴为直线=1x -.(1)求抛物线的表达式;(2)已知点M 是抛物线对称轴上一点,当MB MC +的值最小时,点M 的坐标是___________;(3)若点P 在抛物线对称轴上,是否存在点P ,使以点B ,C ,P 为顶点的三角形是等腰三角形?若存在,请求出P 点的坐标;若不存在,请说明理由.19.如图,已知抛物线233384y x x =--与x 轴的交点为点A 、D (点A 在点D 的右侧),与y 轴的交点为点C .(1)直接写出A 、D 、C 三点的坐标;(2)在抛物线的对称轴上找一点M ,使得MD MC +的值最小,并求出点M 的坐标; (3)设点C 关于抛物线对称轴的对称点为点B ,在抛物线上是否存在点P ,使得以A 、B 、C 、P 四点为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由.20.如图,已知抛物线223y ax ax =++中,当=1x -时,4y =.(1)求此抛物线的解析式;(2)点E 是抛物线上且位于直线AB 上方的一个动点,不与点A ,B 重合,求ABE 的面积最大时,点E 的坐标.(3)若1t x ≤≤时,y 的取值范围是04y ≤≤,请直接写出t 的取值范围.参考答案:1.D 2.B 3.A 4.C 5.A 6.D 7.C 8.D 9.8310.2m <-或m>2或1m = 11.6 12.2,13⎛⎫-- ⎪⎝⎭13.641415.616.12±17.(1)1a =-,2b = (2)存在,(1,2)或(1,6)-18.(1)248433y x x =--+(2)8(1,)3M -(3)存在,P 点的坐标为(1,0)-或(-或(1,-或13(1,)8-19.(1)()4,0A ,()2,0D -,()0,3C -(2)连接AC 交对称轴于点M ,点M 即为所求,91,4M ⎛⎫- ⎪⎝⎭(3)()2,0-或()6,6.20.(1)223y x x =--+(2)315()24-,(3)31t -≤≤-。
2023年九年级中考数学专题复习:二次函数综合题(特殊四边形问题)

2023年九年级中考数学专题复习: 二次函数综合题(特殊四边形问题) 1.如图,抛物线223y ax ax =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OA =OC ,连接AC .(1)求抛物线的解析式.(2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值及此时点P 的坐标.(3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A ,B ,E ,F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由.2.如图,抛物线2y ax x c =++经过(3,0)B ,52,2D ⎛⎫-- ⎪⎝⎭两点,与x 轴的另一个交点为A ,与y 轴相交于点C .(1)求抛物线的解析式和点C 的坐标;(2)若点M 在直线BC 上方的抛物线上运动(与点B ,C 不重合),求使MBC △面积最大时M 点的坐标,并求最大面积;(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上,要使以点A ,B ,P ,Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标.(请在图2中探索)3.如图,抛物线经过A (﹣1,0),B (3,0),C (0,32)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使P A +PC 的值最小,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,3OA =,4OC =,抛物线24y ax bx =++经过点B ,且与x 轴交于点()1,0D -和点E .(1)求抛物线的表达式:(2)若P 是第一象限抛物线上的一个动点,连接CP ,PE ,当四边形OCPE 的面积最大时,求点P 的坐标,此时四边形OCPE 的最大面积是多少;(3)若N 是抛物线对称轴上一点,在平面内是否存在一点M ,使以点C ,D ,M ,N 为顶点的四边形是矩形?若存在,请直接写出点M 的坐标;若不存在,说明理由.5.已知二次函数2(0)y x bx c a =++≠的图像与x 轴的交于A 、(1,0)B 两点,与y 轴交于点(0,3)C -.(1)求二次函数的表达式及A 点坐标;(2)D 是二次函数图像上位于第三象限内的点,求点D 到直线AC 的距离取得最大值时点D 的坐标;(3)M 是二次函数图像对称轴上的点,在二次函数图像上是否存在点N .使以M 、N 、B 、O 为顶点的四边形是平行四边形?若有,请写出点N 的坐标(不写求解过程).6.如图,已知抛物线y=x2﹣5x+4与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C.(1)求A、B、C三点的坐标;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状,并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(-1,0),B(3,0),与y轴交于点C,作直线BC,点P是抛物线在第四象限上一个动点(点P不与点B,C重合),连结PB,PC,以PB,PC为边作平行四边形CPBD,点P的横坐标为m.(1)求抛物线对应的函数表达式;(2)当平行四边形CPBD有两个顶点在x轴上时,点P的坐标为;(3)当平行四边形CPBD是菱形时,求m的值.8.如图,在平面直角坐标系中,抛物线2y x bx c =-++经过点()1,6A -,()2,0B .(1)求该抛物线的解析式;(2)点P 为直线AB 上方抛物线上一动点,过点P 作PQ x ⊥轴,交AB 于点Q ,过点P 作PM AB ⊥于M ,当线段PM 的长度取得最大值时,求点P 的坐标和线段PM 的长度;(3)把抛物线2y x bx c =-++沿射线AB C 是新抛物线对称轴上一点,D 为平面上任意一点,直接写出所有使得以A 、B 、C 、D 为顶点的四边形为菱形的点D 的坐标.9.如图1,在平面直角坐标系中,抛物线与x 轴分别交于A 、B 两点,与y 轴交于点C (O ,6),抛物线的顶点坐标为E (2,8),连接BC 、BE 、CE .(1)求抛物线的表达式;(2)判断△BCE 的形状,并说明理由;(3)如图2,点F 为线段BE 的中点,点P ,Q 分别为x 轴,y 轴上的动点,当四边形EFPQ 的周长取最小值时,求P ,Q 两点的坐标.10.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左侧),点B坐标(3,0),抛物线与y轴交于点C(0,﹣3),点D为抛物线顶点,对称轴x=1与x轴交于点E,连接BC、EC.(1)求抛物线的解析式;(2)点P是BC下方异于点D的抛物线上一动点,若S△PBC=S△EBC,求此时点P的坐标;(3)点Q是抛物线上一动点,点M是平面上一点,若以点B、C、Q、M为顶点的四边形为矩形,直接写出满足条件的点Q的横坐标.11.如图,一次函数y=kx+2的图象分别交y轴,x轴于A,B两点,B的坐标为(4,0),抛物线y=-x2+bx+c经过A,B两点.(1)求k的值及抛物线的解析式.(2)直线x=t在第一象限交直线AB于点M,交抛物线于点N,当t取何值时,线段MN的长有最大值?最大值是多少?(3)在(2)的情况下,以A,M,N,D为顶点作平行四边形,直接写出第四个顶点D的坐标,并直接写出所有平行四边形的面积是多少.12.如图,一次函数3y x =-+的图象与x 轴和y 轴分别交于点B 和点C ,二次函数2y x bx c =-++的图象经过B ,C 两点,并与x 轴交于点A .点(),0M m 是线段OB 上一个动点(不与点O 、B 重合),过点M 作x 轴的垂线,分别与二次函数图象和直线BC 相交于点D 和点E ,连接CD .(1)求这个二次函数的解析式.(2)①求DE 、CE 的值(用含m 的代数式表示).②当以C ,D ,E 为顶点的三角形与△ABC 相似时,求m 的值.(3)点F 是平面内一点,是否存在以C ,D ,E ,F 为顶点的四边形为菱形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.13.如图,已知抛物线2y ax bx c =++与x 轴交于A (1,0)、B (-3,0)两点,与y 轴交于C (0,3).(1)求抛物线的函数表达式:(2)设P 为抛物线上一动点,点P 在直线BC 上方时,求△BPC 面积的最大值:(3)若M 为抛物线上动点,点N 在抛物线对称轴上,是否存在点M 、N 使点A 、C 、M 、N 为平行四边形?如果存在,直接写出点N 的坐标:如果不存在,请说明理由.14.如图已知二次函数2y x bx c =++(b ,c 为常数)的图像经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作AB x ∥轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标;(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后每到的二次函数图象的顶点落在ABC 的内部(不包括ABC 的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q 的横坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于点A (﹣1,0),B (3,0),与y 轴交于点C .(1)b =______,c =______;(2)若点D 为第四象限内抛物线上的一个动点,过点D 作DE ∥y 轴交BC 于点E ,过点D 作DF ⊥BC 于点F ,过点F 作FG ⊥y 轴于点G ,求出DE +FG 的最大值及此时点D 的坐标;(3)若点P 是该抛物线对称轴上的一点,点Q 为坐标平面内一点,那么在抛物线上且位于x 轴上方是否存在点M ,使四边形OMPQ 为正方形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.16.如图,在平面直角坐标系中,已知抛物线()220y ax bx a =+-≠与x 轴交于点A (1,0),B (5,0)两点,与y 轴交于点C ,点D 为抛物线的顶点.(1)求抛物线的解析式和点D 的坐标;(2)求△BCD 的面积;(3)点M 为抛物线上一动点,点N 为平面内一点,以A ,M ,I ,N 为顶点作正方形,是否存在点M ,使点I恰好落在对称轴上?若存在,直接写出点M 的坐标;若不存在,请说明理由.17.如图,二次函数2y ax 2x c =++(0a ≠)的图象经过点()0,3C ,与x 轴分别交于点A ,点()3,0B .(1)求该二次函数的解析式及其图象的顶点坐标;(2)点P 是直线BC 上方的抛物线上任意一点,点P 关于y 轴的对称点记作点P ',当四边形POP C '为菱形时,求点P 的坐标;(3)点P 是抛物线上任意一点,过点P 做PD BC ⊥,垂足为点D .过点P 作PQ x ∥轴,与抛物线交于点Q .若PQ =,求点P 的坐标.18.如图,在平面直角坐标系中,二次函数223y mx mx =-+的图像与x 轴交于A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且AB =4.(1)求这个函数的解析式,并直接写出顶点D 的坐标;(2)点E 是二次函数图像上一个动点,作直线EF x ∥轴交抛物线于点F (点E 在点F 的左侧),点D 关于直线EF 的对称点为G ,如果四边形DEGF 是正方形,求点E 的坐标;(3)若射线AC 与射线BD 相交于点H ,求∠AHB 的大小.19.如图,已知直线3y =-与x 轴,y 轴分别交于点A ,B ,抛物线213y x bx c =++的顶点是)1-,且与x 轴交于C ,D 两点,与y 轴交于点E ,P 是抛物线上一个动点,过点P 作PG AB ⊥于点G .(1)求b 、c 的值;(2)若点M 是抛物线对称轴上任意点,点N 是抛物线上一动点,是否存在点N ,使得以点C ,D ,M ,N 为顶点的四边形是菱形?若存在,请你求出点N 的坐标;若不存在,请你说明理由.(3)当点P 运动到何处时,线段PG 的长最小?最小值为多少?20.综合与探究 如图,抛物线249y x bx c =-++与y 轴交于点()0,8A ,与x 轴交于点()6,0B ,C ,过点A 作AD x ∥轴与抛物线交于另一点D .(1)求抛物线的表达式;(2)连接AB ,点P 为AB 上一个动点,由点A 以每秒1个单位长度的速度沿AB 运动(不与点B 重合),运动时间为t ,过点P 作PQ y ∥轴交抛物线于点Q ,求PQ 与t 的函数关系式;(3)点M 是y 轴上的一个点,点N 是平面直角坐标系内一点,是否存在这样的点,M N ,使得以,,,B D M N 为顶点的四边形是矩形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.参考答案:2.(1)223y x x =+-(2)当32x =-时,△ACP 面积的最大值为278,此时点3(2,)4P --; (3)点F 的坐标为(﹣5,12)或(3,12)或(﹣1,﹣4)3.(1)21322y x x =-++,30,2C ⎛⎫ ⎪⎝⎭(2)315,28M ⎛⎫ ⎪⎝⎭,当32m =时,S 有最大值为2716 (3)满足条件的点P 坐标为154,2P ⎛⎫- ⎪⎝⎭,2214,2P ⎛⎫-- ⎪⎝⎭,332,2P ⎛⎫ ⎪⎝⎭4.(1)21322y x x =-++ (2)(1,1)(3)存在,3(2,)2,(13)2,(13)25.(1)y =-x 2+3x +4(2)P (2,6);四边形OCPE 的面积最大为16(3)存在; M 113,28⎛⎫- ⎪⎝⎭或M 252728,⎛⎫ ⎪⎝⎭或M 355,22⎛⎫- ⎪⎝⎭或M 453,22⎛⎫- ⎪⎝⎭6.(1)223y x x =+-,(3,0)A -(2)315,24D ⎛⎫-- ⎪⎝⎭(3)存在,(2,3)--或(0,3)-或(2,5)7.(1)点A (1,0),点B (4,0),点C (0,4)(2)平行四边形(3)存在;F (0,1)或(0,﹣1)或(0,258)8.(1)223y x x =--(2)(2,-3)(3)12m m ==9.(1)26y x x =--+(2)1(2P ,21)4;PM =(3)5(2-,6或5(2-,6或7(2或7(2, 10.(1)y 212x =-+2x +6 (2)直角三角形(3)P ,Q 两点的坐标分别为(2,0),(0,4)11.(1)y =x 2-2x -3(2)(2,-3)(3)1或-212.(1)k =-12,y =-x 2+72x +2; (2)当t =2时,MN 有最大值4;(3)点D 的坐标为(0,-2)或(0,6)或(4,4)时,以A 、M 、N 、D 为顶点的四边形是平行四边形,平行四边形的面积均为8.13.(1)2y x 2x 3=-++(2)①23DE m m =-,CE =;②m 的值为32或53(3)存在以C ,D ,E ,F 为顶点的四边形为菱形,点M 的坐标为(1,0)或(2,0)或(3,0).14.(1)223y x x =--+(2)278(3)存在,(1-,0)或(1-,8)15.(1)二次函数解析式为224y x x =--,点M 的坐标为(1,-5)(2)24m <<(3)当点Q 的横坐标为3时,四边形CEQP 为顶点的四边形为菱形16.(1)﹣2,3(2)GF +DE 有最大值258,D 57,24⎛⎫- ⎪⎝⎭(3)存在,M 点的坐标为或 17.(1)2212y x x 255=-+-,顶点D 的坐标是(3,85) (2)6(3)存在,点M )或18.(1)2y x 2x 3=-++(2)32P ⎫⎪⎪⎝⎭(3)()2,3P 或1,0或⎝⎭或⎝⎭19.(1)2y x 2x 3=-++;D (1,4);(2)E (0,3);(3)45AHB ︒∠=.20.(1)b =3c =.(2)存在,符合条件的点N 的坐标为或(0,3)或)1-.(3)当点P PG 21.(1)244893y x x =-++ (2)PQ 与t 的函数关系式为248255PQ t t =-+(010t ≤<); (3)存在点,M N ,使得以,,,B D M N 为顶点的四边形是矩形,点N 的坐标为(3,)98-或()233,4-.。
2023年九年级中考数学复习:二次函数(特殊四边形问题)综合题(Word版,含答案)

2023年九年级中考数学复习:二次函数(特殊四边形问题)综合题1.已知抛物线()21=++4(0)2y a x m m am -≠过点()0,4A(1)若=2m ,求a 的值;(2)如图,顶点M 在第一象限内,B 、C 是抛物线对称轴l 上的两点,且MB MC =,在直线l 右侧以BC 为边作正方形BCDE ,点E 恰好在抛物线上.①求am 的值;①试判断点E 和点A 是否关于直线l 对称,如果对称,请说明理由,如果不对称,请举出反例.2.如图,抛物线y =ax 2-2x +c (a ≠0)与直线y =x +3交于A ,C 两点,与x 轴交于点B .(1)求抛物线的解析式.(2)点P 是抛物线上一动点,且在直线AC 下方,当①ACP 的面积为6时,求点P 的坐标.(3)D 为抛物线上一点,E 为抛物线的对称轴上一点,请直接写出以A ,C ,D ,E 为顶点的四边形为平行四边形时点D 的坐标.3.如图1,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A (﹣1,0)、B (3,0),与y 轴交于点C ,连接AC 和BC ,①OAC =60°.(1)求二次函数的表达式.(2)如图2,线段BC 上有M 、N 两动点(N 在M 上方),且MN 3P 是直线BC 下方抛物线上一动点,连接PC 、PB ,当①PBC 面积最大时,连接PM 、AN ,当MN 运动到某一位置时,PM +MN +NA 的值最小,求出该最小值.(3)如图3,在(2)的条件下,连接AP ,将AP 绕着点A 逆时针旋转60°至AQ .点E 为二次函数对称轴上一动点,点F 为平面内任意一点,是否存在这样的点E 、F ,使得四边形AEFQ 为菱形,若存在,请直接写出点E 的坐标,若不存在,请说明理由.4.直线3y x =-+与x 轴相交于点A ,与y 轴相交于点B ,抛物线2y ax 2x c =++经过点A ,B ,与x 轴的另一个交点为C .(1)求抛物线的解析式;(2)如图1,若点P为直线AB上方的抛物线上的一动点,求四边形APBO的面积的最大值;D为抛物线上的一点,直线CD与AB相交于点M,点H在抛物线上,(3)如图2,(2,3)∥轴,交直线CD于点K.P是平面内一点,当以点M,H,K,P为顶点的四过H作HK y边形是正方形时,请直接写出点P的坐标.5.综合与探究如图1所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c经过点A,C.(1)求抛物线的解析式;(2)点E在抛物线的对称轴上,求CE+OE的最小值为______.(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N①当ANC面积最大时的P点坐标为______;最大面积为______.①点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D、F、B、C为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.。
2023年九年级中考数学:二次函数综合题压轴题(特殊四边形问题)(含答案)

(1)求该抛物线的解析式和顶点 的坐标;
(2)设点 的横坐标是 ,问当 取何值时,四边形 的面积最大;
(3)如图,若直线 的解析式是 ,点 和点 分别在抛物线上和直线 上,问:是否存在以点 为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点 的坐标
3.综合与探究
如图,在平面直角坐标系中,抛物线 与 轴交于 、 两点,与 轴交于点 ,点 为抛物线顶点.
(1)求抛物线解析式;
(2)点 在此抛物线的对称轴上,当 最大时,点 的坐标为_____,此时 的面积为_____;
(3)点 在抛物线上,平面内存在点 使四边形 为菱形时,请直接写出点 的坐标.
4.如图,在平面直角坐标系中,抛物线 和直线 交于 、 两点,直线 交 轴于点 .
20.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上, , ,抛物线 经过点B,且与x轴交于点 和点E.
(1)求抛物线的表达式:
(2)若P是第一象限抛物线上的一个动点,连接CP,PE,当四边形OCPE的面积最大时,求点P的坐标,此时四边形OCPE的最大面积是多少;
(3)若N是抛物线对称轴上一点,在平面内是否存在一点M,使以点C,D,M,N为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,说明理由.
(1)求点 的坐标与 的值;
(2)当点 恰好是 的中点时,求点 的坐标;
(3)连结 ,作点 关于直线 的对称点 ,当点 落在线段 上时,则点 的坐标为______ 直接写出答案
6.已知抛物线 与x轴有公共点.
2023中考数学专题训练:二次函数的实际应用-几何问题

2023中考数学专题训练:二次函数的实际应用-几何问题1.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.2.学校要围一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为16米的篱笆恰好围成(如图所示).设矩形的一边AB的长为x米(要求AB<AD),矩形ABCD 的面积为S平方米.(1)求S与x之间的函数关系式,并直接写出自变量x的取值范围;(2)要想使花圃的面积最大,AB边的长应为多少米?花圃的面积是多少?3.如图,小亮父亲想用长80m的栅栏.再借助房屋的外墙围成一个矩形的羊圈ABCD,已知房屋外墙长50m,设矩形ABCD的边AB=xm,面积为Sm2.(1)用x的代数式表示BC的长;(2)写出S与x之间的函数表达式,并写出x的取值范围;(3)当AB,BC分别为多少米时,羊圈的面积最大?最大值是多少?4.如图,墙壁EF长24米,需要借助墙壁围成一个矩形花园ABCD,现有围栏48米,设AB长x 米.(1)若AD为y米,直接写出y关于x的函数表达式及其自变量x的取值范围;(2)AB长为多少米时,这个花园的面积最大,并求出这个最大值.5.某农场拟建三间矩形牛饲养室,饲养室的一面全部靠现有墙(墙长为40m),饲养室之间用一道用建筑材料做的墙隔开(如图).已知计划中的建筑材料可建围墙的总长为60m,设三间饲养室合计长x(m),总占地面积为y(m2).(1)求y关于x的函数表达式和自变量的取值范围.(2)x为何值时,三间饲养室占地总面积最大?最大为多少?6.如图1,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)与x轴交于A、B两点(点A 在点B左侧),与y轴交于点C.(1)若A(-1,0),B (3,0),C(0,-3)①求抛物线的解析式;②若点P为x轴上一点,点Q为抛物线上一点,△CPQ是以CQ为斜边的等腰直角三角形,求出点P的坐标;(2)如图2,若直线y=bx+t(t>c)与抛物线交于点M、点N(点M在对称轴左侧).直线AM交y轴于点E,直线AN交y轴于点D.试说明点C是线段DE的中点.7.某农场准备围建一个矩形养鸡场,其中一边靠墙(墙的长度为15米),其余部分用篱笆围成,在墙所对的边留一道1米宽的门,已知篱笆的总长度为23米.(1)设图中AB(与墙垂直的边)长为x米,则AD的长为米(请用含x的代数式表示);(2)若整个鸡场的总面积为y米2,求y的最大值.8.某小区计划建一个矩形花圃,花圃的一边利用长为a的墙,另三边用总长为79米的篱笆围成,围成的花圃是如图所示的矩形ABCD,并在BC边上留有一扇1米宽的门.设AD边的长为x米,矩形花圃的面积为S平方米.(1)求S与x之间的函数关系式.(2)若墙长a=30米,求S的最大值.9.某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.10.某单位为响应市“创建全国文明城市”的号召,不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并求出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)当矩形ABCD空地的面积最大时,利用的墙长是多少m;并求此时的最大面积.11.某社区决定把一块长为50m、宽30m的矩形空地建为居民健身广场,设计方案如图所示,阴影区域为绿化区(四块绿化区均为大小、形状都相同的矩形),空白区域为活动区,且四周的四个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2.(1)求y与x的函数表达式并求出自变量x的取值范围,(2)求活动区最大面积.12.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?13.如图,在正方形ABCD中,AB=4,E为BC上一点,F为CD上一点,且AE=AF.设△AEF的面积为y,CE=x.(1)求y关于x的函数表达式.(2)当△AEF为正三角形时,求△AEF的面积.14.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求△P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当△P的半径为1时,若△P与以上(2)中所得函数图象相交于点C、D,其中交点D (m,n)在点C的右侧,请利用图②,求cos△APD的大小.15.如图,小亮父亲想用长为80m的栅栏,再借助房屋的外墙围成一个矩形羊圈ABCD,已知房屋外墙长50m,设矩形ABCD的边AB=xm,面积为Sm2.(1)写出S与x之间的关系式,并指出x的取值范围;(2)当AB,BC分别为多少米时,羊圈的面积最大?最大面积是多少?16.如图,抛物线y=ax2- 43x+c与x轴交于A、B两点,与y轴交于C点,连结AC,已知B(-1,0),且抛物线经过点D(2,-2)。
专题05 二次函数中特殊平行四边形存在性问题(原卷版)--2023 年中考数学压轴真题汇编

挑战2023年中考数学解答题压轴真题汇编专题05二次函数中特殊平行四边形存在性问题一.平行四边形的存在性1.(2022•重庆)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).(1)求抛物线的函数表达式;(2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+AM的最大值及此时点P的坐标;(3)在(2)的条件下,点P′与点P关于抛物线y=﹣x2+bx+c的对称轴对称.将抛物线y=﹣x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D的坐标,并把求其中一个点D的坐标的过程写出来.2.(2022•郴州)已知抛物线y=x2+bx+c与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)如图1,将直线BC向上平移,得到过原点O的直线MN.点D是直线MN上任意一点.①当点D在抛物线的对称轴l上时,连接CD,与x轴相交于点E,求线段OE的长;②如图2,在抛物线的对称轴l上是否存在点F,使得以B,C,D,F为顶点的四边形是平行四边形?若存在,求出点F与点D的坐标;若不存在,请说明理由.3.(2022•攀枝花)如图,二次函数y=ax2+bx+c的图象与x轴交于O(O为坐标原点),A两点,且二次函数的最小值为﹣1,点M(1,m)是其对称轴上一点,y轴上一点B(0,1).(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点P,连结PA,PB,设点P的横坐标为t,△PAB的面积为S,求S与t的函数关系式;(3)在二次函数图象上是否存在点N,使得以A、B、M、N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N的坐标,若不存在,请说明理由.4.(2022•内蒙古)如图,抛物线y=ax2+x+c经过B(3,0),D(﹣2,﹣)两点,与x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式和点C的坐标;(2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)5.(2022•资阳)已知二次函数图象的顶点坐标为A(1,4),且与x轴交于点B (﹣1,0).(1)求二次函数的表达式;(2)如图,将二次函数图象绕x轴的正半轴上一点P(m,0)旋转180°,此时点A、B的对应点分别为点C、D.①连结AB、BC、CD、DA,当四边形ABCD为矩形时,求m的值;②在①的条件下,若点M是直线x=m上一点,原二次函数图象上是否存在一点Q,使得以点B、C、M、Q为顶点的四边形为平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.二.矩形的存在性6.(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.8.(2021•齐齐哈尔)综合与探究如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C、D两点之间的距离是2;(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.9.(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图2,连接AC,当点P在直线AC上方时,求四边形P ABC面积的最大值,并求出此时P点的坐标;(3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.10.(2023•秦都区校级二模)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B两点(点B在点A的右侧),与y轴交于点C,且OC=3OA,点D为抛物线的对称轴与x轴的交点,连接CD.(1)求抛物线的函数表达式;(2)点F为坐标平面内一点,在第一象限的抛物线上是否存在点E,使得以点C、D、E、F为顶点的四边形是以CD为边的矩形?若存在,请求出符合条件的点E的横坐标;若不存在,请说明理由.7.(2022•元宝区校级二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C、D两点之间的距离是11;(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.8.(2022•鱼峰区模拟)如图,在平面直角坐标系中,抛物线y=x2+bx+c与坐标轴交于A(0,﹣2),B(4,0)两点,直线BC:y=﹣2x+8交y轴于点C.(1)求该抛物线的解析式;(2)在第二象限内是否存在一点M,使得四边形ABCM为矩形?如果存在,求出点M的坐标;如果不存在,请说明理由.三.菱形的存在性9.(2022•朝阳)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,﹣3),连接BC.(1)求抛物线的解析式及点B的坐标.(2)如图,点P为线段BC上的一个动点(点P不与点B,C重合),过点P 作y轴的平行线交抛物线于点Q,求线段PQ长度的最大值.(3)动点P以每秒个单位长度的速度在线段BC上由点C向点B运动,同时动点M以每秒1个单位长度的速度在线段BO上由点B向点O运动,在平面内是否存在点N,使得以点P,M,B,N为顶点的四边形是菱形?若存在,请直接写出符合条件的点N的坐标;若不存在,请说明理由.10.(2021•湘潭)如图,一次函数y=x﹣图象与坐标轴交于点A、B,二次函数y=x2+bx+c图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.11.(2021•鄂尔多斯)如图,抛物线y=x2+2x﹣8与x轴交于A,B两点(点A 在点B左侧),与y轴交于点C.(1)求A,B,C三点的坐标;(2)连接AC,直线x=m(﹣4<m<0)与该抛物线交于点E,与AC交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)点M在y轴上,点N在直线AC上,点P为抛物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.12.(2021•通辽)如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,交y轴于点C,动点P在抛物线的对称轴上.(1)求抛物线的解析式;(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.13.(2021•娄底)如图,在直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A(﹣1,0)和点B(3,0),与y轴交于点C.(1)求b、c的值;(2)点P(m,n)为抛物线上的动点,过P作x轴的垂线交直线l:y=x于点Q.①当0<m<3时,求当P点到直线l:y=x的距离最大时m的值;②是否存在m,使得以点O、C、P、Q为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值.14.(2021•山西)综合与探究如图,抛物线y=x2+2x﹣6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.(1)求A、B,C三点的坐标并直接写出直线AC,BC的函数表达式.(2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线l,交线段AC于点D.①试探究:在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标,若不存在,请说明理由;②设抛物线的对称轴与直线l交于点M,与直线AC交于点N.当S△DMN=S△AOC时,请直接写出DM的长.15.(2020•阜新)如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.。
压轴题06二次函数与特殊四边形存在性问题(四大类型)-2023年中考数学压轴题专项训练(全

2023年中考数学压轴题专项训练压轴题06二次函数与特殊四边形存在性问题(四大类型)题型一:二次函数与平行四边形存在性问题例1.(2023•泽州县一模)综合与探究.如图1,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与直线l交于B,C 两点,其中点A的坐标为(﹣2,0),点C的坐标为(﹣1,﹣4).(1)求二次函数的表达式和点B的坐标.(2)若P为直线l上一点,Q为抛物线上一点,当四边形OBPQ为平行四边形时,求点P的坐标.(3)如图2,若抛物线与y轴交于点D,连接AD,BD,在抛物线上是否存在点M,使∠MAB=∠ADB?若存在,请直接写出点M的坐标;若不存在,请说明理由.题型二:二次函数与矩形存在性问题例2.(2023•歙县校级模拟)如图,若二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0)、B(4,0),与y轴交于点C,连接BC.(1)求该二次函数的解析式;(2)若点Q是抛物线上一动点,在平面内是否存在点K,使以点B、C、Q、K为顶点,BC为边的四边形是矩形?若存在请求出点K的坐标;若不存在,请说明理由.题型三: 二次函数与菱形存在性问题例3.(2023春•沙坪坝区校级月考)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过A(0,1),B (4,﹣1).直线AB交x轴于点C,P是直线AB上方且在对称轴右侧的一个动点,过P作PD⊥AB,垂足为D,E为点P关于抛物线的对称轴的对应点.(1)求抛物线的函数表达式;(2)当√5PD+PE的最大值时,求此时点P的坐标和√5PD+PE的最大值;(3)将抛物线y关于直线x=3作对称后得新抛物线y',新抛物线与原抛物线相交于点F,M是新抛物线对称轴上一点,N是平面中任意一点,是否存在点N,使得以C,F,M,N为顶点的四边形是菱形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.题型四: 二次函数与正方形存在性问题例4.(2023•前郭县一模)如图,在平面直角坐标系中,抛物线y=x2﹣4x+c与y轴相交于点A(0,2).(1)求c的值;(2)点B为y轴上一点,其纵坐标为m(m≠2),连接AB,以AB为边向右作正方形ABCD.①设抛物线的顶点为P,当点P在BC上时,求m的值;②当点C在抛物线上时,求m的值;③当抛物线与正方形ABCD有两个交点时,直接写出m的取值范围.一.解答题(共20小题)1.(2023春•兴化市月考)已知:二次函数y=ax2+2ax﹣8a(a为常数,且a>0)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)分别求点A、B的坐标;(2)若△ABC是直角三角形,求该二次函数相应的表达式;(3)当a=12时,一次函数y=12x+b的图象过B点,与二次函数的对称轴交于Q点,N为一次函数图象上一点,过N点作y的平行线交二次函数图象于M点,当D、M、N、Q四点组成的四边形是平行四边形时,求N点的坐标.2.(2023春•沙坪坝区校级月考)如图1,在平面直角坐标系中,抛物线y=ax2+bx+8(a≠0)与x轴交于点B(﹣4,0),点C(8,0),与y轴交于点A.点D的坐标为(0,4).(1)求二次函数的解析式及点C的坐标.(2)如图1,点F为该抛物线在第一象限内的一动点,过E作FE∥CD,交CD于点F,求EF+√55DF的最大值及此时点E的坐标.(3)如图2,在(2)的情况下,将原抛物线绕点D旋转180°得到新抛物线y',点N是新抛物线y'上一点,在新抛物线上的对称轴上是否存在一点M,使得点D,E,M,N为顶点的四边形为平行四边形,若存在,请直接写出点M的坐标,并写出其中一个点M的求解过程.3.(2023•武清区校级模拟)在平面直角坐标系中,二次函数y=ax2+bx+3的图象与x轴交于A(﹣4,0),B(2,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)抛物线上是否存在点Q,且满足AB平分∠CAQ,若存在,求出Q点坐标;若不存在,说明理由;(3)点N为x轴上一动点,在抛物线上是否存在点M,使以B,C,M,N为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,说明理由.4.(2023春•承德县月考)已知二次函数y=14x2−32x−4与x数轴交于点A、B(A在B的左侧),与y轴交于点C,连接BC.发现:点A的坐标为,求出直线BC的解析式;拓展:如图1,点P是直线BC下方抛物线上一点,连接PB、PC,当△PBC面积最大时,求出P点的坐标;探究:如图2,抛物线顶点为D,抛物线对称轴交BC于点E,M是线段BC上一动点(M不与B、C两点重合),连接PM,设M点的横坐标为m(0<m<8),当m为何值时,四边形PMED为平行四边形?5.(2023春•梅江区校级月考)如图,在平面直角坐标系中,△AOC绕原点O逆时针旋转90°得到△DOB,其中OA=1,OC=3.(1)若二次函数经过A、B、C三点,求该二次函数的解析式;(2)在(1)条件下,在二次函数的对称轴l上是否存在一点P,使得P A+PC最小?若P点存在,求出P点坐标;若P点不存在,请说明理由.(3)在(1)条件下,若E为x轴上一个动点,F为抛物线上的一个动点,使得B、C、E、F构成平行四边形时,求E点坐标.6.(2022秋•云州区期末)综合与探究如图,二次函数y=ax2+bx+4的图象经过x轴上的点A(6,0)和y轴上的点B,且对称轴为直线x=7 2.(1)求二次函数的解析式.(2)点E位于抛物线第四象限内的图象上,以OE,AE为边作平行四边形OEAF,当平行四边形OEAF 为菱形时,求点F的坐标与菱形OEAF的面积.(3)连接AB,在直线AB上是否存在一点P,使得△AOP与△AOB相似,若存在,请直接写出点P坐标,若不存在,请说明理由.7.(2023春•开福区校级月考)【定义】对于函数图象上的任意一点P(x,y),我们把x+y称为该点的“雅和”,把函数图象上所有点的“雅和”的最小值称为该函数的“礼值”.根据定义回答问题:(1)①点P(9,10)的“雅和”为;(直接写出答案)②一次函数y=3x+2(﹣1≤x≤3)的“礼值”为;(直接写出答案)(2)二次函数y=x2﹣bx+c(bc≠0)(3≤x≤5)交x轴于点A,交y轴于点B,点A与点B的“雅和”相等,若此二次函数的“礼值”为1﹣b,求b,c的值;(3)如图所示,二次函数y=x2﹣px+q的图象顶点在“雅和”为0的一次函数的图象上,四边形OABC 是矩形,点B的坐标为(5,﹣3),点O为坐标原点,点C在x轴上,当二次函数y=x2﹣px+q的图象与矩形的边有四个交点时,求p的取值范围.8.(2023春•无锡月考)在平面直角坐标系中,O为坐标原点,二次函数y=ax2﹣2ax﹣3a(a>0)的图象分别与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,过点B作BC的垂线交对称轴于点M,以BM、BC为邻边作矩形BMNC.(1)求A、B的坐标;(2)当点N恰好落在函数图象上时,求二次函数的表达式;(3)作点N关于MC的对称点N',则点N'能否落在函数图象的对称轴上,若能,请求出二次函数的表达式;若不能,请说明理由.9.(2022秋•开福区校级期末)若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“美丽四边形”.(1)①在“平行四边形、矩形、菱形、正方形”中,一定不是“美丽四边形”的有;②若矩形ABCD是“美丽四边形”,且AB=1,则BC=;(2)如图1,“美丽四边形”ABCD内接于⊙O,AC与BD相交于点P,且对角线AC,为直径,AP=2,PC=8,求另一条对角线BD的长;(3)如图2,平面直角坐标系中,已知“美丽四边形”ABCD的四个顶点A(﹣2,0),C(1,0),B在第三象限,D在第一象限,AC与BD交于点O,且四边形ABCD的面积为6√3,若二次函数y=ax2+bx+c (a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.10.(2022秋•南关区校级期末)在平面直角坐标系中,二次函数y=x2﹣2x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.(1)若点P(﹣2,3)在图象G上,求n的值.(2)当n=﹣1时.①若O(t,1)在图象G上,求t的值.②当k≤x≤3(k<3)时,图象G对应函数的最大值为2,最小值为﹣2,直接写出k的取值范围.(3)当以A(﹣2,2),B(﹣2,﹣1),C(1,﹣1),D(1,2)为顶点的矩形ABCD的边与图象G有且只有3个公共点时,直接写出n的取值范围.11.(2022•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,b=3,且该二次函数的图象过点(1,1),求c的值;(2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B (x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE的边EF上,其对称轴与x轴、BE分别交于点M、N,BE与y轴相交于点P,且满足tan∠ABE=3 4.①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;②若NP=2BP,令T=1a2+165c,求T的最小值.阅读材料:十六世纪的法国数学家弗朗索瓦•韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式Δ≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=−b a,x1x2=ca”.此关系通常被称为“韦达定理”.12.(2023春•南关区月考)已知抛物线y=−12x2+bx+c(b、c是常数)的顶点B坐标为(﹣1,2),抛物线的对称轴为直线l,点A为抛物线与x轴的右交点,作直线AB.点P是抛物线上的任意一点,其横坐标为m,过点P作x轴的垂线交直线AB于点Q,过点P作PN⊥l于点N,以PQ、PN为边作矩形PQMN.(1)b=,c=.(2)当点Q在线段AB上(点Q不与A、B重合)时,求PQ的长度d与m的函数关系式,并直接写出d的最大值.(3)当抛物线被矩形PQMN截得的部分图象的最高点纵坐标与最低点纵坐标的距离为2时,求点P的坐标.13.(2023春•南关区校级月考)在平面直角坐标系中,抛物线y =﹣x 2+bx +c (b 、c 是常数)经过点A (﹣1,0)和点B (3,0).点P 在抛物线上,且点P 的横坐标为m . (1)求b 、c 的值;(2)当△P AB 的面积为8时,求m 的值;(3)当点P 在点A 的右侧时,抛物线在点P 与点A 之间的部分(包含端点)记为图象G ,设G 的最高点与最低点的纵坐标之差为h ,求h 与m 之间的函数关系式;(4)点Q 的横坐标为1﹣3m ,纵坐标为m +1,以PQ 为对角线构造矩形,且矩形的边与坐标轴平行.当抛物线在矩形内部的点的纵坐标y 随x 的增大而增大或y 随x 的增大而减小时,直接写出m 的取值范围.14.(2023•九台区校级一模)在平面直角坐标系中,已知抛物线y =x 2﹣2ax ﹣a (a 为常数). (1)若点(2,﹣1)在抛物线上. ①求抛物线的表达式;②当x 为何值时y 随x 的增大而减小?(2)若x ≤2a ,当抛物线的最低点到x 轴的距离恰好是1时,求a 的值;(3)已知A (﹣1,1)、B(−1,2a −12),连结AB .当抛物线与线段AB 有交点时,该交点为P (点P 不与A 、B 重合),将线段PB 绕点P 顺时针旋转90°得到线段PM ,以PM 、P A 为邻边构造矩形PMQA .当抛物线在矩形PMQA 内部(包含边界)图象所对应的函数的最大值与最小值的差为32时,直接写出a 的值.15.(2023•靖江市校级模拟)如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+32,以PQ、QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时.直接写出m的取值范围.16.(2022秋•临朐县期末)如图,在平面直角坐标系中,O是坐标原点,菱形OABC的顶点A(3,4),C 在x轴的负半轴,抛物线y=ax2+bx+c的对称轴x=2,且过点O,A.(1)求抛物线y=ax2+bx+c的解析式;(2)若在线段OA上方的抛物线上有一点P,求△P AO面积的最大值,并求出此时P点的坐标;(3)若把抛物线y=ax2+bx+c沿x轴向左平移m个单位长度,使得平移后的抛物线经过菱形OABC的顶点B.直接写出平移后的抛物线解析式.17.(2023•道外区一模)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+c经过点A (﹣4,0),点C(0,6),与x轴交于另一点B.(1)求抛物线的解析式;(2)点D为第一象限抛物线上一点,连接AD,BD,设点D的横坐标为t,△ABD的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点P为第四象限抛物线上一点,连接P A交y轴于点E,点F在线段BC上,点G在直线AD上,若tan∠BAD=12,四边形BEFG为菱形,求点P的坐标.18.(2023春•九龙坡区校级月考)如图,在平面直角坐标系中,抛物线y=12x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴于点C,连接BC,D为抛物线的顶点.(1)求该抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,过P作PE⊥BC于点E,过P作PF⊥x轴于点F,交直线BC于点G,求PE+PG的最大值,以及此时点P的坐标;(3)将抛物线y=12x2+bx+c沿射线CB方向平移,平移后的图象经过点H(2,﹣1),点M为D的对应点,平移后的抛物线与y轴交于点N,点Q为平移后的抛物线对称轴上的一点,且点Q在第一象限.在平面直角坐标系中确定点R,使得以点M,N,Q,R为顶点的四边形为菱形,请写出所有符合条件的点R的坐标,并写出求解点R的坐标的其中一种情况的过程.19.(2023•安徽一模)如图,在平面直角坐标系中,抛物线C 1:y =−14x 2+bx +c 的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(﹣4,0),点D 的坐标为(0,4).(1)求该二次函数的表达式及点C 的坐标;(2)若点F 为该抛物线在第一象限内的一动点,求△FCD 面积的最大值;(3)如图2,将抛物线C 1向右平移2个单位,向下平移5个单位得到抛物线C 2,M 为抛物线C 2上一动点,N 为平面内一动点,问是否存在这样的点M 、N ,使得四边形DMCN 为菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.20.(2023•九台区一模)在平面直角坐标系中,抛物线y =x 2+bx +c (b 、c 是常数)经过点(﹣2,﹣1),点(1,2).点A 在抛物线上,且点A 的横坐标为m (m ≠0).以点A 为中心,构造正方形POMN ,PQ =2|m |,且PQ ⊥x 轴.(1)求该抛物线对应的函数表达式;(2)若点B 是抛物线上一点,且在抛物线对称轴右侧.过点B 作x 轴的平行线交抛物线于另一点C ,连接BC .当BC =6时,求点B 的坐标;(3)若m <0,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大或y 随x 的增大而减小时,求m 的取值范围;(4)当抛物线与正方形PQMN 的边只有2个交点,且交点的纵坐标之差为34时,直接写出m 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考专题练习——二次函数与特殊的四边形1.如图,已知点A(﹣2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点.(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.2.如图,已知直线y=﹣12x+2与x轴、y轴分别交于点B、C,抛物线y=﹣212x+bx+c过点B、C,且与x轴交于另一个点A.(1)求该抛物线的表达式;(2)点M是线段BC上一点,过点M作直线l∥y轴交该抛物线于点N,当四边形OMNC是平行四边形时,求它的面积;(3)联结AC,设点D是该抛物线上的一点,且满足∠DBA=∠CAO,求点D的坐标.3.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.4.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).(Ⅰ)求二次函数的解析式及点A,B的坐标;(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.5.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,顶点为D,过点A的直线与抛物线交于点E,与y轴交于点F,且点B的坐标为(3,0),点E的坐标为(2,3).(1)求抛物线的解析式;(2)若点G为抛物线对称轴上的一个动点,H为x轴上一点,当以点C、G、H、F四点所围成的四边形的周长最小时,求出这个最小值及点G、H的坐标;(3)设直线AE与抛物线对称轴的交点为P,M为直线AE上的任意一点,过点M作MN∥PD 交抛物线于点N,以P、D、M、N为顶点的四边形能否为平行四边形?若能,请求点M的坐标;若不能,请说明理由.6.如图,抛物线y═﹣1x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B的坐标为(3,30),点C的坐标为(0,5).有一宽度为1,长度足够长的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线AC于点M和点N,交x轴于点E和点F.(1)求抛物线的解析式及点A的坐标;(2)当点M和N都在线段AC上时,连接MF,如果sin∠10Q的坐标;(3)在矩形的平移过程中,是否存在以点P,Q,M,N为顶点的四边形是平行四边形,若存在,求出点M的坐标;若不存在,请说明理由.7.如图,抛物线与x轴交两点A(﹣1,0),B(3,0),过点A作直线AC与抛物线交于C 点,它的坐标为(2,﹣3).(1)求抛物线及直线AC的解析式;(2)P是线段AC上的一个动点,(不与A,C重合),过P点作y轴的平行线交抛物线于E 点,点E与点A、C围成三角形,求出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,如果不存在,请说明理由.8.如图4,已知抛物线y=ax2+bx+c(a>0)经过点A(2,0),B(6,0),交y轴于点C,且S△ABC=16.(1)求点C的坐标;(2)求抛物线的解析式及其对称轴;(3)若正方形DEFG内接于抛物线和x轴(边FG在x轴上,点D,E分别在抛物线上),求S正方形DEFG.9.如图,抛物线y=nx2﹣3nx﹣4n(n<0)与x轴交于B、C两点(点B在点C的左侧),且抛物线与y轴交于点A.(1)点B的坐标为,点C的坐标为;(2)若∠BAC=90°,求抛物线的解析式.(3)点M是(2)中抛物线上的动点,点N是其对称轴上的动点,是否存在这样的点M、N,使得以A、C、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.10.如图,在Rt ABC中,∠C=90°,AC=BC=4cm,动点P从点C出发以1cm/s的速度沿CA 匀速运动,同时动点Q从点A2/cm s的速度沿AB匀速运动,当点P到达点A时,点P、Q同时停止运动,设运动时间为他t(s).(1)当t为何值时,点B在线段PQ的垂直平分线上?(2)是否存在某一时刻t,使APQ是以PQ为腰的等腰三角形?若存在,求出t的值;若不存在,请说明理由;(3)以PC为边,往CB方向作正方形CPMN,设四边形QNCP的面积为S,求S关于t的函数关系式.11.如图①,直线y=kx+2与坐标轴交于A、B两点,OA=4,点C是x轴正半轴上的点,且OC=OB,过点C作AB的垂线,交y轴于点D,抛物线y=ax2+bx+c过A、B、C三点.(1)求抛物线函数关系式;(2)如图②,点P是射线BA上一动点(不与点B重合),连接OP,过点O作OP的垂线交直线CD于点Q.求证:OP=OQ;(3)如图③,在(2)的条件下,分别过P、Q两点作x轴的垂线,分别交x轴于点E、F,交抛物线于点M、N,是否存在点P的位置,使以P、Q、M、N为顶点的四边形为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.12.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交A(﹣1,0),B两点,与y 轴交于点C(0,3),抛物线的顶点为点E.(1)求抛物线的解析式;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一个动点,当点P运动到点E时,求△PCD的面积;(3)点N在抛物线对称轴上,点M在x轴上,是否存在这样的点M与点N,使以M,N,C,B为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标(不写求解过程);若不存在,请说明理由.13.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.14.如图1,平面直角坐标系中,抛物线y=ax2﹣4ax+c与直线y=kx+1(k≠0)交于y轴上一点A和第一象限内一点B,该抛物线顶点H的纵坐标为5.(1)求抛物线的解析式;,求k的值;(2)连接AH、BH,抛物线的对称轴与直线y=kx+1(k≠0)交于点K,若S△AHB=214(3)在(2)的条件下,点P是直线AB上方的抛物线上的一动点(如图2),连接PA.当∠PAB=45°时,ⅰ)求点P的坐标;ⅱ)已知点M 在抛物线上,点N 在x 轴上,当四边形PBMN 为平行四边形时,请求出点M 的坐标.15.如图,已知抛物线21322y x x n =--(n >0)与x 轴交于A ,B 两点(A 点在B 点的左边),与y 轴交于点C .(1)如图1,若△ABC 为直角三角形,求n 的值;(2)如图1,在(1)的条件下,点P 在抛物线上,点Q 在抛物线的对称轴上,若以BC 为边,以点B ,C ,P ,Q 为顶点的四边形是平行四边形,求P 点的坐标;(3)如图2,过点A 作直线BC 的平行线交抛物线于另一点D ,交y 轴交于点E ,若AE:ED =1:4,求n 的值.16.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32.(1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PF=3PE ,求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF 时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.17.如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C(1)求抛物线的解析式;AB向点B运动,点Q从点C出(2)点P从点A发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.18.如图,抛物线y=ax2+bx﹣5与坐标轴交于A(﹣1,0),B(5,0),C(0,﹣5)三点,顶点为D.(1)请直接写出抛物线的解析式及顶点D的坐标;(2)连接BC与抛物线的对称轴交于点E,点P为线段BC上的一个动点(点P不与B、C两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①是否存在点P,使四边形PEDF为平行四边形?若存在,求出点P的坐标;若不存在,说明理由.②过点F作FH⊥BC于点H,求△PFH周长的最大值.19.抛物线2y ax bx c=++经过点A(-1,0)、B(4,0),与y轴交于点C(0,4).(1)求抛物线的表达式;(2)点P为直线BC上方抛物线的一点,分别连接PB、PC,若直线BC恰好平分四边形COBP 的面积,求P点坐标;(3)在(2)的条件下,是否在该抛物线上存在一点Q,该抛物线对称轴上存在一点N,使得以A、P、Q、N为顶点的四边形为平行四边形?若存在,求出Q点坐标,若不存在,请说明理由.20.如图,在平面直角坐标系中,抛物线y=1x2+bx+c的图象与x轴交于点A(2,0)、B(﹣24,0),与y轴交于点D.(1)求抛物线的解析式;(2)连接BD,点P在抛物线的对称轴上,以Q为平面内一点,四边形PBQD能否成为矩形?若能,请求出点P的坐标;若不能,请说明理由;(3)在抛物线上有一点M,过点M、A的直线MA交y轴于点C,连接BC,若∠MBO=∠BCO,请直接写出点M的坐标.参考答案:1.(1)y=﹣38x2+34x+3;D(1,278);(2)P(3,158).【分析】(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;(2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-38m2+34m+3),则F(m,-34m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标.【解析】解:(1)设抛物线的解析式为y=a(x+2)(x﹣4),将点C(0,3)代入得:﹣8a=3,解得:a=﹣38,y=﹣38x2+34x+3=﹣38(x﹣1)2+278,∴抛物线的解析式为y=﹣38x2+34x+3,且顶点D(1,278);(2)∵B(4,0),C(0,3),∴BC的解析式为:y=﹣34x+3,∵D(1,278),当x=1时,y=﹣34+3=94,∴E(1,94),∴DE=278-94=98,设P(m,﹣38m2+34m+3),则F(m,﹣34m+3),∵四边形DEFP是平行四边形,且DE∥FP,∴DE=FP,即(﹣38m2+34m+3)﹣(﹣34m+3)=98,解得:m1=1(舍),m2=3,∴P(3,158).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中.2.(1)213222y x x =++;(2)4;(3)(﹣5,﹣18)或(3,2). 【分析】(1)根据直线解析式求出点B 、C 的坐标,然后利用待定系数法求二次函数解析式列式求解即可; (2)设M (m ,-12m+2),则N (m ,-12m 2+32m+2),则MN=(-12m 2+32m+2)-(-12m+2)=-12m 2+2m ,根据MN=OC=2列方程可得M 的横坐标,根据平行四边形的面积公式可得结论;(3)分两种情况:①当D 在x 轴的下方:根据AC ∥BD ,直线解析式k 相等可设直线BD 的解析式为:y=2x+b ,把B (4,0)代入得直线BD 的解析式为:y=2x-8,联立方程可得D 的坐标;②当D 在x 轴的上方,根据对称可得M 的坐标,利用待定系数法求直线BM 的解析式,与二次函数的交点,联立方程可得D 的坐标.【解析】(1)当x=0时,y=2,∴C (0,2),当y=0时,﹣12x+2=0,x=4,∴B (4,0),把C (0,2)和B (4,0)代入抛物线y=﹣212x +bx+c 中得:22{14402c b c =-⨯++=, 解得:322b c ⎧=⎪⎨⎪=⎩, ∴该抛物线的表达式:y=213222x x -++; (2)如图1,∵C (0,2),∴OC=2,设M (m ,﹣12m+2),则N (m ,213222m m -++), ∴MN=(21322m m -++2)﹣(﹣12m+2)=﹣12m 2+2m , ∵MN ∥y 轴,当四边形OMNC 是平行四边形时,MN=OC , 即﹣12m 2+2m=2, 解得:m 1=m 2=2,∴S ▱OCMN =OC×2=2×2=4;(3)分两种情况:当y=0时,﹣21322x x ++2=0, 解得:x 1=4,x 2=﹣1,∴A (﹣1,0),易得直线AC 的解析式为:y=2x+2,①当D 在x 轴的下方时,如图2,∵AC ∥BD ,∴设直线BD 的解析式为:y=2x+b ,把B (4,0)代入得:0=2×4+b ,b=﹣8,∴直线BD 的解析式为:y=2x ﹣8,则2x ﹣8=21322x x -++2,解得:x 1=﹣5,x 2=4(舍), ∴D (﹣5,﹣18);②当D 在x 轴的上方时,如图3,作抛物线的对称轴交直线BD 于M ,将BE (图2中的点D )于N ,对称轴是:x=﹣3212()2⨯-=32, ∵∠CAO=∠ABE=∠DAB ,∴M 与N 关于x 轴对称,直线BE 的解析式:y=2x ﹣8,当x=32时,y=﹣5, ∴N (32,﹣5),M (32,5), 直线BM 的解析式为:y=﹣2x+8,﹣2x+8=﹣21322x x ++2,解得:x 1=3,x 2=4(舍), ∴D (3,2),综上所述,点D 的坐标为:(﹣5,﹣18)或(3,2).【点评】本题是对二次函数的综合考查,主要有直线与坐标轴的交点的求解,待定系数法求二次函数和一次函数解析式,两直线平行的关系,对称性等知识,(3)题有难度,采用分类讨论的思想解决问题.3.(1)(1,4);(2)①点M 坐标(﹣12,74)或(﹣32,﹣94);②m 【分析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA=2233m mMGBG m-++=-,tan∠BDE=BEDE=12,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.【解析】解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到9303b cc-++=⎧⎨=⎩,解得23bc,∴抛物线的解析式为y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4);(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=2233m mMGBG m-++=-,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE=BEDE=12,∵∠MBA=∠BDE,∴2233m mm-++-=12,当点M在x轴上方时,2233m mm-++-=12,解得m=﹣12或3(舍弃),∴M(﹣12,74),当点M在x轴下方时,2233m mm---=12,解得m=﹣32或m=3(舍弃),∴点M(﹣32,﹣94),综上所述,满足条件的点M坐标(﹣12,74)或(﹣32,﹣94);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m时,解得m,当﹣m2+2m+3=m﹣1时,解得m∴满足条件的m.【点评】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.4.(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q;(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【解析】(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).把点Q′坐标代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴55-,∴Q55.(Ⅲ)如图,作MK⊥对称轴x=2于K.①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.∵此时点M的横坐标为1,∴y=8,∴M(1,8),N(2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,此时M′的横坐标为3,可得M′(3,8),N′(2,3).【点评】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.5.(1)抛物线的解析式为:y=﹣x2+2x+3;(2)G(1,1),H(12,0),四边形CFHG的周长最小值5(3)M的坐标为:M(0,1117-317-117+317+.【分析】(1)根据抛物线上的两点列方程组求抛物线y=﹣x2+bx+c中的系数b和c,(2)根据题目的提示可以画出简图,然后表示出以点C、G、H、F四点所围成的四边形的周长,在根据表示出的线段就可以求出最短的周长,对应的点G、H的坐标也可得出;(3)根据题意可以分两种情况讨论,点N在点M的上方或者下方,然后设出点M,根据题目给出的条件是否能将P、D、M、N为顶点的四边形组成平行四边形,可以根据平行四边形对边相等来入手.【解析】(1)∵y=﹣x2+bx+c经过(3,0)和(2,3),∴,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3,∴y=﹣(x﹣1)2+4,∴对称轴为x=1.当y=0时,﹣x2+2x+3=0,∴x1=﹣1,x2=3,∴A(﹣1,0).当x=0时,y=3,∴C(0,3)∴CE=2.OC=3如图,在y轴的负半轴上取一点I,使得点F点I关于x轴对称,在x轴上取点H,连接HF、HI、HG、GC、GE、则HF=HI.∵抛物线的对称轴为x=1,∴点C点E关于对称轴x=1对称,∴CG=EG.设直线AE的解析式为y=kx+b,由题意,得,解得:,∴直线AE的解析式为y=x+1.当x=0时,y=1,∴F(0,1),∴OF=1,CF=2.∵点F与点I关于x轴对称,∴I(0,﹣1),∴OI=1,CI=4.在Rt△CIE中,由勾股定理,得EI==2.∵要使四边形CFHG的周长最小,而CF是定值,∴只要使CG+GH+HF最小即可.∵CG+GH+HF=EG+GH+HI,∴只有当EI为一条直线时,EG+GH+HI最小.设EI的解析式为y=k1x+b1,由题意,得,解得:,∴直线EI的解析式为:y=2x﹣1,∵当x=1时,y=1,∴G(1,1).∵当y=0时,x,∴H(,0),∴四边形CFHG的周长最小值=CF+CG+GH=CF+EI=2+2;(3)∵y=﹣x2+2x+3,∴y=﹣(x﹣1)2+4,∴D(1,4)∴直线AE的解析式为y=x+1.∴x=1时,y=2,∴P(1,2),∴PD=2.∵四边形DPMN是平行四边形,∴PD=MN=2.∵点M在AE上,设M(x,x+1),①当点M在线段AE上时,点N点M的上方,则N(x,x+3),∵N点在抛物线上,∴x+3=﹣x2+2x+3,解得:x=0或x=1(舍去)∴M(0,1).②当点M在线段AE或EA的延长线上时,点N在M的下方,则N(x,x﹣1).∵N点在抛物线上,∴x﹣1=﹣x2+2x+3,解得:x=或x=,∴M (,)或(,).∴M 的坐标为:M (0,1)或(,)或(,).【点评】本题是一道比较综合的解析几何题,涉及到了抛物线方程的求解和在动点的情况下对四边形周长的表示进行求最小周长,第三问考察了学生对动点问题的分类讨论能力,灵活运用平行四边形对边相等这个条件入手解题.6.(1)y=﹣13x2﹣23x +5,点A 的坐标是(﹣5,0);(2)点Q 坐标(﹣4,73);(3)以点P ,Q ,M ,N 为顶点的四边形是平行四边形时,点M 的坐标为(﹣2,3)或(﹣23)或(﹣2,3).【分析】(1)把点B 、C 的坐标代入函数解析式求出b 、c 的值,进而求出点A 的坐标即可;(2) 作FG ⊥AC 于G , 设点F 坐标(m ,0),根据sin ∠AMF=FG FM =; (3)分两种情况讨论①当MN 是对角线时;②当MN 为边时;解答即可.【解析】(1)∵抛物线上的点B 的坐标为(3,0),点C 的坐标为(0,5)∴将其代入y═﹣13x 2+bx+c ,得 130{5b c c -++== ,解得b=﹣23,c=5.∴抛物线的解析式为y=﹣13x2﹣23x+5.∴点A的坐标是(﹣5,0).(2)作FG⊥AC于G,设点F坐标(m,0),则AF=m+5,AE=EM=m+6,2m+5),2221(6)EF EM m+++∵sin∠10∴=10 FG FGFM FM==225)21(6)mm+++10整理得到2m2+19m+44=0,∴(m+4)(2m+11)=0,∴m=﹣4或﹣5.5(舍弃),∴点Q坐标(﹣4,73).(3)①当MN是对角线时,点M在y轴的右侧,设点F(m,0),∵直线AC解析式为y=x+5,∴点N(m,m+5),点M(m+1,m+6),∵QN=PM,∴﹣13m2﹣23m+5﹣m﹣5=m+6﹣[﹣13(m+1)2﹣23(m+1)+5],解得m=﹣3+6或﹣3﹣6(舍弃),此时M (﹣,,当MN 是对角线时,点N 在点A 的左侧时,设点F (m ,0).∴m+5﹣(﹣13m 2﹣23m+5)=[﹣13(m+1)2﹣23(m+1)+5]﹣(m+6),解得m=﹣3,此时M (﹣2,3)②当MN 为边时,设点Q (m ,﹣13m 2﹣23m+5)则点P (m+1,﹣13m 2﹣23m+6), ∵NQ=PM ,∴﹣13m 2﹣23m+6=﹣13(m+1)2﹣23(m+1)+5, 解得m=﹣3.∴点M 坐标(﹣2,3),综上所述以点P ,Q ,M ,N 为顶点的四边形是平行四边形时,点M 的坐标为(﹣2,3)或(﹣3+23). 【点评】本题考查了二次函数的综合题、三角函数、勾股定理等知识,解题的关键是会用待定系数法求解二次函数的解析式,会用分类讨论及方程的思想解决问题.7.(1)直线AC 的函数解析式是y=﹣x ﹣1;(2)S △ACE =278;(3)存在4个符合条件的F 点. 【分析】(1)将A 、B 坐标代入y=x 2+bx+c ,利用待定系数法可求得二次函数解析式,设直线AC 的解析式为:y=mx+n ,将A 、C 坐标代入,利用待定系数法即可求得直线AC 的解析式;(2)设点P 的横坐标为x (﹣1≤x≤2),则P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),由S △ACE =12PE•|x C ﹣x A |,而|x C ﹣x A |的值是确定的,因此只要求得PE 的最大值即可;(3)分CG 与AF 平行、CF 与AG 平行,分别画出符合题意的图形,分别进行求解即可得.【解析】(1)将A (﹣1,0),B (3,0)代入y=x 2+bx+c , 得01093b c b c =-+⎧⎨=++⎩,解得:23b c =-⎧⎨=-⎩, ∴y=x 2﹣2x ﹣3,设直线AC 的解析式为:y=mx+n ,将A 、C 坐标代入得032m n m n =-+⎧⎨-=+⎩,解得:11m n =-⎧⎨=-⎩, ∴直线AC 的函数解析式是y=﹣x ﹣1;(2)设点P 的横坐标为x (﹣1≤x≤2),则P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),∵点P在点E的上方,∴PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2=﹣(x﹣12)2+94,∴当x=12时,PE的最大值为94,∴S△ACE=12PE•|x C﹣x A|=12×94×3=278;(3)①如图,连接C与抛物线和y轴的交点,∵C(2,﹣3),G(0,﹣3)∴CG∥X轴,此时AF=CG=2,∴F点的坐标是(﹣3,0);②如图,AF=CG=2,A点的坐标为(﹣1,0),因此F点的坐标为(1,0);③如图,此时C,G两点的纵坐标互为相反数,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(1±73),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为y=﹣x+h,将G 点代入后可得出直线的解析式为y=﹣7.因此直线GF与x轴的交点F的坐标为(7,0);④如图,同③可求出F的坐标为(4,0);综合四种情况可得出,存在4个这样的点F,分别是F1(1,0),F2(﹣3,0),F3(0),F4(4,0).【点评】本题考查了待定系数法求抛物线解析式、一次函数解析式,二次函数的性质,平行四边形的性质等,综合性较强,熟练掌握待定系数法是解题的关键.8.(1)(0,8);(2)y=23x2﹣163x+8,其对称轴为直线x=4;(3)4【分析】(1)由S△ABC=12×AB×OC求出OC的长度,进而确定C点坐标;(2)因为抛物线经过点A(2,0),B(6,0),故可以设二次函数的交点式,即y=a(x﹣2)(x﹣6),再将C点坐标代入即可求得解析式,进一步得到对称轴;(3)设正方形DEFG的边长为m,再根据题中的条件列出正确的D、E坐标,再将E点坐标代入二次函数求出边长m,进一步求得正方形DEFG的面积.【解析】(1)∵A(2,0),B(6,0),∴AB=6﹣2=4.∵S△ABC=16,∴12×4•OC=16,∴OC=8,∴点C的坐标为(0,8);(2)∵抛物线y=ax2+bx+c(a>0)经过点A(2,0),B(6,0),∴可设抛物线的解析式为y=a(x﹣2)(x﹣6),将C(0,8)代入,得8=12a,解得a=23,∴y=23(x﹣2)(x﹣6)=23x2﹣163x+8,故抛物线的解析式为y=23x2﹣163x+8,其对称轴为直线x=4;(3)设正方形DEFG的边长为m,则m>0,∵正方形DEFG内接于抛物线和x轴(边FG在x轴上,点D,E分别在抛物线上),∴D(4﹣12m,﹣m),E(4+12m,﹣m).将E(4+12m,﹣m)代入y=23x2﹣163x+8,得﹣m=23×(4+12m)2﹣163×(4+12m)+8,整理得,m2+6m﹣16=0,解得m1=2,m2=﹣8(不合题意舍去),∴正方形DEFG的边长为2,∴S正方形DEFG=22=4.【点评】本题考查了三角形的面积、二次函数的性质、二次函数图像上点的坐标特征、正方形的性质,注意灵活运用知识点,另外利用面积求出点C坐标、根据二次函数与正方形的性质正确表示D、E的坐标是解答此题的关键.9.(1)(﹣1,0),(4,0);(2)y=﹣12x2+32x+2;(3)点M的坐标分别为:(﹣52,﹣398)或(112,﹣398)或(52,218).【分析】(1)利用x轴上点的坐标特点即可得出结论;(2)判断出△AOB∽△COA,建立方程求出OA,进而得出点A坐标,最后用待定系数法即可的结论;(3)设出点M,N的坐标,分三种情况,利用中点坐标公式建立方程求解即可得出结论.【解析】(1)令y=0,∴nx2-3nx-4n=0,∵n<0,∴x2-2x-4=0,∴x=-1或x=4,∴B(-1,0),C(4,0);(2)∵∠BAC=90°,AO⊥BC,易证△AOB ~△COA , ∴OA BO CO AO =,14OA AO=, ∴OA=2,故A (0,2),则设抛物线的解析式为:y=a(x-x1)( x-x2),把A (0,2)、B (-1,0)、C (4,0)代入上式得,-4a=2, ∴12a =-, ∴()()2113142222y x x x x =-+-=-++, ∴对称轴直线为32x =, ∴设N (32,b ),M (m ,213222m m --+), 以A 、C 、M 、N 为顶点的四边形是平行四边形,∴①当AC 为对角线时,()11304222m ⎛⎫+=+ ⎪⎝⎭, ∴52m =. ∴M (52,218). ②当AM 为对角线时,()11304222m ⎛⎫+=+ ⎪⎝⎭, ∴112m =. ∴M (112,-398). ③当AN 为对角线时,()13104222m ⎛⎫+=+ ⎪⎝⎭, ∴52m =-. ∴M (52-,-398). 即:抛物线上存在这样的点M ,点M 的坐标分别为:M (52,218)或(112,-398)或(52-,-398). 【点评】二次函数综合题,主要考查了待定系数法,x 轴上点的坐标特点,直角三角形的性质,相似三角形的判定和性质,平行四边形的性质,中点坐标公式,求出OA 的是解本题的关键.10.(1)(843t s =- (2)存在,43s 或2s (3)()204s t t =<< 【分析】(1)连接PB ,由点B 在线段PQ 的垂直平分线上,推出BP=BQ ,由此构建方程即可解决问题;(2)分两种情形分别构建方程求解即可;(3)如图4中,连接QC ,作QE ⊥AC 于E ,作QF ⊥BC 于F .则QE=AE ,QF EC =,可得QE+QF=AE+EC=AC=4.根据S=1122QNC PCQ SS CN QF PC QE +=⋅+⋅,计算即可; 【解析】(1)如图1中,连接BP .在Rt ΔACB 中,AC BC 4==,C 90∠=︒,AB 42∴=点B 在线段PQ 的垂直平分线上,BP BQ ∴=,AQ 2t =,CP t =,BQ 422t ∴=,222PB 4t =+,()22422t 16t ∴=+, 解得t 843=-843+,(t 843s ∴=-时,点B 在线段PQ 的垂直平分线上. (2)①如图2中,当PQ QA =时,易知ΔAPQ 是等腰直角三角形,AQP 90∠=︒.则有PA 2AQ =,4t 2?2t ∴-=,解得4t 3=. ②如图3中,当AP PQ =时,易知ΔAPQ 是等腰直角三角形,APQ 90∠=︒.则有:AQ =,∴)4t -,解得t 2=, 综上所述:4t s 3=或2s 时,ΔAPQ 是以PQ 为腰的等腰三角形. (3)如图4中,连接QC ,作QE AC ⊥于E ,作QF BC ⊥于F .则QE AE =,QF EC =,可得QE QF AE EC AC 4+=+==.()ΔQNC ΔPCQ 111S S S ?CN?QF ?PC?QE t QE QF 2t(0t 4)222=+=+=+=<<. 【点评】本题考查了四边形综合题、等腰直角三角形的性质、等腰三角形的判定和性质、线段的垂直平分线的性质定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.11.(1) y =﹣14x 2﹣12x +2; (2)见解析;(3)见解析. 【分析】(1)根据自变量与函数值的对应关系可得A 、B 点坐标,再根据OB =OC 可得C 点坐标,进而根据待定系数法可得抛物线解析式;(2)根据题意易得∠BAO =∠ODC ,然后根据“ASA”证得△AOB ≌△COD ,进而可得OA =OD ,∠OAD =∠ODQ ,再根据∠POQ =∠AOD =90°得到∠AOP =∠DOQ ,因此可证△AOP≌△DOQ,即可证OP=OQ;(3)设点P横坐标为n,则点P坐标为(n,12n+2),点M的坐标为(n,1 4﹣n2﹣12n+2),通过证△OPE≌△OQF(AAS)确定Q,N的坐标,由题意可得PM∥QN,故当PM =QN时,以P、Q、M、N为顶点的四边形为平行四边形,分P在M点上方以及P在M点下方两种情况进行讨论,根据PM=QN求出点P坐标即可.【解析】解:(1)∵OA=4∴点A(﹣4,0)∵直线y=kx+2与坐标轴交于A、B两点,∴点B(0,2),0=﹣4k+2∴OB=2,k=12∴直线解析式y=12x+2∵OC=OB=2∴点C(2,0)∵抛物线y=ax2+bx+c过A、B、C三点.∴20164042ca b ca b c⎧⎪⎨⎪⎩==-+=++,解得:a=﹣14,b=﹣12,c=2∴抛物线解析式:y=﹣14x2﹣12x+2;(2)∵CD⊥AB∴∠BAO+∠DCO=90°又∵∠ODC+∠DCO=90°∴∠BAO=∠ODC且OB=OC,∠AOB=∠COD=90°∴△AOB≌△COD(ASA)∴OA=OD,∠OAB=∠ODC∴∠OAP=∠ODQ∵∠POQ=90°,∠AOD=90°∴∠AOP=∠DOQ且OA=OD,∠OAP=∠ODQ∴△AOP≌△DOQ(ASA)∴OP=OQ(3)设点P横坐标为n,则点P坐标为(n,12n+2),点M的坐标为(n,14﹣n2﹣12n+2)∵QF⊥x轴,∴∠FQO+∠QOF=90°,且∠QOF+∠POE=90°∴∠FQO=∠EOP又∵∠OEP=∠QFO=90°,OP=OQ∴△OPE≌△OQF(AAS)∴OE=QF,PE=OF∴点Q的坐标为(12n+2,﹣n),点N坐标(12n+2,﹣116n2﹣34n).由题意可得PM∥QN当PM=QN时,以P、Q、M、N为顶点的四边形为平行四边形当点P位于点M上方时:如图:∴PM=(12n+2)﹣(14﹣n2﹣12n+2)=14n2+nQN=(﹣n)﹣(﹣116n2﹣34n)=116n2﹣14n∴116n2﹣14n=14n2+n解得:n=0(不合题意舍去),n=﹣20 3∴12×(﹣203)+2=﹣43∴点P坐标为(﹣203,﹣43)当点P位于点M下方时,如图:∴PM =(14﹣n 2﹣12n +2)﹣(12n +2)=﹣14n 2﹣n QN =(﹣n )﹣(﹣116n 2﹣34n )=116n 2﹣14n ∴﹣14n 2﹣n =116n 2﹣14n 解得:n =0(不合题意舍去),n =﹣125, ∴12×(﹣125)+2=45 ∴点P 的坐标为(﹣125,45) 综上所述:点P 坐标(﹣203,﹣43),(﹣125,45) 【点评】本题考查了一次函数的图像与性质、二次函数的图像与性质、待定系数法求解析式、全等三角形的判定与性质、平行四边形的性质等知识点,弄清题意,综合运用所学知识,掌握数形结合的思想是解答的关键.12.(1) y=﹣x²+2x+3;(2)1;(3)见解析.【分析】(1)由点 A ,C 的坐标,利用待定系数法即可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点 B 的坐标,利用配方法可求出顶点 E 的坐标,由点 B ,C 的坐标,利用待定系数法可求出直线 BC 的解析式, 利用一次函数图象上点的坐标特征可得出点 D 的坐标,再利用三角形的面积公式即可求出当点 P 运动到点 E 时△PCD 的面积;(3)设点 M 的坐标为(m ,0),点 N 的坐标为(1,n ),分四边形 CBMN 为平行四边形、四边形 CMNB 为平行四边形及四边形 CMBN 为平行四边形三种情况,利用平行四边形的性质找出关于 m 的一元一次方程,解之即可得出结论.【解析】(1)将 A (﹣1,0),C (0,3)代入 y=ax 2+2x+c ,得:203a c c -+=⎧⎨=⎩,解得:13a c =-⎧⎨=⎩, ∴抛物线的解析式为 y=﹣x 2+2x+3.(2)当 y=0 时,有﹣x 2+2x+3=0, 解得:x 1=﹣1,x 2=3,∴点 B 的坐标为(3,0).∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴点E 的坐标为(1,4).设过B,C 两点的直线解析式为y=kx+b(k≠0),将B(3,0),C(0,3)代入y=kx+b,得:303k bb+=⎧⎨=⎩,解得:13kb=-⎧⎨=⎩,∴直线BC 的解析式为y=﹣x+3.∵点D 是直线与抛物线对称轴的交点,∴点D 的坐标为(1,2),∴DE=2,∴当点P 运动到点E 时,△PCD 的面积=12×2×1=1.(3)设点M 的坐标为(m,0),点N 的坐标为(1,n).分三种情况考虑:①当四边形CBMN 为平行四边形时,有1﹣0=m﹣3,解得:m=4,∴此时点M 的坐标为(4,0);②当四边形CMNB 为平行四边形时,有m﹣1=0﹣3,解得:m=﹣2,∴此时点M 的坐标为(﹣2,0);③当四边形CMBN 为平行四边形时,有0﹣1=m﹣3,解得:m=2,∴此时点M 的坐标为(2,0).综上所述:存在这样的点M 与点N,使以M,N,C,B 为顶点的四边形是平行四边形,点M 的坐标为(4,0)或(﹣2,0)或(2,0).【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、三角形的面积以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用一次函数图象上点的坐标特征及配方法,求出点D,E 的坐标;(3)分四边形CBMN 为平行四边形、四边形CMNB为平行四边形及四边形CMBN 为平行四边形三种情况求出点M 的坐标.13.(1)y=x2﹣2x﹣3;(2)M(﹣35,﹣65);(3)存在以点B,C,Q,P为顶点的四边形是平行四边形,P的坐标为(173)或(17,3)或(2,﹣3).【分析】(1)把A,B,C的坐标代入抛物线解析式求出a,b,c的值即可;(2)由题意得到直线BC与直线AM垂直,求出直线BC解析式,确定出直线AM中k的值,利用待定系数法求出直线AM解析式,联立求出M坐标即可;(3)存在以点B,C,Q,P为顶点的四边形是平行四边形,分两种情况,利用平移规律确定出P的坐标即可.【解析】(1)把A(3,0),B(﹣1,0),C(0,﹣3)代入抛物线解析式得:9303a b ca b cc++=⎧⎪-+=⎨⎪=-⎩,解得:123abc=⎧⎪=-⎨⎪=-⎩,则该抛物线解析式为y=x2﹣2x﹣3;(2)设直线BC解析式为y=kx﹣3,把B(﹣1,0)代入得:﹣k﹣3=0,即k=﹣3,∴直线BC解析式为y=﹣3x﹣3,∴直线AM解析式为y=13x+m,把A(3,0)代入得:1+m=0,即m=﹣1,∴直线AM解析式为y=13x﹣1,联立得:33113y xy x=--⎧⎪⎨=-⎪⎩,解得:3565xy⎧=-⎪⎪⎨⎪=-⎪⎩,则M(﹣35,﹣65);(3)存在以点B,C,Q,P为顶点的四边形是平行四边形,分两种情况考虑:设Q(x,0),P(m,m2﹣2m﹣3),当四边形BCQP为平行四边形时,由B(﹣1,0),C(0,﹣3),根据平移规律得:﹣1+x=0+m,0+0=﹣3+m2﹣2m﹣3,解得:m=1±7x=2±7当7m2﹣2m﹣7﹣2﹣7﹣3=3,即P(73);。