轴对称图形的性质及应用

合集下载

轴对称、中心对称图形的性质及应用

轴对称、中心对称图形的性质及应用

轴对称、中心对称图形的性质及应用一、轴对称图形如果把一个图形沿着某一条直线对折过来,在直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴,能够重合的点互为对称点.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连结两个对称点的线段的垂直平分线.在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质.譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等.另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中.例1 已知直线l外有一定点 P,试在l上求两点A、B,使AB=m(定长),且PA+PB最短.分析当把P点沿l方向平移至C(如图1),使PC=m,那么问题就转化为在l上求一点B,使CB+PB为最短.作法过P作PC∥l,使PC=m,作P关于l的对称点P',连结CP'交l于B.在l上作AB=m,点A、B为所求之两点.证在l上另任取A'B'=m,连PA、PA'、PB',CB',A'P',B'P',则PA'=P'A',PB'=P'B',又PA'B'C 为平行四边形,∴CB'=PA'.∵CB'+B'P'>CP',∴ PA'+PB'>PA+PB.例2 如图2,△ABC中,P为∠A外角平分线上一点,求证:PB+PC>AB+AC.分析由于角平分线是角的对称轴,作AC关于AP的轴对称图形AD,连结DP、CP,则DP=CP,BD=AB+AC.这样,把 AB+AC、AC、PB、PC集中到△BDP中,从而由PB+PD>BD,可得PB+PC>AB+AC.证 (略)说明通过变为轴对称图形后,起到相对集中条件的作用,又有将折线化直的作用(如AB+AC化直为BD).例3 等腰梯形的对角线互相垂直,且它的中位线等于m,求此梯形的高.解如图3.设等腰梯形AD∥BC,AB=DC,对角线AC与BD相交于O,且AC⊥BD,中位线EF=m.过AD、BC的中点M、N作直线,由等腰梯形ABCD关于直线MN成轴对称图形,∴O点在MN上,且OA=OD,OB=OC,AM=DM,BN=CN.又 AC⊥BD,故△AOD和△BOC均为等腰直角三角形.2OM=AD,2ON=BC.∵AD+BC=2EF=2m,∴2OM+2ON=2m.∴OM+ON=m,即梯形高MN=m.例4 凸四边形EFGH的四个顶点分别在边长为a的正方形ABCD的四条边上.证如图4,连结AA2,EE3.正方形ABCD和正方形A1BCD1关于BC对称;EFGH和E1FG1H1关于BC对称;A1BCD1和A2B1CD1关于 CD1对称;E1FG1H1和 E2F1G1H2关于CD1对称;A2B1CD1和A2B2C1D1关于A2D1对称,E2F1G1H2和E3F2G2H2关于A2D1对称.例5 如果一个四边形关于它的两组对边中点的两条连线成轴对称,则此四边形为矩形.已知如图22-5.四边形ABCD中,M、F、N、E分别为各边的中点,且MN、EF为它的对称轴.求证 ABCD是矩形.分析欲证ABCD是矩形,首先证明它是平行四边形,再证明它有一个直角即可.证∵四边形ABCD关于EF成轴对称,∴DC⊥EF,AB⊥EF,∴AB∥DC.同理AD∥BC.∴ABCD是平行四边形.∴DC=AB.又∵DE=DC/2,AF=AB/2.∴DE AF,∴ADEF为平行四边形.∴AD∥EF,而DE⊥EF,∴DE⊥AD,∠D=Rt∠.∴ABCD是矩形.二、中心对称图形如果把一个图形绕着某一点旋转180°后,能和原图形重合,那么这个图形叫做中心对称图形.这个点叫做对称中心,能重合的点互为对称点.中心对称图形具有以下性质:(1)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.(2)关于中心对称的两个图形,对应线段平行(或在同一条直线上)且相等.平行四边形是中心对称图形.矩形、菱形、正方形既是中心对称图形,也是轴对称图形.例6 如图6.已知ABCD,O是对角线 AC与BC的交点. EF过O点与AB交于E,与DC交于F.求证:OE=OF.证∵O点是ABCD的对称中心,EF过O点与AB相交于E,与DC相交于F.故E、F两点是以点O为对称中心的对称点.∴OE=OF.例7 △ABC中,底边BC上的两点M、N把BC三等分,BE是AC上的中线,AM、AN分BE 为a,b,c三部分,求:a∶b∶c.分析本题解法很多,我们利用中心对称图形求解.如图7,以E为中心,作已知图形的中心对称图形,则M'C∥AM,N'C ∥AN,于是可得a∶(2b+2c)=1/2,∴a=b+c,①(a+b)∶2c=DN'∶N'A=2∶1,∴a+b=4c,②由①得,a-b=c,③②+③, 2a=5c,∴a=5c/2.②-③,2b=3c,∴b=3c/2.∴ a∶b∶c=5c/2∶3c/2∶c=5∶3∶2.解 (略)例8 若四边形的一组对边相等,延长这一组对边,使各与另一组对边的中点连线的延长线相交,则这两个交角必相等.已知如图8.四边形ABCD中, AD=BC,E、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于G、H.求证∠AGE=∠BHE.分析为了使求证的两个角与已知条件发生联系,利用“旋转法”使角或线段搬家而沟通思路.证如图8,以E为对称中心,作△EBC的中心对称图形△EAM(即连结CE并延长CE到M 使EM=EC,连结AM).连结DM,AM=BC=AD,∴∠2=∠3.∵DF=FC,CE=EM,∴DM∥HE,∴∠1=∠2.∵AE=EB, EM=EC,∴AMBC是平行四边形.∴AM∥BH,而DA∥HE,∴∠3=∠BHE.∴∠1=∠BHE,即∠AGE=∠BHE.习题1.如图9 一牧童在A处牧马,牧童家在B处.A、B处距河岸分别为300m、500m,CD =600m,天黑前,牧童从A点将马牵到河边去饮水后再赶回家.那么牧童最少要走多少米?2.证明:任一点关于正方形各边中点的对称点是一个正方形的顶点.3.求证:在四边形ABCD中,如果AB=AD,CB=CD,那么它的面积等于AC·BD/2.4.在直线MN两侧有A,B两点,在MN上求一点P,使P到A、B两点之差最大.5.等腰梯形的周长为22cm,中位线长为 7cm,两条对角线中点连线为3cm,求各边长.。

关于轴对称的知识点

关于轴对称的知识点

关于轴对称的知识点1.轴对称的定义把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。

折叠后重合的点是对应点,也叫做对称点。

【轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合。

成轴对称的两个图形一定全等。

】2.轴对称图形的定义把一个图形沿着某直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形,这条直线就是对称轴。

【轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定。

】3.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的主要区别:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.。

4.轴对称的性质轴对称的性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分;成轴对称的两个图形的任何对应部分也成轴对称;成轴对称的两个图形全等。

5.线段的轴对称性①线段是轴对称图形,线段的垂直平分线是它的对称轴。

②线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等。

③线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线上。

【①线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。

②三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。

】6.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线。

7.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴。

(2)角平分线上的点到角两边的距离相等。

轴对称图形的性质及应用

轴对称图形的性质及应用

轴对称图形的性质及应用轴对称图形是指通过对称轴将图形分为两个互补的部分,两侧部分完全对称的图形。

本文将介绍轴对称图形的特点、性质以及在日常生活中的应用。

特点:轴对称图形在对称轴两侧完全对称,也就是说,左右两侧完全相同,而相应的点到对称轴的距离也完全相等。

轴对称图形最简单的例子就是欧拉线。

性质:轴对称图形与一般图形相比,具有许多独特性质。

1.对称坐标:轴对称图形在对称轴两侧完全对称,因此可以将其坐标进行相应的简化,将对称轴视为原点,将图形分解为x轴和y轴两个部分。

这种简化的坐标系统被称为对称坐标系。

2.取消相似性:一个轴对称图形绕对称轴旋转180度后,两部分分别重叠,正反都是一样的。

这也就说明了轴对称图形并不具有缩放不变性。

与此相反,使用其他变换,如旋转和平移时,图形可能变形,但尺寸和形状不变化。

3.构造对称轴:如果给定一个轴对称图形,很容易通过观察来确定它的对称轴。

但是,如果给定一个线段,如何通过它来构造轴对称图形呢?有一种简单的方法是,将线段的中点作为对称轴,然后用半径相等的圆弧将线段两端连接起来,就可以得到一个轴对称图形。

应用:轴对称图形在各个领域都有着广泛的应用。

1.设计:在建筑设计过程中,轴对称设计可以增强结构的平衡和美感。

对称图案也常常出现在布艺和墙壁装饰品上。

2.生物学:轴对称图形在生物学中也有着广泛的应用。

例如,许多植物和动物的身体结构都具有轴对称性。

轴对称性在遗传学中也发挥着重要作用,它对生物特征的分析和研究有重要的指导作用。

3.艺术:轴对称图形是艺术中常常使用的一种形式。

例如,一些字母、标志和图形都是轴对称的,这在机器制图和商业设计中都很常见。

4.数学:轴对称图形在数学中也发挥着重要作用,特别是在几何学中。

几何转化和对称操作常常用于证明数学定理,而轴对称图形则是证明某些性质的好例子。

总结:轴对称图形是一种可以通过对称轴将图形分为两个互补的部分,两侧部分完全对称的图形。

轴对称图形具有特殊的性质,例如对称坐标,取消相似性以及构造对称轴等。

轴对称图形的性质及应用

轴对称图形的性质及应用

轴对称图形的性质及应用如果把一个图形沿着某一条直线对折过来,在直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴,能够重合的点互为对称点.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连结两个对称点的线段的垂直平分线.在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质.譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等.另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中.例1已知直线l 外有一定点 P ,试在l 上求两点A ,B ,使AB m =(定长),且PA PB +最短.分析:当把P 点沿l 方向平移至C (如图1),使PC m =,那么问题就转化为在l 上求一点B ,使CB PB +为最短.作法:过P 作//PC l ,使PC m =,作P 关于l 的对称点P ',连结CP '交l 于B .在l 上作AB m =,点A ,B 为所求之两点.证:在l 上另任取A B m ''=,连PA ,PA ',PB ',CB ',A P '',B P '',则P A PA'''=,PB P B '''=,又PA B C ''为平行四边形,∴CB PA ''=. ∵CB '+B P ''>CP ', ∴PA '+PB '>PA +PB .例2如图2,△ABC 中,P 为∠A 外角平分线上一点,求证:PB +PC >AB +AC .分析:由于角平分线是角的对称轴,作AC关于AP的轴对称图形AD,连结DP,CP,则DP=CP,BD=AB+AC.这样,把AB+AC,AC,PB,PC集中到△BDP中,从而由PB+PD>BD,可得PB+PC>AB+AC.证:(略).点评:通过变为轴对称图形后,起到相对集中条件的作用,又有将折线化直的作用(如AB+AC化直为BD).例3等腰梯形的对角线互相垂直,且它的中位线等于m,求此梯形的高.解:如图3.设等腰梯形AD∥BC,AB=DC,对角线AC与BD相交于O,且AC⊥BD,中位线EF=m.过AD,BC的中点M,N作直线,由等腰梯形ABCD关于直线MN成轴对称图形,∴O点在MN上,且OA=OD,OB=OC,AM=DM,BN=CN.又AC⊥BD,故△AOD和△BOC均为等腰直角三角形.2OM=AD,2ON=BC.∵AD+BC=2EF=2m,∴2OM+2ON=2m.∴OM+ON=m,即梯形高MN=m.例4凸四边形EFGH的四个顶点分别在边长为a的正方形ABCD的四条边上.求证:EFGH的周长不小于.证:如图4,连结AA 2,EE 3.正方形ABCD 和正方形A 1BCD 1关于BC 对称;EFGH和E 1FG 1H 1关于BC 对称;A 1BCD 1和A 2B 1CD 1关于 CD 1对称;E 1FG 1H 1和 E 2F 1G 1H 2关于CD 1对称;A 2B 1CD 1和A 2B 2C 1D 1关于A 2D 1对称,E 2F 1G 1H 2和E 3F 2G 2H 2关于A 2D 1对称.2AA =,又23AE A E =32EE AA ==1122332EF FG GH HE EF FG G H H E EE AA ∴+++=+++==≥例5 如果一个四边形关于它的两组对边中点的两条连线成轴对称,则此四边形为矩形.已知:如图5.四边形ABCD 中,M ,F ,N ,E 分别为各边的中点,且MN ,EF 为它的对称轴.求证:ABCD 是矩形.分析:欲证ABCD 是矩形,首先证明它是平行四边形,再证明它有一个直角即可.证:∵四边形ABCD 关于EF 成轴对称,∴DC ⊥EF ,AB ⊥EF , ∴AB ∥DC .同理AD ∥BC .∴ABCD 是平行四边形.∴DC =AB .又∵2DC DE =,2AB AF =.∴D E AF ,∴ADEF 为平行四边形.∴AD ∥EF ,而DE ⊥EF ,∴DE ⊥AD ,∠D =90.∴ABCD 是矩形.轴对称应用举例山东 徐传军生活中很多图形的形状都有一个共同的特性———轴对称.在日常生活中利用轴对称的性质能解决很多问题,下面举例说明.一、确定方向例1 如图1,四边形ABCD 是长方形的弹子球台面,有黑白两球分别位于E 、F 两点的位置,试问,怎样撞击黑球E ,才能使黑球先碰撞台边DC ,反弹后再击中白球F ?解:作E 点关于直线CD 的对称点E ′,连接FE ′,与CD 的交点P 即为撞击点,点P即为所求.例2 如图2,甲车从A 处沿公路L 向右行驶,乙车从B 处出发,乙车行驶的速度与甲车行驶的速度相同,乙车要在最短的时间追上甲车,请问乙车行驶的方向?解:作AB 的垂直平分线EF ,交直线L 于点C ,乙车沿着BC 方向行驶即可.二、确定点的位置找最小值例3 如图3,AB ∥CD ,AC ⊥CD ,在AC 上找一点E,使得BE +DE 最小.解:作点B 关于AC 的对称点B ′,连接DB ′,交AC 于点E ,点E 就是要找的点.例4如图4,点A是总邮局,想在公路L1上建一分局D,在公路L2上建一分局E,使AD+DE+EA的和最小.解:作点A关于L1和L2的对称点B、C.连接BC,交L1于点D,交L2于点E.点D、E就是要找的点.三、与其他学科结合唐朝某地建造了一座十佛寺,竣工时,太守在庙门右边写了一副上联“万瓦千砖百匠造成十佛寺”,望有人对出下联,且表达恰如其分,你能对出下联来吗?对联中有数字万、千、百、十,几个月过去了,无人能对,有个文人李生路过,感觉庙前没有下联不像话,十分感慨.一连几天在庙前苦思冥想,未能对出下联,有次在庙前散步,望见一条大船由远而来,船夫正使劲的摇橹,这时李生突发灵感,对出了下联———“一舟二橹四人摇过八仙桥”.太守再次路过此庙时,看到下联,连连称赞“妙妙妙”.这副对联数字对数字,事物对事物,对称美如此的和谐.可见,对称美在文学方面也有生动深刻的体现.生活中的轴对称无处不在,只要你善于观察,将会发现其间所蕴涵的丰富的文化价值和对称美给人带来的回味无穷的享受.用轴对称解实际问题山东于秀坤在我们实际生活中,许多问题设计到轴对称的应用,下面介绍几例.例1要在河岸所在直线l上修一水泵站,分别向河岸同侧的A、B两村送水,请你设计水泵站应修在何处,所用管道最短?分析:设水泵站修在C点,此题的实质是求折线AC+BC的最短长度,可作出A点关于直线l的对称点A′,如图1,根据对称性,AC+BC=A′C+BC,所以连结BA′交直线l于点C,点C便是水泵站的位置,因为此时折线长AC+CB化成线段A′B的长,根据两点之间线段最短的道理便可确定点C是水泵的位置.图1 图2例2如图2,角形铁架∠MON小于60°,A、D是OM、ON上的点,为实际应用的需要,须在OM和ON上各找点B、C,使AB+BC+CD最小,问应如何找?分析:学习了轴对称,可以利用对称性化折为直的道理,分别作出点A、点D关于ON、OM的对称点A′、D′,连结A′D′与ON、OM交于B、C,则点B、C便是所求的点.例3如图3,EFGH是一个长方形的弹子球台面,有黑白两球分别位于A、B两点的位置.(1)试问:怎样撞击黑球A,使黑球A先碰撞台边EF反弹后再撞击白球B?(2)怎样撞击黑球A,使黑球先碰撞台边GH反弹后再击台边EF,最后击白球B?图3分析:利用轴对称的性质,分别作出B点关于EF的对称点,A点关于HG的对称点,问题得解.解:(1)①作点B关于EF的对称点B′,②连结AB′交EF于C点,则沿AC撞击A,球A必沿BC反弹击中白球B(如图4).图4 图5(2)如图5,作法类似(1).例4如图5,小河边有两个村庄,要在河对岸建一自来水厂向A村与B村供水,要符合条件:(1)若要使厂部到A、B的距离相等,则应选在哪儿?(2)若要使厂部到A村、B村的水管最省料,应建在什么地方?图5 图6 图7解:(1)如图6,取线段AB的中点G,过中点G作AB的垂线,交EF于P,则P到A、B的距离相等.(2)如图7,作点A关于河岸EF的对称点A′,连结A′B交EF于P,则P到A、B 的距离和最短.用轴对称知识解决打台球一题山东于秀坤题目:小强和小勇利用课本上学过的知识来进行台球比赛.(1)小强把白球放在如图1所示的位置,想通过击打白球撞击黑球,使黑球撞AC边后反弹进F洞;想想看小强这样击打,黑球能进F洞吗?请画图的方法验证你的判断,并说明理由.图1 (2)小勇想通过击打白球撞击黑球,使黑球至多撞台球桌边一次后进A洞,请你猜想小勇有几种方案?并分别在下面的台球桌上画出示意图,解释你的理由.分析:本题是一道操作型探究题,主要根据轴对称的知识的有关进行探究.第(1)题可以通过击打AC边使球反弹进F洞.第(2)题有多种方法.击球入洞需要对每一杆的角度进行适当的估算,实质上等同于几何角度的计算,二者有着密切的关系.要想至多撞台球桌边一次击黑球于F洞.方案可以有以下情况:(1)不击台球桌边,直接用白球撞击黑球;(2)通过白球击CF边反弹再撞击黑球进A洞;(3)用白球撞击DF边反弹撞击黑球进F洞.要想准确撞击黑球,必须找准击球的方向角度,准确估算击球的方向.在数学上,可以借助轴对称的知识来解决问题.解: (1)如图2,将白球与黑球视为两点,过这两点画直线交台球桌边AC于M,过点M 作法线MN⊥AC,在MN右侧∠F′MN=∠PMN,由于射线MF′过F洞,知黑球经过一次反弹后必进入F洞.图2(2)方案1:如图3,视白球、黑球为两点P,G,使A、G、P在同一直线上.方案2:如图4,延长AC到H点,使AC=CH,连接GH交FC于点K,根据轴对称的知识可知,用白球沿GK方向撞击边CF反弹后可进行A洞.方案3:如图5,延长AD到M点,使MD=AD,连结GM交DF于N,根据轴对称知识可知,沿GN方向用白球撞击黑球经反弹后可进入A洞.图3 图4 图5最短线路问题河北欧阳庆红吴立稳同学们,对于最短线路问题你一定很陌生吧?运动着的车、船、飞机,包括人们每天走路都要遇到这样的问题.古今中外的任何旅行者总希望寻求最佳的旅行路线,尽量走近道,少走冤枉路.我们把这类求近道的问题统称最短线路问题.另外,从某种意义上说,一笔画问题也属于这类问题,这类问题在生产、科研、生活中应用广泛.请同学们看下面几个生活中的最短线路问题.一、两点一线问题例1 如图1,某同学打台球时想绕过黑球,通过击黑球A,使主球A撞击桌边MN后反弹,来击中白球B.请在图中标明,黑球撞在MN上哪一点才能达到目的?(以球心A、B来代表两球)?分析:要撞击黑球A,使黑球A先撞击台边MN上的P点后反弹击中白球B,需∠APN=∠BPM,如图2,可作点A关于MN的对称点A’,连结A’B交MN于点P,则P点即为所求作的点.作法:(图2):⑴作点A关于MN的对称点A’;⑵连结A’B,交MN于P.则经AP撞击台边MN,必沿P B反弹击中白球B.∴点P就是所要求的点.N图1说明:本题黑球A ,白球B 在MN 的同侧,直接确定撞击点的位置不容易,但若A 、B 在MN 的异侧,击球路线就容易确定了.本题可利用轴对称的特征将A 点转化到MN 的另一侧,设为A ’,连接A ’B 即可确定撞击点.二、一点两线问题例2 在一条大的河流中有一形如三角形的小岛(如图3),岸与小岛有一桥相连.现准备在小岛的三边上各设立一个水质取样点.水利部门在岸边设立了一个观测站,每天有专人从观测站步行去三个取样点取样,然后带回去化验.请问,三个取样点应分别设在什么位置,才能使得每天取样所用时间最短(假设速度一定)? 分析:此题要求时间最短,而速度一定,所以可转化为求最短路程.如图4,小桥DE为必走之路,所以容易得到D 为BC 边上的取样点.关键是确定另外两边上的取样点,这是线段之和最小的问题,我们的想法是将三条线段拼起来,关于线段最短,我们有“两点之间,线段最短”,利用对称便可使问题得到解决.解析:如图4,作点D 关于AB 的对称点F ;点D 关于AC 的对称点G , 连接FG ,交AB 于M ,交AC 于N .∴D 、M 、N 即所求三个取样点.(请同学们试着证一证).三、同类变式 例3 某班举行文艺晚会,桌子摆成两直条(如图5中的AO ,BO ),AO 桌面上摆满了糖果,BO 桌面上摆满了桔子,坐在C 处的学生小亮先拿糖果再拿桔子,然后回到座位,请你帮他设一条行走路线,使其所走的总路程最短?分析:此题是轴对称的特殊应用,需分两种情况讨论:①∠AOB 小于90°;②∠AOB 等于90°。

轴对称图形

轴对称图形
平移前后两个图形对应线段平行(或 共线)且相等,对应角相等,对应点 所连接的线段平行(或共线)且相等。
经过平移,对应线段不可能在同一直 线上超过或等于两条。
平移不改变图形的形状、大小和方向 (平移前后的两个图形是全等形)。
平移前后,对应线段所在直线的夹角 相等。
平移的应用
01
02
03
图形设计
通过平移可以将不同的图 形组合在一起,形成新的 设计。
、艺术、工程等领域。
展望
进一步研究轴对称图形的性质和应用
虽然我们已经对轴对称图形有了一定的了解,但是还有很多性质和应用需要进一步研究和 探索。例如,对于更复杂的图形,如何判断它们是否为轴对称图形?对于非平面图形,如 何寻找它们的对称轴?这些问题都需要我们进行深入研究。
将轴对称图形应用到实际问题中
除了在美学和艺术中应用外,我们还可以将轴对称图形应用到实际问题中,例如在工程和 建筑设计中使用轴对称图形以提高结构的稳定性和美观度。
性质3
对称轴一侧的图形围绕对称轴旋转180度后,与另 一侧的图形重合。
对称的应用
应用1
在艺术和设计中,轴对称被广泛 使用,因为它给人一种平衡和稳
定的感觉。
应用2
在自然界中,许多物体具有轴对 称性,例如人体和许多植物。
应用3
在物理学中,轴对称也被广泛研 究,因为它与守恒定律有关。
05
轴Байду номын сангаас称图形的应用
艺术领域
图案设计
轴对称图形在艺术设计中应用广 泛,如纺织品、地毯、墙纸等, 使图案更加美观、典雅。
雕塑造型
许多雕塑利用轴对称设计,如自 由女神像、埃菲尔铁塔等,使作 品更加匀称、平衡。
绘画构图

初中数学 轴对称图形的性质有哪些

初中数学 轴对称图形的性质有哪些

初中数学轴对称图形的性质有哪些轴对称图形是指一个图形中存在一条直线,将图形分成两个完全对称的部分。

这条直线被称为轴对称线,也被称为对称轴。

下面是轴对称图形的一些性质:1. 对称性质:轴对称图形的两个部分是完全对称的,即它们在形状、大小和位置上完全一致,只是相对于轴对称线的位置互换。

这种对称性使得我们能够在一个部分中观察到一些性质,并将其应用到另一个对称部分中。

2. 轴对称线性质:轴对称图形的轴对称线上的任意一点与它的对称点距离相等。

也就是说,如果一个点在轴对称线上,那么它的对称点也在轴对称线上。

这个性质对于计算轴对称图形中各个点的坐标非常有用。

3. 对称中心性质:轴对称图形的对称中心即为轴对称线上的任意一点。

对称中心具有以下性质:a. 对称中心是轴对称图形的一个重要特征,它可以帮助我们确定图形的对称关系。

b. 对称中心到轴对称图形上任意一点的距离等于该点到轴对称线所在直线的距离。

c. 对称中心到轴对称线的距离等于轴对称图形中所有点到轴对称线的距离的平均值。

4. 对称点性质:轴对称图形中每个点都有一个对称点,它们在轴对称线上对称。

对称点的坐标可以通过对称轴上的点的坐标进行计算。

例如,在一个矩形中,矩形的左上角和右下角是对称的,它们在垂直轴对称线上对称。

5. 线段对称性质:轴对称图形中的任意一条线段,它的两个端点关于轴对称线对称。

这个性质对于计算轴对称图形中线段的长度非常有用。

6. 角度对称性质:轴对称图形中的任意一个角度,它的两个角度顶点关于轴对称线对称。

这个性质对于计算轴对称图形中角度的大小非常有用。

7. 区域对称性质:轴对称图形中的任意一个区域,它关于轴对称线对称。

这个性质对于计算轴对称图形中区域的面积非常有用。

通过了解轴对称图形的性质,我们可以更好地理解几何学中的对称性和图形变换。

轴对称图形的性质在解决与对称性和图形变换相关的问题时非常重要。

希望以上内容能够帮助你了解轴对称图形的性质。

如果你还有其他问题,请随时提问。

轴对称图形

轴对称图形

轴对称图形轴对称图形是几何学中的一个重要概念,在许多领域中都有着广泛的应用。

轴对称图形是指可以通过某条虚拟线(称为轴)将图形分成两个对称的部分的图形。

接下来我们将深入探讨轴对称图形的性质、特点以及一些实际应用。

轴对称图形的性质轴对称图形具有以下几个显著的性质:1.对称轴:轴对称图形存在一个或多个对称轴,通过这些轴,可以将图形分成两个完全对称的部分。

对称轴可以是水平、垂直或斜线。

2.对应点:轴对称图形上的每个点都有一个对应的对称点,这个对称点关于对称轴相对位置相同,但是在轴对称图形中却是互为镜像的。

3.性质保持不变:轴对称变换不改变轴对称图形的性质,如面积、周长等,它只改变图形在空间中的位置和方向。

轴对称图形的分类根据轴对称的不同性质,轴对称图形可以分为以下几类:1.轴对称图形:最简单的轴对称图形是对称图形本身,例如正方形、正圆等。

2.轴对称字母:字母X在垂直中线上是轴对称。

3.轴对称数字:数字0、1、8在水平、垂直中线上是轴对称的。

4.轴对称图形的组合:多个轴对称图形可以组合在一起形成一个更大的轴对称图形。

轴对称图形的实际应用轴对称图形在日常生活中有着广泛的应用,下面列举几个实际应用:1.艺术创作:许多艺术作品中都运用了轴对称的原理,通过对称的布局或对称的图案来吸引观众的眼球。

2.建筑设计:建筑中的对称结构能够给人一种和谐、美感的感受。

许多古代建筑和现代建筑都运用了轴对称的设计。

3.产品设计:在产品设计中,轴对称设计能够提升产品的稳定性和美观性,例如汽车、手机等产品。

4.生物学:生物体中也存在轴对称结构,例如人体的左右对称、植物的对称花瓣等。

总结轴对称图形作为一种重要的几何概念,不仅在数学中有着丰富的性质和特点,而且在各个领域都有着重要的应用。

通过深入研究和理解轴对称图形,我们可以更好地利用这一概念在日常生活和工作中发挥作用,为人们创造更多美好的体验和设计。

希望本文对读者们有所启发,谢谢阅读!。

平面几何中的轴对称图形

平面几何中的轴对称图形

平面几何中的轴对称图形在平面几何学中,轴对称图形是指具有轴对称性质的图形。

轴对称图形是指通过某条轴线进行翻转或旋转180度后,能够得到与原图形完全重合的图形。

轴对称图形具有一些特殊的性质和应用,下面将详细介绍轴对称图形及其相关概念。

一、轴对称图形的定义及性质轴对称图形是指通过某条轴线进行翻转或旋转180度后,能够得到与原图形完全重合的图形。

轴对称图形具有以下几个性质:1. 对称轴:轴对称图形中存在一条轴线,称为对称轴。

对称轴将图形分为两个完全相同的部分,每个部分关于对称轴是对称的。

2. 点对称:轴对称图形中的每个点关于对称轴都有对应的点,且这些点与对称轴的距离相等。

3. 对称中心:轴对称图形中的对称轴交于一点,称为对称中心。

对称中心是轴对称图形的一个重要特点,它是图形的中心点。

二、常见的轴对称图形在平面几何中,有许多常见的轴对称图形,下面介绍几种常见的轴对称图形及其特点:1. 矩形:矩形是一种具有四个直角的四边形,它具有两对平行边。

矩形的两条对角线相等且互相垂直,因此矩形是一个轴对称图形。

2. 正方形:正方形是一种特殊的矩形,它具有四个相等的边和四个直角。

正方形的对角线相等且互相垂直,因此正方形也是一个轴对称图形。

3. 圆:圆是由一条曲线组成的,其中每个点到圆心的距离都相等。

圆具有无数个对称轴,因为任意经过圆心的直径都可以作为对称轴。

4. 椭圆:椭圆是由两个焦点和一条连接两个焦点的线段上的点构成的。

椭圆具有两条互相垂直的对称轴,因此是一个轴对称图形。

5. 正多边形:正多边形是指所有边长相等且所有内角相等的多边形。

正多边形具有以中心为对称中心的多条对称轴。

三、轴对称图形的应用轴对称图形在现实生活中有许多应用,下面列举几个常见的应用场景:1. 建筑设计:许多建筑物的立面设计采用轴对称图形,以达到美观和平衡的效果。

例如,宫殿、教堂等建筑常常采用对称的设计。

2. 花纹设计:许多花纹和图案都是轴对称的,如壁纸、地板砖等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称图形的性质及应用如果把一个图形沿着某一条直线对折过来,在直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴,能够重合的点互为对称点.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连结两个对称点的线段的垂直平分线.在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质.譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等.另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中.例1已知直线l 外有一定点 P ,试在l 上求两点A ,B ,使AB m =(定长),且PA PB +最短.分析:当把P 点沿l 方向平移至C (如图1),使PC m =,那么问题就转化为在l 上求一点B ,使CB PB +为最短.作法:过P 作//PC l ,使PC m =,作P 关于l 的对称点P ',连结CP '交l 于B .在l 上作AB m =,点A ,B 为所求之两点.证:在l 上另任取A B m ''=,连PA ,PA ',PB ',CB ',A P '',B P '',则PA P A '''=,PB P B '''=,又PA B C ''为平行四边形,∴CB PA ''=. ∵CB '+B P ''>CP ', ∴PA '+PB '>PA +PB .例2如图2,△ABC 中,P 为∠A 外角平分线上一点,求证:PB +PC >AB +AC .分析:由于角平分线是角的对称轴,作AC关于AP的轴对称图形AD,连结DP,CP,则DP=CP,BD=AB+AC.这样,把AB+AC,AC,PB,PC集中到△BDP中,从而由PB+PD>BD,可得PB+PC>AB+AC.证:(略).点评:通过变为轴对称图形后,起到相对集中条件的作用,又有将折线化直的作用(如AB+AC化直为BD).例3等腰梯形的对角线互相垂直,且它的中位线等于m,求此梯形的高.解:如图3.设等腰梯形AD∥BC,AB=DC,对角线AC与BD相交于O,且AC⊥BD,中位线EF=m.过AD,BC的中点M,N作直线,由等腰梯形ABCD关于直线MN成轴对称图形,∴O点在MN上,且OA=OD,OB=OC,AM=DM,BN=CN.又AC⊥BD,故△AOD和△BOC均为等腰直角三角形.2OM=AD,2ON=BC.∵AD+BC=2EF=2m,∴2OM+2ON=2m.∴OM+ON=m,即梯形高MN=m.例4凸四边形EFGH的四个顶点分别在边长为a的正方形ABCD的四条边上.求证:EFGH的周长不小于22a.证:如图4,连结AA 2,EE 3.正方形ABCD 和正方形A 1BCD 1关于BC 对称;EFGH和E 1FG 1H 1关于BC 对称;A 1BCD 1和A 2B 1CD 1关于 CD 1对称;E 1FG 1H 1和 E 2F 1G 1H 2关于CD 1对称;A 2B 1CD 1和A 2B 2C 1D 1关于A 2D 1对称,E 2F 1G 1H 2和E 3F 2G 2H 2关于A 2D 1对称.222AA a =,又23AE A E =3222EE AA a ==112233222EF FG GH HE EF FG G H H E EE AA a ∴+++=+++==≥例5 如果一个四边形关于它的两组对边中点的两条连线成轴对称,则此四边形为矩形.已知:如图5.四边形ABCD 中,M ,F ,N ,E 分别为各边的中点,且MN ,EF 为它的对称轴.求证:ABCD 是矩形.分析:欲证ABCD 是矩形,首先证明它是平行四边形,再证明它有一个直角即可.证:∵四边形ABCD 关于EF 成轴对称,∴DC ⊥EF ,AB ⊥EF , ∴AB ∥DC .同理AD ∥BC .∴ABCD 是平行四边形.∴DC =AB .又∵2DC DE =,2AB AF =.∴D E AF ,∴ADEF 为平行四边形.∴AD ∥EF ,而DE ⊥EF ,∴DE ⊥AD ,∠D =90o .∴ABCD 是矩形.轴对称应用举例山东 徐传军生活中很多图形的形状都有一个共同的特性———轴对称.在日常生活中利用轴对称的性质能解决很多问题,下面举例说明.一、确定方向例1 如图1,四边形ABCD 是长方形的弹子球台面,有黑白两球分别位于E 、F 两点的位置,试问,怎样撞击黑球E ,才能使黑球先碰撞台边DC ,反弹后再击中白球F ?解:作E 点关于直线CD 的对称点E ′,连接FE ′,与CD 的交点P 即为撞击点,点P即为所求.例2 如图2,甲车从A 处沿公路L 向右行驶,乙车从B 处出发,乙车行驶的速度与甲车行驶的速度相同,乙车要在最短的时间追上甲车,请问乙车行驶的方向?解:作AB 的垂直平分线EF ,交直线L 于点C ,乙车沿着BC 方向行驶即可.二、确定点的位置找最小值例3 如图3,AB ∥CD ,AC ⊥CD ,在AC 上找一点E,使得BE +DE 最小.解:作点B 关于AC 的对称点B ′,连接DB ′,交AC 于点E ,点E 就是要找的点.例4如图4,点A是总邮局,想在公路L1上建一分局D,在公路L2上建一分局E,使AD+DE+EA的和最小.解:作点A关于L1和L2的对称点B、C.连接BC,交L1于点D,交L2于点E.点D、E就是要找的点.三、与其他学科结合唐朝某地建造了一座十佛寺,竣工时,太守在庙门右边写了一副上联“万瓦千砖百匠造成十佛寺”,望有人对出下联,且表达恰如其分,你能对出下联来吗?对联中有数字万、千、百、十,几个月过去了,无人能对,有个文人李生路过,感觉庙前没有下联不像话,十分感慨.一连几天在庙前苦思冥想,未能对出下联,有次在庙前散步,望见一条大船由远而来,船夫正使劲的摇橹,这时李生突发灵感,对出了下联———“一舟二橹四人摇过八仙桥”.太守再次路过此庙时,看到下联,连连称赞“妙妙妙”.这副对联数字对数字,事物对事物,对称美如此的和谐.可见,对称美在文学方面也有生动深刻的体现.生活中的轴对称无处不在,只要你善于观察,将会发现其间所蕴涵的丰富的文化价值和对称美给人带来的回味无穷的享受.用轴对称解实际问题山东于秀坤在我们实际生活中,许多问题设计到轴对称的应用,下面介绍几例.例1要在河岸所在直线l上修一水泵站,分别向河岸同侧的A、B两村送水,请你设计水泵站应修在何处,所用管道最短?分析:设水泵站修在C点,此题的实质是求折线AC+BC的最短长度,可作出A点关于直线l的对称点A′,如图1,根据对称性,AC+BC=A′C+BC,所以连结BA′交直线l于点C,点C便是水泵站的位置,因为此时折线长AC+CB化成线段A′B的长,根据两点之间线段最短的道理便可确定点C是水泵的位置.图1 图2例2如图2,角形铁架∠MON小于60°,A、D是OM、ON上的点,为实际应用的需要,须在OM和ON上各找点B、C,使AB+BC+CD最小,问应如何找?分析:学习了轴对称,可以利用对称性化折为直的道理,分别作出点A、点D关于ON、OM的对称点A′、D′,连结A′D′与ON、OM交于B、C,则点B、C便是所求的点.例3如图3,EFGH是一个长方形的弹子球台面,有黑白两球分别位于A、B两点的位置.(1)试问:怎样撞击黑球A,使黑球A先碰撞台边EF反弹后再撞击白球B?(2)怎样撞击黑球A,使黑球先碰撞台边GH反弹后再击台边EF,最后击白球B?图3分析:利用轴对称的性质,分别作出B点关于EF的对称点,A点关于HG的对称点,问题得解.解:(1)①作点B关于EF的对称点B′,②连结AB′交EF于C点,则沿AC撞击A,球A必沿BC反弹击中白球B(如图4).图4 图5(2)如图5,作法类似(1).例4如图5,小河边有两个村庄,要在河对岸建一自来水厂向A村与B村供水,要符合条件:(1)若要使厂部到A、B的距离相等,则应选在哪儿?(2)若要使厂部到A村、B村的水管最省料,应建在什么地方?图5 图6 图7解:(1)如图6,取线段AB的中点G,过中点G作AB的垂线,交EF于P,则P到A、B的距离相等.(2)如图7,作点A关于河岸EF的对称点A′,连结A′B交EF于P,则P到A、B 的距离和最短.用轴对称知识解决打台球一题山东于秀坤题目:小强和小勇利用课本上学过的知识来进行台球比赛.(1)小强把白球放在如图1所示的位置,想通过击打白球撞击黑球,使黑球撞AC边后反弹进F洞;想想看小强这样击打,黑球能进F洞吗?请画图的方法验证你的判断,并说明理由.图1 (2)小勇想通过击打白球撞击黑球,使黑球至多撞台球桌边一次后进A洞,请你猜想小勇有几种方案?并分别在下面的台球桌上画出示意图,解释你的理由.分析:本题是一道操作型探究题,主要根据轴对称的知识的有关进行探究.第(1)题可以通过击打AC边使球反弹进F洞.第(2)题有多种方法.击球入洞需要对每一杆的角度进行适当的估算,实质上等同于几何角度的计算,二者有着密切的关系.要想至多撞台球桌边一次击黑球于F洞.方案可以有以下情况:(1)不击台球桌边,直接用白球撞击黑球;(2)通过白球击CF边反弹再撞击黑球进A洞;(3)用白球撞击DF边反弹撞击黑球进F洞.要想准确撞击黑球,必须找准击球的方向角度,准确估算击球的方向.在数学上,可以借助轴对称的知识来解决问题.解: (1)如图2,将白球与黑球视为两点,过这两点画直线交台球桌边AC于M,过点M 作法线MN⊥AC,在MN右侧∠F′MN=∠PMN,由于射线MF′过F洞,知黑球经过一次反弹后必进入F洞.图2(2)方案1:如图3,视白球、黑球为两点P,G,使A、G、P在同一直线上.方案2:如图4,延长AC到H点,使AC=CH,连接GH交FC于点K,根据轴对称的知识可知,用白球沿GK方向撞击边CF反弹后可进行A洞.方案3:如图5,延长AD到M点,使MD=AD,连结GM交DF于N,根据轴对称知识可知,沿GN方向用白球撞击黑球经反弹后可进入A洞.图3 图4 图5最短线路问题河北欧阳庆红吴立稳同学们,对于最短线路问题你一定很陌生吧?运动着的车、船、飞机,包括人们每天走路都要遇到这样的问题.古今中外的任何旅行者总希望寻求最佳的旅行路线,尽量走近道,少走冤枉路.我们把这类求近道的问题统称最短线路问题.另外,从某种意义上说,一笔画问题也属于这类问题,这类问题在生产、科研、生活中应用广泛.请同学们看下面几个生活中的最短线路问题.一、两点一线问题例1 如图1,某同学打台球时想绕过黑球,通过击黑球A,使主球A撞击桌边MN后反弹,来击中白球B.请在图中标明,黑球撞在MN上哪一点才能达到目的?(以球心A、B来代表两球)?分析:要撞击黑球A,使黑球A先撞击台边MN上的P点后反弹击中白球B,需∠APN=∠BPM,如图2,可作点A关于MN的对称点A’,连结A’B交MN于点P,则P点即为所求作的点.作法:(图2):⑴作点A关于MN的对称点A’;⑵连结A’B,交MN于P.则经AP撞击台边MN,必沿P B反弹击中白球B.∴点P就是所要求的点.NP图1BA说明:本题黑球A ,白球B 在MN 的同侧,直接确定撞击点的位置不容易,但若A 、B 在MN 的异侧,击球路线就容易确定了.本题可利用轴对称的特征将A 点转化到MN 的另一侧,设为A ’,连接A ’B 即可确定撞击点.二、一点两线问题例2 在一条大的河流中有一形如三角形的小岛(如图3),岸与小岛有一桥相连.现准备在小岛的三边上各设立一个水质取样点.水利部门在岸边设立了一个观测站,每天有专人从观测站步行去三个取样点取样,然后带回去化验.请问,三个取样点应分别设在什么位置,才能使得每天取样所用时间最短(假设速度一定)? 分析:此题要求时间最短,而速度一定,所以可转化为求最短路程.如图4,小桥DE为必走之路,所以容易得到D 为BC 边上的取样点.关键是确定另外两边上的取样点,这是线段之和最小的问题,我们的想法是将三条线段拼起来,关于线段最短,我们有“两点之间,线段最短”,利用对称便可使问题得到解决.解析:如图4,作点D 关于AB 的对称点F ;点D 关于AC 的对称点G , 连接FG ,交AB 于M ,交AC 于N .∴D 、M 、N 即所求三个取样点.(请同学们试着证一证).三、同类变式 例3 某班举行文艺晚会,桌子摆成两直条(如图5中的AO ,BO ),AO 桌面上摆满了糖果,BO 桌面上摆满了桔子,坐在C 处的学生小亮先拿糖果再拿桔子,然后回到座位,请你帮他设一条行走路线,使其所走的总路程最短?分析:此题是轴对称的特殊应用,需分两种情况讨论:①∠AOB 小于90°;②∠AOB 等于90°。

相关文档
最新文档