【震撼推出!通俗易懂!】_浅谈二面角的求法

合集下载

求二面角的五种方法

求二面角的五种方法

五法求二面角从全国19份高考试卷中我们知道,立体几何题中命有求二面角大小的试题共有12份,并都为分值是12分的大题,足以说明这一知识点在高考中的位置,据有关专家分析,它仍然是2010年高考的重点,因此,我们每位考生必须注意,学会其解题方法,掌握其解题技巧,是十分重要的。

一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG FG366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-练习1(2008山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角E —AF —C 的余弦值. 分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。

二面角的几种求法(很好)

二面角的几种求法(很好)

二面角大小的求法二面角的类型和求法可用框图展现如下:一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;例、如图,已知二面角α-а-β等于120°,PA⊥α,A∈α,PB⊥β,B∈β. 求∠APB的大小.PA=AB=a,求二面角B-PC-D的大小。

二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。

例、(2003北京春)如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.ABCDA 1B 1C 1D 1EO例、ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°。

求(1)二面角P—BC—A的大小;(2)二面角C—PB—A的大小例、(2006年陕西试题)如图4,平面α⊥平面β,α∩β=l,A∈α,B∈β,点A在直线l上的射影为A1,点B在l的射影为B1,已知AB=2,AA1=1,BB1=2,求:二面角A1-AB-B1的大小.图4 B1AαβA1B LE F三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.四、射影法:(面积法)利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。

数学二面角的求法总结

数学二面角的求法总结

数学二面角的求法总结数学二面角是指在三维空间中,两个平面的夹角。

它是一个重要的几何概念,在计算机图形学、物理学、化学等领域都有广泛的应用。

本文将总结数学二面角的求法,帮助读者更好地理解和应用这一概念。

一、定义数学二面角是指在三维空间中,两个平面的夹角。

具体来说,设平面P1和平面P2相交于一条直线L,将P1和P2分别沿着L旋转,直到它们重合为止。

此时,P1和P2的夹角就是它们的二面角。

二、求法1. 余弦定理法设P1和P2的法向量分别为n1和n2,它们的夹角为θ,则有:cosθ =(n1·n2) / (|n1|·|n2|)其中,·表示向量的点积,|n1|和|n2|分别表示n1和n2的模长。

由于n1和n2都是单位向量,所以|n1|=|n2|=1。

因此,上式可以简化为:cosθ = n1·n2这个式子就是余弦定理。

它告诉我们,两个向量的点积等于它们的模长乘以夹角的余弦值。

因此,我们可以通过求出n1和n2的点积来计算二面角的余弦值,然后再用反余弦函数求出夹角。

2. 向量叉积法设P1和P2的法向量分别为n1和n2,它们的夹角为θ,则有:sinθ = |n1×n2| / (|n1|·|n2|)其中,×表示向量的叉积。

由于n1和n2都是单位向量,所以|n1|=|n2|=1。

因此,上式可以简化为:sinθ = |n1×n2|这个式子就是向量叉积的模长公式。

它告诉我们,两个向量的叉积的模长等于它们的模长乘以夹角的正弦值。

因此,我们可以通过求出n1和n2的叉积的模长来计算二面角的正弦值,然后再用反正弦函数求出夹角。

3. 三角形面积法设P1和P2的法向量分别为n1和n2,它们的夹角为θ,则有:sinθ = 2·S / (|P1|·|P2|)其中,S表示P1和P2的交线段所在的平面的面积,|P1|和|P2|分别表示P1和P2的面积。

二面角的求法(总结)

二面角的求法(总结)

2、三垂线定理、平面的 法向量。
探究准备: 答
二、想一想:
1、怎样做出二面 角的平面角?
:1、做二面角的平面角主 要有3种方法:
(1)、定义法:在棱上取一 点,在两个半平面内作垂直于 棱的2 条射线,这2条所夹 的 角; (2)、垂面法:做垂直于棱 的一个平面,这个平面与2个 半平面分别有一条交线,这2 条交线所成的角; (3)、三垂线法:过一个半 平面内一点(记为A)做另一 个半平面的一条垂线,过这个 垂足(记为B)再做棱的垂线, 记垂足为C,连接AC,则 ∠ACB即为该二面角的平面角。 α C α β
2 2
S
E A D C
B
议一议:刚才的证明过
程中,是用什么方法找到 二面角的平面角的? 请各小组讨论交流一下。
2
2
2
2
探究二:
试一试 例二:如图:直四棱柱ABCDA1B1C1D1,底面ABCD是菱形, AD=AA1 ,∠DAB=600,F为棱AA1的中 点。 求:平面BFD1与平面ABCD所 成的二面角的大小。
1D1C1B1A1(θ是所求二面角的平面角) 以下求面积略。
F
D
A B
C
点评:这种解法叫做“射影面积法”
在选择和填空题中有时候用起来会很 好
总一总:求二面角的方法你都
学会了哪些?每一种方法在使用 上要注意什么问题?
请同学们先自己思考,然后小 组内交流学习一下。
二面角的几种主要常用的求法:
1、垂面法。见例一和例二的解法一; 2、三垂线法。见例二的解法二; 3、射影面积法。见例二的解法三; 4、法向量夹角法。见例二的解法四。
A1 F A D1 B1 C1
D
B
C
要求:1、各人思考;2、小组讨论;

几何法求二面角的四种方法

几何法求二面角的四种方法

几何法求二面角的四种方法嘿,咱今儿个就来唠唠几何法求二面角的那四种方法!这可是数学里挺重要的一块儿呢!第一种,咱可以通过找垂线来搞定。

就好比你要去一个地方,得先找到条直直的路一样。

在二面角的图形里,努力找找看有没有能和两个面都垂直的线,要是找到了,那可就像找到了宝贝!这条垂线和两个面的交点,还有其他一些关键的点,连起来,就能大概知道二面角的样子啦。

第二种呢,是找垂面。

这就好像给二面角盖了个小房子,这个垂面和那两个面的交线,就是二面角的边呀!通过研究这个垂面和其他线的关系,不就能慢慢把二面角给揪出来了嘛。

再来说说第三种,定义法。

这就像是按照规矩办事儿,根据二面角的定义,直接去量量角的大小。

虽然可能有点麻烦,但有时候还真挺管用呢!就像有些事情,虽然简单直接,但效果可不差呀。

最后一种,投影法。

哇,这个可有意思了!就好像是把一个东西的影子投到另一个地方,通过研究这个影子,就能知道原来那个东西的一些情况。

在二面角里,找到一个面在另一个面上的投影,然后通过一些计算,就能求出二面角啦。

你想想看,数学的世界多奇妙呀!这四种方法就像是四把钥匙,能打开求二面角这个大门。

每把钥匙都有它独特的用处,咱得根据不同的题目情况,选对钥匙去开锁呀!比如说,遇到一个特别复杂的图形,可能就得先从找垂线入手,一点点理清楚;要是图形比较有规律,那定义法说不定就能快速解决问题呢。

这就跟咱生活中做事一样,得灵活应变,不能死板对吧?而且啊,学会了这四种方法,那在解几何题的时候,可就有底气多啦!就像战士有了厉害的武器,还怕打不赢仗吗?哎呀,这几何法求二面角,真的是很有意思呢,只要咱用心去学,肯定能掌握得牢牢的!总之,这四种方法都很重要,都得好好琢磨琢磨。

咱可不能小瞧它们,要把它们变成咱解题的好帮手!加油吧,朋友们,让我们在几何的海洋里畅游,把二面角这些难题都轻松拿下!。

解二面角问题三种方法

解二面角问题三种方法

C A B DA A 1B DC C 1 B 1 解二面角问题(一)寻找有棱二面角的平面角的方法和求解。

(1)定义法:利用二面角的平面角的定义,在二面角的棱上取一点,过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。

要注意用二面角的平面角定义的三个“主要特征”来找出平面角,当然这种找出的角要有利于解决问题。

下面举几个例子来说明。

例1:如图,立体图形V -ABC 的四个面是全等的正三角形,画出二面角V -AB -C 的平面角并求出它的度数。

例2:在三棱锥P-ABC 中,∠APB=∠BPC=∠CPA=600,求二面角A-PB-C 的余弦值。

这样的类型是不少的,如下列几道就是利用定义法找出来的:1、在正方体ABCD -A 1B 1C 1D 1中,找出二面角B -AC -B 1的平面角并求出它的度数。

2、.边长为a 的菱形ABCD ,∠ACB=600,现沿对角线BD 将其折成才600的二面角,则A 、C 之间的距离为 。

(菱形两条对角线互相垂直,对折后的一条对角线成两条线段仍都垂直于另一条对角线,则所成的角是二面角的平面角)3、正三棱柱ABC —A 1B 1C 1的底面边长是4,过BC 的一个平面与AA 1交于D ,若AD =3,求二面角D ―BC ―A 的正切值。

总之,能用定义法来找二面角的平面角的,一般是图形的性质较好,能够较快地找到满足二面角的平面角的三个主要特征。

并且能够很快地利用图形的一些条件来求出所要求的。

在常见的几何体有正四面体,正三棱柱,正方体,以及一些平面图形,正三角形,等腰三角形,正方形,菱形等等,这些有较好的一些性质,可以通过它们的性质来找到二面角的平面角。

至于求角,通常是把这角放在一个三角形中去求解。

由图形及题目的已知条件来求这个三角形的边长或者角,再用解三角形的知识去求解。

(2)三垂线法:是利用三垂线的定理及其逆定理来证明线线垂直,来找到二面角的平面角的方法。

求二面角的6种方法【自己总结全面】

求二面角的6种方法【自己总结全面】

a O课题3:二面角求法总结一、知识准备1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面.2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。

3、二面角的大小范围:[0°,180°]4、 二面角的求解方法对二面角的求解通常是先定位二面角的平面角,从而将三维空间中的求角问题转化为二维空间并可以通过三角形的边角问题加以解决.定位出二面角为解题的关键环节,下面就二面角求解的步骤做初步介绍:一、“找”:找出图形中二面角,若不能直接找到可以通过作辅助线补全图形定位二面角的平面角二、“证”:证明所找出的二面角就是该二面角的平面角 三、“算”:计算出该平面角由于定位二面角的难度较大,对于求解二面角还有一种思路就是绕开定位二面角这一环节,通过一些等价的结论或公式或用空间向量等方法来直接求出二面角的大小.本文将根据这两种解题思路对二面角的解题方法做一一介绍. 5、二面角做法:做二面角的平面角主要的方法有: 6、 (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; 7、 (2)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。

(3)射影法:凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜射S S =θ)求出二面角的大小。

(4)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角;(5)无交线的二面角处理方法(6)向量法二、二面角的基本求法及练习1、定义法(从两面内引两条射线与棱垂直,这两条射线可以相交也可异面,从而面面角就转化为线线角来求)从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

浅谈如何求二面角平面角

浅谈如何求二面角平面角

浅谈如何求二面角的平面角一、 定义法:两个半平面为等腰或等边三角形或全等三角形在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

例1、如图,四棱锥中,底面为矩形,底面,,点M 在侧棱上,=60°(II )求二面角的大小。

解(II ):利用二面角的定义。

在等边三角形中 过点作交于点,则点为AM 的中点,过F 点在 平面ASM 内作,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点,∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。

则即为所求二面角.二、三垂线法三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。

例2、如图,在四棱锥ABCD P -中,底面ABCD 是矩形. 已知 60,22,2,2,3=∠====PAB PD PA AD AB . (1)证明⊥AD 平面PAB ;S ABCD -ABCD SD ⊥ABCD AD =2DC SD ==SC ABM ∠S AM B --ABM B BF AM ⊥AM F F GF AM ⊥F GFB∠ FG分析:本题是一道典型的利用三垂线定理求二面角问题,在证明AD ⊥平面PAB 后,容易发现平面PAB ⊥平面ABCD ,点P 就是二面角P-BD-A 的半平面上的一个点,于是可过点P 作棱BD 的垂线,再作平面ABCD 的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。

三.补棱法本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。

即当二平面没有明确的交线时,一般用补棱法解决例3、已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈二面角的求法
摘要:在立体几何中,求二面角的大小是一个重点,更是一个难点。

在每年的高考中,求二面角的大小,几乎成了必考的知识点,但学生却对这个知识点有所害怕,不知从和入手。

本文对求二面角的方法作了一个总结。

关键词:二面角 平面角 三垂线定理 空间向量
在高考中,立体几何占的分值比较大,学生觉得在学习的过程中有一定的难度,他们觉得,立几中要记的定义,定理和方法比较多,再加上还要运用空间想象和空间思维能力,因此,空间立体几何对他们来说,真的有一定的难度。

但事实上,只要对某一方面的知识点作一个总结,我相信还是有一定的好处。

下面我就求二面角的大小的方法作一个总结。

(一)二面角定义的回顾:
从一条直线出发的两个半平面所组成的图形就叫做二面角。

二面角的大小是用二面角的平面角来衡量的。

而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角。

(二)二面角的通常求法
(1)由定义作出二面角的平面角;
(2)作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。

(3)利用三垂线定理(逆定理)作出二面角的平面角; (4)空间坐标求二面角的大小
其中,(1)(2)点主要是根据定义来找二面角的平面角,再利用三角形的正、余弦定理解三角形。

下面举一些例子:
例1:在正三角形ABC 中,AD ⊥BC 于D ,沿AD 折成二面角B-AD-C 后,BC=2
1AB ,求二面角B-AD-C
的大小。

A
A
A
D
A
证明:连结BC 在等边三角形ABC 中
设AB=AC=a,则BD=CD= a
例2: (2003北京春,19)如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.
解:在长方体ABCD —A 1B 1C 1D 1中
由三垂线定理可得: ∴ CD =2 CE=1, DE=
5
的中点
为BC D CD AD BD AD ⊥⊥∴
,的平面角为二面角C AD B BDC --∠∴2
1
AB
BC 2
1=
又a
BC 2
1=
∴为等边三角形
BCD ∆∴60
=∠∴BDC 0
60
的大小为二面角C AD B --∴ A B
C
D
A 1
B 1
C 1
D 1
E
O
CO
DE O C C ,连结,作过点⊥11DE
CO ⊥为二面角C DE C OC C --∠∴11的正方形
是边长为又2ABCD CO
DE CE CD S CDE Rt CDE ⋅=
⋅=
∆∆2
12
1中,在1
1=CC 又5
52tan 1=
∠∴OC C 5
52tan
arg 1=∠∴OC C 5
52=
∴CO
例3:(2006年广东高考题)如图右所示,DE AF ,分别是⊙o 、
⊙1O 的直径,AD 与两圆所在的平面均垂直,8=AD ,BC 是⊙o 的直径,6==AC AB ,AD OE // (1)求二面角F AD B --的大小; 解:(法一)
AD 均与两圆所在的平面垂直
AF
AD AB AD ⊥⊥∴,
故BAF ∠是二面角F AD B --的平面角。

BC 是⊙o 的直径,AB=AC
∴ BC AO ⊥
又AF 是⊙o 的直径
∴四边形ABCF 是正方形
∴BAF ∠=450
即二面角F AD B --的大小为450
(法二)运用空间向量坐标运算
以A 为原点建立空间直角坐标系A-XYZ ,如图所示: 由(法一)可知:四边形ABCF 是正方形 则A (0,0,0),D (0,0,8) ,B (6,0,0),C (0,6,0),F (6,6,0)
)0,6,6(),0,6,0(-==∴→

BC AC
O
DA 圆⊥ ,AC DA ⊥∴
又AB
AC ⊥ ,→
∴AC 是面DAB 的法向量
同理,O DA 圆⊥ , BC DA ⊥∴ 又BC AF ⊥ →
∴BC 是面DAF 的法向量
2
22
6636|
|||,cos =
⨯=
⋅⋅>=
<∴→





BC AC BC
AC BC AC
∵二面角F AD B --所成的角为锐角 ∴二面角F AD B --的大小为450
(法三)以A 为原点建立空间直角坐标系A-XYZ ,如图所示: 由(法一)可知:四边形ABCF 是正方形 则A (0,0,0),D (0,0,8) ,B (6,0,0),C (0,6,0),F (6,6,0)
)0,6,6(),8,0,0(),0,0,6(===∴→


AF AD AB ,
设),,(z y x n =→
为面DAB 的法向量,则
,0=⋅=⋅→



AB n AD n

⎨⎧==⇒⎩

⎧==00
0608y z y z ,令1=x ,则)0,0,1(=→n 同理:设),,(z y x m =→
为面DAF 的法向量,则)0,1,1(-=→
m
2
22
11|
|||,cos =

=
⋅⋅>=
<∴→





m n m
n m n
∵二面角F AD B --所成的角为锐角 ∴二面角F AD B --的大小为450
注意:在运用坐标运算求二面角的大小的时候,必须先找出这两个半平面的法向量,然后运用向量夹角公式求二面角的大小。

求二面角的大小还有很多的方法,这里只是列举了几个常用的方法,希望同学们能在解题的时候加以总结,争取在高考中旗开得胜!。

相关文档
最新文档