(修改)第六章平面直角坐标系

合集下载

第六章 平面直角坐标系 (综合复习教案)教案20

第六章 平面直角坐标系 (综合复习教案)教案20

学生画平面直角坐 标系,通过具体数 的坐标,探索对称 点的坐标的特点。
△让学生探究关 于坐标轴对称和 关于原点对称的 点的坐标之间的 关系, 渗透数形结 合的思想
巩固练习 24 分钟


分 课 时
第 二 课 时
学 活 动


△设计意图
环 节 与时间
教Leabharlann 师学 生 活 动◇资源准备 □评价○反思
回 顾 基 础 二、坐标方法的简单应用 (一) 、表示地理位置: (注意点) 知识 1、建立坐标系,选择一个适当的参照点 20 分钟 为原点, 确定 x 轴、 y 轴的正方向( . 说 清楚以什么为原点,什么所在的方向 为 x 轴的正方向,什么所在的方向为 y 轴的正方向). 学生回忆 2、根据具体问题确定适当的比例尺,在 坐标轴上标出单位长度. (比例尺不能漏, 单位长度不要忘记). 3、在坐标平面内画出这些点,写出各点 的坐标和各个点的名称. (二) 、用坐标表示平移 1、图形的平移:在平面内,将一个图形 沿某个方向移动一定距离, 这种图形的运 动称为平移. 2、图形的移动引起坐标变化的规律: ( 1) 、将点(x,y)向右平移 a 个单位长 度,得到的对应点的坐标是: (x+a,y) 学生根据教师出示 ( 2) 、将点(x,y)向左平移 a 个单位长 的问题进行回忆 度,得到的对应点的坐标是: (x-a,y) ( 3) 、将点(x,y)向上平移 b 个单位长 度,得到的对应点的坐标是: (x,y+b) ( 4) 、将点(x,y)向下平移 b 个单位长 度, 得到的对应点的坐标是: (x, y-b) 3、点的变化引起图形移动的规律: ( 1) 、将点(x,y)的横坐标加上一个正 数 a,纵坐标不变,即(x+a,y) , 则其新图形就是把原图形向右平移 a 个单位. ( 2) 、将点(x,y)的横坐标减去一个正 数 a,纵坐标不变,即(x-a,y) , 则其新图形就是把原图形向左平移 a 个单位.

方法技巧篇6 第六章 平面直角坐标系

方法技巧篇6 第六章 平面直角坐标系

方法技巧篇六第六章 平面直角坐标系A .考点精析、重点突破、学法点拨一、点的坐标“四大特征”1.各象限内点的坐标特征例l ),(b a P 在第四象限,则),(a b Q -在第____象限.2.坐标轴上的点的坐标特征坐标轴上的点不属于任何象限.①x 轴上的点的纵坐标为O ,所以x 轴上的点的坐标可表示为(x ,O);若点在轴的正半轴上,则x>0;若点在x 轴的负半轴上,则x<0.②y 轴上的点的横坐标为O ,所以y 轴上的点的坐标可表示为(O ,y);若点在y 的正半轴上,则y>0;若点在y 轴的负半轴上,则y<0.③坐标原点的坐标为(O ,0).例2 已知平面直角坐标系中,横轴(x 轴)上的点A 到纵轴(y 轴)的距离为2,则点A 的坐标为________.3.平行于坐标轴的直线上点的坐标特征平行于x 轴的直线上的点的纵坐标相同,横坐标不同,记为直线y=b ;平行于轴y 的直线上的点的横坐标相同,纵坐标不同,记为直线x=a .例3 已知线段AB 平行于x 轴,若点A 的坐标为(-2,3),线段AB 的长为5,求点B 的坐标.4.象限角的平分线上的点的坐标特征第一、三象限角的平分线上的点的横坐标与纵坐标相等;第二、四象限角的平分线上的点的横坐标与纵坐标互为相反数.例4 已知点)310,52(a a P -+位于两坐标轴所成角的平分线上,则点P 坐标为________.二、口诀帮你巧求对称点一般地,点P 与点P l 关于x 轴(横轴)对称⎩⎨⎧⇔.__________,__________纵坐标横坐标 点P 与点P 2关于y 轴(纵轴)对称⎩⎨⎧⇔.__________,__________纵坐标横坐标 点P 与点P 3关于原点对称⎩⎨⎧⇔.__________,__________纵坐标横坐标 可用口诀记忆:关于谁轴对称谁不变,关于原点对称都要变.B .中考常考题型与解题方法技巧一、求点的坐标1、根据坐标的定义例1 如图所示,在平面直角坐标系中,点E的坐标是________.例2 如图是益阳市行政区域图,益阳市区所在地用坐标表示为(1,O),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.例3 如图,若E 点坐标为(-2,1),点F 坐标为(1,-1),则点G 的坐标为______.2、根据各象限内点的坐标特征例4 点A 在第二象限,且到x 轴的距离为2,到y 轴的距离为3,则其坐标为( )A .(2,-3)B .(-3,2)C .(-2,3) D.(3,2)例5 第三象限内的点P(x ,y)满足9,5||2==y x ,则点P 的坐标是______.3、根据对称点的坐标特征例6 在平面直角坐标系中,点A(2,5)与点B 关于y 轴对称,则点B 的坐标是( )A .(-5,-2)B .(-2,-5)C .(-2,5)D .(2,-5)例7 点P(l ,2)关于x 轴的对称点P l 的坐标为______.4、根据平移前后点的坐标特征例8 在平面直角坐标系中,以点A(4,3),B(O ,O),C(8,O)为顶点的三角形向上平移3个单位,得到△A 1B 1C 1(点A 1,B 1,C l 分别为点A ,B ,C 的对应点),然后以点C l 为中心将△A 1B 1C 1顺时针旋转90°,得到△A 2B 2C 2(点A 2,B 2分别是点A 1,B 1的对应点),则点A 2的坐标是________. 5、从特殊到一般寻找点的坐标特征例9 如图在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A(1,3),A 1(2,3),A 2(4,3),A 3(8,3), B(2,0),B l (4,0), B 2(8,O),B 3(16,O).(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律将△OA 3B 3变换成△OA 4B 4,则A 4的坐标是______,B 4的坐标是______;(2)若按(1)题中找到的规律,将△OAB 进行了n 次变换,得到△OA n B n ,推测A n 的坐标是______,B n 的坐标是______.二、确定点的位置1、根据坐标的定义例10 在平面直角坐标系中,点P 的坐标为(6,-3),则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限2、根据各象限内点的坐标特征例11 对任意实数x ,点)2,(2x x x P -一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限例12 已知点P(x ,y )在函数x xy -+=21的图象上,那么点P 应在平面直角坐标系中的( )A.第一象限 B .第二象限 C .第三象限 D .第四象限3、根据坐标轴上点的坐标特征例13 若点A(-2,n)在x 轴上,则点B(n-l ,n+l)在( )A .第一象限B .第二象限C .第三象限D .第四象限4、根据平移前后点的坐标特征例14 在平面直角坐标系中,已知点A(2,3),若将点A 先向左平移3个单位,再向下平移4个单位,则此时点A 的对应点A ' 在平面直角坐标系中的位置是在( )A 第一象限B .第二象限C .第三象限D .第四象限例15 将点P 向左平移2个单位,再向上平移1个单位得到点P ' (-l ,3),则点P 的坐标是( )A .(1,2)B .(2,1)C .(-1,2)D .(1,-2)三、与点的坐标相关的其它问题1、求字母的值例16 如果点P(m ,1-2m )在第四象限,那么m 的取值范围是( )A .210<<mB .021<<-m C .0<m D .21>m 例17 若点A(-3,a )与点B(b ,5)关于x 轴对称,则a +b =____.2、判断位置关系例18 将三角形ABC 的三个顶点的纵坐标都乘-1,横坐标保持不变,则所得的图形与原图形的关系是( )A .关于x 轴对称B .关于y 轴对称C .由原图形沿y 轴向上平移1个单位所得D .由原图形沿y 轴向下平移1个单位所得四、解答题举例例19 如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A(O ,1),B(-l ,1),C (1,3).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点C l 的坐标;(2)画出△ABC 绕原点0顺时针方向旋转90°后得到的△A 2B 2C 2,并写出点C 2的坐标;(3)将△A 2B 2 C 2平移得到△A 3B 3C 3,使点A 2的对应点是A 3,点B 2的对应点是B 3,点C 2的对应点是C 3(4,-1),在坐标系中画出△A 3B 3C 3,并写出点A 3,B 3的坐标.例20 如图,已知△ABC 的三个顶点A ,B ,C 的坐标分别为(-2,3),(-6,0),(-1,0).(1)请直接写出点A 关于y 轴对称的点的坐标;(2)将△ABC 绕坐标原点0逆时针旋转90°,画出图形,直接写出点B 的对应点的坐标;(3)请直接写出以A ,B ,C 为顶点的平行四边形的第四个顶点D 的坐标.。

第六章平面直角坐标系整章讲学稿

第六章平面直角坐标系整章讲学稿

第六章 平面直角坐标系课题:6.1.1 有序数对【学习目标】理解有序数对的意义,了解平面上确定点的常用方法. 【学习过程】 一、学前准备在建国60周年的庆典活动中,天安门广场上出现了壮丽的背景图案,你知道它是怎样组成的吗?如果知道就与同学们分享一下吧.二、探索思考 探究:请同学们仔细阅读课本P39~40页,假设我们约定“列数在前,排数在后”,请你在图中标出下列座位的同学:(1,5),(2,4),(4,2),(3,3),(5,6). 通过观察,你有什么发现?结合课本请归纳出“有序数对”的概念.有序数对:用含有 的词表示一个确定的位置,其中各个数表示 的含义,我们把这种有 的 个数a 与b 组成的数对,叫做有序数对,记作 。

利用有序数对,可以很准确地表示出一个位置。

练习:1.如图1所示,一方队正沿箭头所指的方向前进, A 的位置为三列四行,表示为(3,4),那么B 的位置是 ( ) A.(4,5) B.(5,4) C.(4,2) D.(4,3)2.如图1所示,B 左侧第二个人的位置是 ( ) A.(2,5) B.(5,2) C.(2,2) D.(5,5)3.如图1所示,如果队伍向北前进,那么A(3,4)西侧第二个人的位置是 ( )A.(4,1)B.(1,4)C.(1,3)D.(3,1) 4.如图1所示,(4,3)表示的位置是 ( ) A.A B.B C.C D.D 5.小张看电影,买了一张8排10号的电影票,用有序实数对可表示为 ,如果变换有序数对的位置,所表示的位置和原来的位置 (填“相同”或“不同”).6.如图所示,A 的位置为(2,6),小明从A 出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A 出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?三、当堂反馈1.如图2所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面, 那么应该在字母2.如图3所示,如果点A 的位置为(3,2),那么点B 的位置为______, 点C 的位置为______,点D和点E 的位置分别为______,_______.3.如图4所示,如果点A 的位置为(1,2),那么点B 的位置为_______,点C 的位置为_______.4.如图所示,请说出图中物体的位置.5.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法? 请分别写出这些路线.(街)(巷)2354114532四、学习反思本节课你有哪些收获?2365417DC BA三行六行六列五列四列三列二列一列(4)图4【学习目标】1认识平面直角坐标系,了解点的坐标的意义;2会用坐标表示点,能画出点的坐标位置.【学习过程】 一、学前准备上学期,我们学习了数轴,知道数轴是规定了 、 和 的直线.在如图,你知道点A 和点B标.二、探索思考探索一:请仔细阅读课本P41~42页,完成下列填空:1.平面直角坐标系:平面内两条互相 、 重合的 ,组成平面直角坐标系.水平的数轴称为 或 ,习惯上取向 为正方向; 竖直的数轴称为 或 ,习惯上取向 为方正向。

人教七年级数学下第6章:平面直角坐标系.doc

人教七年级数学下第6章:平面直角坐标系.doc

初中数学试卷 鼎尚图文**整理制作第6章:平面直角坐标系知识点整合:本章的主要内容包括平面直角坐标系的有关概念和点与坐标(均为整数)的对应关系,以及用坐标表示地理位置和用坐标表示平移等内容.知识结构如下:正确理解和使用概念,是学好数学的前提,试一试你对本章的基本概念掌握了没有。

1、像“9排7号”,“第一列第5行”这样含有两个数的词来表示一个确定的位置,其中有两个数各自表示不同的含义,例如前面的表示“排数”,后面的表示“号数”,我们把这种________的两个数a 和b 组成的数对,叫做__________,记为___________。

2、指出下列各点所处的象限或坐标轴。

点33A (,)在__________;点B (-3,-1)在__________;点C (0,-5)在___________; 点D (3,0)在__________;点E (0,0)在__________;3、建立平面直角坐标系时,通常以_______为x 轴,以_______为y 轴,建立平面直角坐标系。

4、利用平面直角坐标系绘制区域内一些地点分布情况平面图的步骤如下:(1)建立________,选择一个__________为原点,确立x 轴、y 轴的_________方向;(2)根据具体问题确定适当的________,在坐标轴上标出_________;(3)在坐标平面内画出这些点,写出各点的________和各个地点的名称。

5、在平面直角坐标系中,将点P (a ,b )向下(或向上)平移m 个单位长度,可以得到对应点P 1(_____,______)或P 1(_____,______);将点P (a ,b )向左(或向右)平移n 个单位长度,可以得到对应点P 2(_____,______)或P 2(_____,______);6、在平面直角坐标系内,如果把一个图形各个点的___坐标都_______(或________)一个正数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把一个图形各个点的___坐标都______(或________)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度。

第六章 “平面直角坐标系”简介

第六章 “平面直角坐标系”简介

第六章“平面直角坐标系”简介1. 概述在数学中,平面直角坐标系是研究平面几何的重要工具之一。

它由两条互相垂直的直线所构成,分别称为x轴和y轴,它们的交点被定义为原点O。

平面上的点可以用有序实数对(x, y)来表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。

本章将介绍平面直角坐标系的基本概念和性质,以及与其相关的常见概念和术语。

2. 坐标轴和坐标2.1 坐标轴平面直角坐标系由x轴和y轴组成,它们分别是垂直于水平方向和垂直于竖直方向的直线。

x轴和y轴的交点为原点O,通常将原点作为坐标系的起点。

2.2 坐标平面上的点可以用坐标表示,坐标形如(x, y)。

其中,x表示点在x轴上的位置,y表示点在y轴上的位置。

x轴和y轴将平面分成四个象限,分别是第一象限、第二象限、第三象限和第四象限。

每个象限都有特定的坐标范围。

3. 坐标系的性质3.1 坐标轴的正向在平面直角坐标系中,x轴的正向是由原点O指向正半轴,y轴的正向是由原点O指向正半轴。

根据右手定则,可以确定x轴和y轴的正向。

3.2 象限平面直角坐标系将平面划分为四个象限,分别是第一象限、第二象限、第三象限和第四象限。

第一象限的x坐标和y坐标都是正数,第二象限的x坐标是负数,y坐标是正数,第三象限的x坐标和y坐标都是负数,第四象限的x坐标是正数,y坐标是负数。

3.3 单位长度在平面直角坐标系中,x轴和y轴的单位长度相等。

它们的单位长度可以根据需要进行调整,常用的单位长度有厘米、米等。

4. 常见概念和术语4.1 点点是平面上最基本的几何元素,用坐标表示。

一个点在平面上的位置可以通过其坐标(x, y)唯一确定。

4.2 直线直线是由无数个点组成的,它们在平面上的分布满足某种规律。

直线可以用方程或参数方程等形式表示。

4.3 斜率斜率是直线的重要属性,表示直线的倾斜程度。

斜率的计算方法为直线上两点之间的纵坐标差与横坐标差的比值。

4.4 距离平面上两点之间的距离可以用勾股定理计算。

七年级数学下 第六章(平面直角坐标系)知识脉络归纳整理含答案

七年级数学下 第六章(平面直角坐标系)知识脉络归纳整理含答案

第六章平面直角坐标系归纳梳理重点题型总结p76题型一平面直角坐标系的概念问题1、已知Q(2x+4,xº﹣1)在y轴上,则点Q的坐标为()。

A、(0,4)B、(4,0)C、(0,3)D、(3,0)2、平面直角坐标系中,若点M即在x轴的下方,又在y轴的右侧,且距离x轴与y轴分别为3个和5个单位长度,则M的坐标为()A、(3,5)B、(5,3)C、(﹣3,5)D、(3,﹣5)题型二点的坐标与点的位置的确定3、如图所示,是某运动会体操比赛场地示意图,请你建立适当的直角坐标系,写出各运动场底地的坐标。

4、某地区立体两条交通干线L1与L2互相垂直,并交于O,L1为南北方向,L2为东西方向。

现以L2为x轴,L1为y轴,取100km为1个单位长度建立直角坐标系,根据地震监测部门预报,该地区最近将有一次地震,震中位置在P(1,﹣2),影响范围半径为300km.(1)根据题意画出直角坐标系,并标出震中位置。

(2)在平面直角坐标系内画出地震影响范围,并判断下列城市是否受到地震影响。

城市:O(0,0),A(﹣3,0) B(0,1) C(﹣1.5,﹣4) D(0,﹣4) E(2,﹣4)题型三平面直角坐标系在实际问题中的应用(P79)5、已知点A(0,0),B(3,0),点C在y轴上,且三角形ABC的面积是5,求点C 的坐标。

6、如图所示的【,平面直角坐标系中,四边形ABCD各定点的坐标分别为A(0,0)B(9,0)C,(7,5)D,(2,7),试确定四边形的面积。

题型四图形的平移变换及点的坐标变化(P80)7、三角形A1B1C1是经过三角形ABC平移得到的,三角形ABC中的任意一点P(x0,y0)经过平移后得到的对应点P1的坐标为(x0+3,y0+1),已知三角形ABC三个顶点的坐标分别是A(﹣1,1),B(﹣2,﹣2),C(0,0)则三角形A1B1C1各顶点的坐标分别为。

8,如图所示(图中的每个小正方形的边长为一个长度单位),四边形A1B1C1D1是四边形ABCD经过怎样平移得到的?对应点的坐标怎样变化?题型五探究创新问题9、温度的变化是人们经常谈论的问题,请你根据下图所示,讨论某地某天温度变化的情况:思想方法归纳(1)数形结合思想平面直角坐标系的建立,使平面内的点与有序数对之间建立起一一对应关系,是实现数与形变化的结合,由点找坐标,由坐标确定点的位置,通过坐标变化呈现图形变换,也促进了数形之间互相转化,数与形结合,直观形象,为分析问题和解决问题提供全新方法,成为历年中考命题的热点。

第六章《平面直角坐标系》全章精品课件

第六章《平面直角坐标系》全章精品课件

中心广场
东门 游乐园
x
南门
练习1:春天到了,初一(2)班组织同学到人民公园春游。张明、王 丽二位同学和其他同学走散了。同学们已经到了中心广场,而他们仍 在牡丹园赏花,他们对着景区示意图在电话中向老师告诉了他们的位 置。 张明:“我这里的坐标是(300,300)”。 王丽:“我这里的坐标是(200,300)”。
需要更完整的资源请到 新世纪教 育网 -
小强家
选取学校 所在位置 为原点, 并以正东、 正北方向 为X轴、 y轴正方 向建立直 角坐标系, 并取比例 尺为 1:10000
(-150,350)
y
比例尺:1:10000

小刚家
(150,200)
学校
50
X
小敏家
需要更完整的资源请到 新世纪教 育网 -
.
自 来 水 公 司

(-4,-1)
(-1,-3)
. .
O
.
大桥
派出所
(4,-2) 土管所
(1,-2)
.
x
需要更完整的资源请到 新世纪教 蓬街镇中学 育网 -
找 家
根据以下条件画一幅示意图,标出学校和小刚 家、小强家、小敏家的位置。 小刚家:出校门向东走150米,再向北走200米。 参照点 小强家:出校门向西走200 米,再向北走350米, 最后向东走50米 小敏家:出校门向南走100米,再向东走300米, 最后向南走125米。
需要更完整的资源请到 新世纪教 育网 -
(1,3)
(3,3) 和同学比 较一下,大 家建立的 直角坐标 系的位置 是一样的 吗?
(3,-3)
4


-4 思考题 -2

《平面直角坐标系》平面直角坐标系知识点及题型总结

《平面直角坐标系》平面直角坐标系知识点及题型总结

《平⾯直⾓坐标系》平⾯直⾓坐标系知识点及题型总结第六章平⾯直⾓坐标系知识点及题型总结⼀、主要知识点(⼀)有序数对:有顺序的两个数a与b组成的数对,记作(a ,b);注意:a、b的先后顺序对位置的影响。

(⼆)平⾯直⾓坐标系1、历史:法国数学家笛卡⼉最早引⼊坐标系,⽤代数⽅法研究⼏何图形;2、构成坐标系的各种名称;3、各种特殊点的坐标特点。

(三)坐标⽅法的简单应⽤1、⽤坐标表⽰地理位置;2、⽤坐标表⽰平移。

⼆、平⾏于坐标轴的直线的点的坐标特点:平⾏于x轴(或横轴)的直线上的点的纵坐标相同;平⾏于y轴(或纵轴)的直线上的点的横坐标相同。

三、各象限的⾓平分线上的点的坐标特点:第⼀、三象限⾓平分线上的点的横纵坐标相同;第⼆、四象限⾓平分线上的点的横纵坐标相反。

四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数五、特殊位置点的特殊坐标:六、利⽤平⾯直⾓坐标系绘制区域内⼀些点分布情况平⾯图过程如下:建⽴坐标系,选择⼀个适当的参照点为原点,确定x轴、y轴的正⽅向;根据具体问题确定适当的⽐例尺,在坐标轴上标出单位长度;在坐标平⾯内画出这些点,写出各点的坐标和各个地点的名称。

七、⽤坐标表⽰平移:见下图知识⼀、坐标系的理解例1、平⾯内点的坐标是()A ⼀个点B ⼀个图形C ⼀个数D ⼀个有序数对1.在平⾯内要确定⼀个点的位置,⼀般需要________个数据;在空间内要确定⼀个点的位置,⼀般需要________个数据.2、在平⾯直⾓坐标系内,下列说法错误的是()A 原点O 不在任何象限内B 原点O 的坐标是0C 原点O 既在X 轴上也在Y 轴上D 原点O 在坐标平⾯内知识⼆、已知坐标系中特殊位置上的点,求点的坐标例1 点P 在x 轴上对应的实数是-3,则点P 的坐标是,若点Q 在y 轴上对应的实数是31,则点Q 的坐标是,例2 点P (a-1,2a-9)在x 轴负半轴上,则P 点坐标是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:6.1.1 有序数对【学习目标】1.知道有序数对的意义,感受有序数对在确定点的位置中的作用;2.会用有序数对表示实际生活中的物体的位置。

【活动过程】活动一认识有序数对1.自学课本P39-40页,回答下列问题:(1) 进入电影院看电影你是怎么找到自己的座位的?(2) 如果把座位表中的“3排5列”简记作(3,5),你能确定自己的座位和其他同学的座位的记法吗?(3) 把(3,5)中的两个数据的位置调换一下,是否还指原来的位置呢?你发现了什么?(4)什么叫有序数对;2. 小组内交流用有序数对表示点要注意哪些问题?活动二感受平面内的点与有序数对之间的一一对应关系1. 完成课本P40页的练习,然后小组交流;2. 下表中无序排列的汉字,小明拿到一张写有密码的字条,你能帮忙破译吗?(约定:字条上面括号中的两个数,前面的表示所在列,后面的表示所在行。

内容是:完成后展示你的成果。

3. 如图,如马所处的位置表示为(2,3). (1) 你能表示出象的位置吗?(2) 写出马的下一步可以到达的位置。

(小组内讨论,并展示结果)课堂小结:1.为什么要用有序数对表示点的位置,没有顺序可以吗?2.小组交流学习体会或收获.【检测反馈】1. 将电影票上的“7排6座”记作(7,6),那么 (1)10排8座可以表示为_____________; (2)(12,4)表示的意义是___________________.2.用数字1.2.3可以组成_________对有序数对。

3.如图所示,是某城市植物园周围街巷的示意图,A 点表示经1路与纬2•路的十字路口,B 点表示经3路与纬5路的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A 到B 的一条路径,那么你能用同样的方式写出由A 到B •的尽可能近的其他几条路径吗?课题:6.1.2 平面直角坐标系(第一课时)【学习目标】1. 认识平面直角坐标系,并能正确画出平面直角坐标系;2. 感知平面直角坐标系内点的坐标的意义,会根据坐标确定点和由点求得坐标。

【活动过程】活动一认识平面直角坐标系自学课本P40-42页,回答下列问题:1. 什么叫做数轴?数轴有哪几个要素?2.写出数轴上各点的坐标32145-3-2-163.结合上节所学内容思考如何确定平面内某点的位置?(小组内讨论并展示)4.什么是平面直角坐标系?5.如何建立平面直角坐标系6.画出一个平面直角坐标系7.小组内交流,并讨论画平面直角坐标系要注意哪些问题,小组代表在全班展示。

活动二感知平面直角坐标系内点的坐标1.平面直角坐标系内点的坐标的意义是什么?2. 写出图中A,B,C,D,E,F,O各点的坐标。

E (-1.5,0),F (0,-2.5)。

小组交流,全班展示。

课堂小结:通过本课学习你有哪些收获?全班交流。

【检测反馈】1.在平面直角坐标系中,点(12)P ,的位置在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.若点A (m+2,m-5)在y 轴上,则点A 的坐标为___________.3.在长方形ABCD 中,A 点.B点.C点坐标分别是(1,2),(-2,2),(-2,-2)则D点坐标为__________.4.写出图中A.B.C.D 点的坐标。

3. 在下面的平面直角坐标系中,描出下列各点: A (4,3),B (-2,3), C (-4,l ),D (2,一2),课题:课题:6.1.2 平面直角坐标系(第二课时)【学习目标】1.能灵活地正确建立平面直角坐标系;2..通过探索认识平面直角坐标系各象限内点的坐标的规律。

【活动过程】活动一探索平面直角坐标系各象限内点的坐标的规律1.自学课本P42页,画一个平面直角坐标系并了解平面直角坐标系各象限的分布;2.在四个象限内各取一个点,探索一下坐标的规律;若x>0,y>0 则点P(x , y)在;若x>0,y>0 则点P(x , y)在若x>0,y>0 则点P(x , y)在;若x>0,y>0 则点P(x , y)在(组内交流讨论,全班展示)3. 思考:有没有不属于任何一个象限内的点;结论:(组内讨论交流全班展示结论)4. 原点O的坐标是多少?x轴和y轴上的点有何规律?若x=0,y=0 则点P(x , y)在若x=0,y≠0 则点P(x , y)在;若x≠0,y=0 则点P(x , y)在结论:(组内讨论交流,并全班展示结论)活动二体验用平面直角坐标系各象限内点的坐标的规律的运用1.完成课本P43页探究(小组内交流)2.完成课本P44-45页第2.4.5.6.8题(完成后交小组长批阅,有错误的同学请小组其他同学帮助找出错误原因)【检测反馈】1.在平面直角坐标系中,点(-1,m2+1)一定在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限2. 点P在第三象限,点P到x轴的距离是5,到y轴的距离是3,则P点的坐标是().(A)(3,-5)(B)(-5,-3)(C)(-3,-5)(D)(-3,5)3. 已知点(0,0,),(0,-2),(-3,0),(0,4),(-3,1),其中在x轴上的点的个数是().(A)0 (B)1 (C)2 (D)3)在第____象限.4.如果点A(a,b)在第二象限,则点B(ab,a b5.已知线段AB在x轴上,A点的坐标为(3,0),并且AB=5,则B点的坐标为___________.6.如图是传说中的一个藏宝岛图,藏宝人生前用直角坐标系的方法画了这幅图,现今的寻宝人没有原来的地图,但知道在该图上有两块大石头A(2,1),B(8,2),而藏宝地的坐标是(6,6),试设法在地图上找到藏宝地点.课题:6.2.1 用坐标表示地理位置【学习目标】1. 感知用平面直角坐标系来表示地理位置的意义;2. 学会用平面直角坐标系表示实际生活中的一些地理位置。

【活动过程】活动一感知用平面直角坐标系来表示地理位置1.自学课本P49-50页用平面直角坐标系来表示地理位置的方法:(小组内交流)2.根据以下条件画一幅示意图,指出学校和小刚家.小强家.小敏家的位置.小刚家:出校门向东走150米,再向北走200米.小强家:出校门向西走200米,再向北走350米,最后再向东走50米.小敏家:出校门向南走100米,再向东走300米,最后向南走75米.⑴如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴.y轴?如何选比例尺来绘制区域内地点分布情况平面图?(组内讨论交流)⑵选取学校所在位置为原点,并以正东.正北方向为x轴.y轴的正方向有什么优点?3.通过以上学习概括一下利用平面直角坐标系绘制区域内一些地点的分布情况平面图的过程是什么?有哪些注意事项(小组内讨论并展示)活动二 会用平面直角坐标系表示实际生活中的地理位置。

1.春天到了,初一(4)班组织同学到人民公园春游,张明.王丽.李华三位同学和其他同学走散了,同学们已经到了中心广场,而他们仍在牡丹园赏花,他们对着景区示意图在电话中向老师告诉了他们的位置. 张明:“我这里的坐标是(300,300)”. 王丽:“我这里的坐标是(200,300)”. 李华:“我在你们东北方向约420米处”.实际上,他们所说的位置都是正确的.你知道张明和王丽同学是如何在景区示意图上建立的坐标系吗?你理解李华同学所说的“东北方向约420米处”吗?用他们的方法,你能描述公园内其他景点的位置吗?让学生分别画出直角坐标系,标出其他景点的位置.(小组内交流后代表在全班展示思考的过程) 【检测反馈】1.如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A .点AB .点BC .点CD .点D2.如图是某地行政区域图,图中A 地用坐标表示为(1,0),B 地用坐标表示为(-3,-1),那么C 地用坐标表示为 .3.课本P53页 习题6.2 复习巩固 1.2.课题:6.2.2 用坐标表示平移(1)【学习目标】1. 感知坐标变化与图形平移;2. 能利用点的平移规律将平面图形进行平移;3. 会根据图形上点的坐标的变化,来判定图形的移动过程.【活动方案】活动一感知感知坐标变化与图形平移1.自学课本P51-52页,完成下面探究:(1)将点A(-2,-3)向右平移5个单位长度得到点B,在图上标出这个点,并写出它的坐标;(2)将点B向上平移5个单位长度得到点C,在图上标出这个点,并写出它的坐标;(3)将点C向右平移4个单位长度得到点D,在图上标出这个点,并写出它的坐标;(4)将点D向下平移4个单位长度得到点E,在图上标出这个点,并写出它的坐标;2.通过刚才的探究你发现了什么?(概括并组内交流)3.再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?活动二感知坐标变化与图形平移之间的规律1.如图⑴,三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).⑴将三角形ABC三个顶点的横坐标后减去6,纵坐标不变,分别得到点A1.B1.C1,依次连接A1.B1.C1各点,所得三角形A1B1C1与三角形ABC的大小.形状和位置上有什么关系?⑵将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2.B2.C2,依次连接A2.B2.C2各点,所得三角形A2B2C2与三角形ABC的大小.形状和位置上有什么关系?2.通过刚才的探究你又发现了什么?(归纳.讨论.展示)【检测反馈】1.将点A将点A(-2,3)向右平移4个单位长度,再将它向下平移5个单位长度得到的点B的坐标为____________;2.将线段AB的两个端点A(2,1),B(3,-1)向左平移3个单位长度,那么平移后两个端点坐标分别是________________________;3.完成课本P54页3,4.课题:6.2.2 用坐标表示平移(2)【学习目标】1. 能熟练利用点的平移规律将平面图形进行平移;3. 会根据图形上点的坐标的变化,正确判定图形的移动过程.【活动方案】活动一利用点的平移规律将平面图形进行平移;1独立完成下列题目1.△ABC中,A(-4,-2),B(-1,-3),C(-2,-1),将△ABC先向右平移4个单位长度,再向上平移3个单位长度,则对应点A1,B1,C1的坐标分别为________,________,________.2,。

已知点A(-1,0),B(-2,-3),C(0,2),D(3,1),则线段AB和线段CD的大小是()A.AB=CD B.AB=32 CDC.AB=23CD D.AB=2CD小组交流解题的过程,并交流如何利用点的平移规律将平面图形进行平移活动二进一步感知坐标变化与图形平移之间的规律.如图⑴,三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).⑴将三角形ABC三个顶点的横坐标后减去6,纵坐标不变,分别得到点A1.B1.C1,依次连接A1.B1.C1各点,所得三角形A1B1C1与三角形ABC的大小.形状和位置上有什么关系?⑵将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2.B2.C2,依次连接A2.B2.C2各点,所得三角形A2B2C2小组交流解题的过程。

相关文档
最新文档