探索轴对称的性质课件三

合集下载

轴对称的性质

轴对称的性质


l D H

E

C


F
B
G

(5) AE与BG平行,能说明轴对称图形 对称点的连线一定互相平行吗? 解:(5) 不一定. 如图,对称点的连线DH、CF就不互 相平行,而是在同一条直线上,
从而说明轴对称图形对称点的连线互相平 l E 行或在同一条直线上. A
● ●
C
● ●

D
H


F
B
G

(6) 延长线段CA、FE,连接CB、FG并
● ● ●
如图,△ABC中,∠C=900 ⑴在BC上找一点D,使点D到 AB的距离等于DC的长度; ⑵画一个三角形与△ABC关于 直线AD对称.
2.下图是由半圆和三角形组成的图形,请以AB为 对称轴,作出图形的另一半(用尺规作图,保留作 图痕迹) A

B
例2 在一条笔直的河的两岸各有一个居民点A 、B两点, 为方便往来,必须在河上架桥,在河的什么位置架 桥,才能使A和B两地的居民走的路最短? A
P
Q
回顾与思考
通过本节课的学习,你有什么收获? 还有哪些疑惑?
迁移与应用
如图,牧童在A处放牛,其家在B处,A、B到河岸 的距离分别为AC、BD,且AC=BD,若A到河岸CD 的中点的距离为500m,若牧童从A处将牛牵到河 边饮水后再回家,试问在何处饮水,所走路程 最短?最短路程是多少? A′ 1000m D N M C
l
A′ B′
如图,再在纸上任画一点C,并仿照上面进 行操作. 1. 线段AC与A′C′有什么关系? BC与B′C′呢? 线段CC′与 l 有什么关系? 2. ∠A与∠A′有什么关系?∠B与∠B′呢? △ABC 与△A′B′C′有什么关系?为什么?

轴对称(知识讲座)

轴对称(知识讲座)

§12.1 轴对称§12.1.1 轴对称〔一〕教学目标1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念.教学重点轴对称图形的概念.教学难点能够识别轴对称图形并找出它的对称轴.教学过程Ⅰ.创设情境,引入新课我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,从这节课开始,我们来学习第十四章:轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.Ⅱ.导入新课出示课本的图片,观察它们都有些什么共同特征.这些图形都是对称的.这些图形从中间分开后,左右两局部能够完全重合.小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.我们的黑板、课桌、椅子等.我们的身体,还有飞机、汽车、枫叶等都是对称的.如课本的图14.1.2,把一张纸对折,剪出一个图案〔折痕处不要完全剪断〕,•再翻开这张对折的纸,就剪出了美丽的窗花.观察得到的窗花和图14.1.1中的图形,你能发现它们有什么共同的特点吗?窗花可以沿折痕对折,使折痕两旁的局部完全重合.不仅窗花可以沿一条直线对折,使直线两旁重合,上面图14.1.1中的图形也可以沿一条直线对折,使直线两旁的局部重合.结论:如果一个图形沿一直线折叠,直线两旁的局部能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线〔成轴〕•对称.了解了轴对称图形及其对称轴的概念后,我们来做一做.取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,•将纸翻开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流.结论:位于折痕两侧的图案是对称的,它们可以互相重合.由此可以得到轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。

《探索轴对称的性质PPT课件

《探索轴对称的性质PPT课件

画对应点的方法:
l
过点A画对称轴 l 的垂线,垂足为D,
延长AD至DA′,使DA′= AD.
A ●
D
● A′
点A′就是点A关于直线 l 的
对应点。
B
B′


∟∟∟

C
●c′
3.问题解决:
一次晚会上,主持人出了一道题目:“如何

变成
?”很长时间
没人答出,小兰仅仅拿了一面镜子,就很快解决了这道
题目,你知道她是怎样做的吗?
北《师数大学七》年( 级北师(下大).七年级 下册 )
温故知新
1.轴对称图形:如果一个图形沿某条直线对折后, 直线两旁的部分能够完全重合,那么这个图形叫 做轴对称图形。
这条直线叫这个图形的对称轴。
2.两个图形成轴对称:对于两个图形,把一个图形沿 着某一条直线对折,如果它能够与另一个图形完 全重合,那么就说这两个图形成轴对称。
1.连接AB、 A′B′、 AC、 A′C′、BC、B′C′。
2. △ABC与 △A′B′C′有什么关系?
3.(1)观察、 猜想:
线段AB与A′B′有什么关系?
线段AC与A′C′有什么关系?
l
线段BC与B′C′呢?
(2)验证你的猜想,并在
A

A′

小组内交流你的发现。 在轴对称图形中,沿对
B
B′


4.能力拓展
如图,已知点P是∠AOB内任意一点,点P1、P关
于OA对称,点P2、P关于OB对称。连接P1P2,分别
交OA,OB于C, D。连接PC、PD。若P1P2=10cm,
则△PCD的周长为

p1 .

《轴对称完整》课件

《轴对称完整》课件

对轴对称的未来展望
轴对称作为数学中的一个基础概念,仍有很大的研究和发展空间。随着数学和其 他学科的发展,轴对称的应用范围也将不断扩大。我们鼓励学生们在未来的学习 和研究中继续关注轴对称,探索它的更多应用和价值。
在《轴对称完整》ppt课件的最后,我们总结了轴对称的基本原理、方法和应用 ,并提出了进一步探索的问题和方向。我们希望学生们能够带着这些问题和思考 ,继续深入探索轴对称的奥秘,为未来的研究和应用打下坚实的基础。
轴对称是数学中的一个重要概念,它描述了一个图形通过某个直线折叠后与自身重合的性质。在《轴对称完整 》ppt课件中,我们深入探讨了轴对称的定义、性质和分类,帮助学生们更好地理解这一概念。
轴对称在几何学中有着广泛的应用,它不仅在平面几何中出现,还涉及到立体几何、解析几何等多个领域。通 过对轴对称的深入理解,学生们可以更好地掌握几何学的基本原理和方法。
05
轴对称的实践应用
在设计中的应用
对称美学的运用
设计作品中,轴对称的运用可以创造出平衡、和谐的感觉。例如,在服装设计中,设计师可以通过轴对称的裁 剪方式,使服装看起来更加优雅、庄重。
产品设计的指导
在产品设计中,轴对称的原理可以帮助设计师更好地布局产品的各个部分,使其更加符合人机工程学,提高使 用体验。
04
轴对称的意义
美学的意义
美学欣赏
轴对称的形状、图案和结 构常常被视为具有美感, 可以给人带来视觉上的享 受和满足感。
艺术创作
艺术家们经常利用轴对称 的原理来创作美丽的艺术 品,如建筑设计、绘画和 雕塑等。
平衡与和谐
轴对称能够给人带来平衡 和和谐的感觉,使整体效 果更加协调和完整。
科学的意义
自然界中的轴对称

探索轴对称的性质课件

探索轴对称的性质课件

下课了!
• 数学中的某些定理具有这样的特性: 它们极易从事实中归纳出来,但证明却
隐藏极深.

——高斯
车标设计
交通标志
实物图案
蝴蝶
奥运五环
让我们走进轴对称的世界, 去感受对称的奇妙和美丽吧!
探索轴对称的性质
例题欣赏 9
行家看“门道”
驶向胜利 的彼岸
将一张长方形的纸对折,然后用笔尖扎出 “14”这个数字,将纸打开后铺平:
打开
A
C
m C'
A'
1
2
3
4
D
F
F'
D'
B
E
E'
B'
?怎样
解答
1.上图中,两个“14”有什么关系?
关于直线m成轴对称
形不一定成轴对称
有的放矢 6
驶向胜利 的彼岸
轴对称中三个定义
对称点:沿某对点叫对称点;
对称边:沿某条直线折叠后,
A
D
能够重合的一对边叫对称边;
C 40 B
65
F E
对称角:沿某条直线折叠后, 能够重合的一对角叫对称角。
“对称是一种思想,通过它,人们毕生 的追求,将得以创造次序、美丽和完 善……”
知识源于生活1
驶向胜利 的彼岸
自远古以来,对称形式被认为是和谐美丽、并且真实的 , 不论是在自然界中还是建筑里,甚至最普通的日常生活 用品中,对称的形式随处可见.青山倒映在水中,这是令人 难忘的对称景象.同学们可以想象,当你放学回家,落日、 晚霞、还有远处的青山倒映在平静的水中,这样如诗如 画的景致令人难忘 .同学们谁能说出生活中的对称图形 呢?

1.3探索轴对称的性质——1.1认识三角形

1.3探索轴对称的性质——1.1认识三角形

知新篇一.轴对称的性质及其应用(1)轴对称的性质:①对应点所连的线段被对称轴 。

②对应 相等,对应 相等。

(2)如图是一个轴对称图形,直线AO 是对称轴, 则相等的线段有: = , = 。

线段CD 被直线AO 。

量得30B∠,则∠E= 。

(3)设A 、B 两点关于直线MN 对称,则_____垂直平分______。

(4)等腰三角形是轴对称图形,它的底边被对称轴_________。

提醒:(1)对称轴上的点即是对应点所连线段的垂直平分线. (2)找准对应线段和对应角。

二.轴对称在实际中的应用 1.按边分类:图(1)是 三角形,图(2)是 三角形,图(3)是 三角形. 2.按角分类:图(1)是 三角形,图(2)是 三角形,图(3)是 三角形. 三.三角形的三边关系1.AB+AC BC, AB-AC BC.2.结论:三角形两边的和______第三边.三角形两边的差____第三边.【典例】【思路分析】判断三条线段能否组成三角形可根据三角形三边关系:“两边之和大于第三边,两边之差小于第三边”进行判断.最简单方法是:看较短两边的和是否大于最长边. 【解析】【点睛】在判断已知三条线段是否能够组成三角形,必须满足下列两个条件之一:(1)如果选最长边作第三边,则需判断其余两边之和大于第三边,(2)如果选最短边作第三边,则需判断其余两边之差小于第三边.三角形三边关系靓题拾贝三角形的三边关系:(1)三角形任意两边之和大于第三边.(2)三角形任意两边之差小于第三边.注意:这里的“两边”指的是任意的两边,对于“两边之差”它可能是正数,也可能是负数,一般地取“差”的绝对值. 一、 判断三条已知线段能否组成三角形【例1】已知四组线段的长分别如下,以各组线段为边,能组成三角形的是 ( ) A.1,2,3 B.2,5,8 C.3,4,5 D.4,5,10解:选C .对于A ,1+2=3,所以A 不能,对于B ,2+5<8,所以B 不能,对于D ,4+5<10,所以D 不能. 二、已知三角形的周长,判断三边能否组成等腰三角形【例2】将长度为12m 的一根铁丝,截成三段,能围成等腰三角形的是 ( ) A.8m ,2m ,2m B.7m ,2.5m ,2.5m C.6m ,3m ,3m D.1m ,5.5m ,5.5m 解:选D .根据三边关系,三个选项A 、B 、C 均有两边之和小于或等于第三边. 三、已知三角形的两边长,求第三边取值的个数【例3】已知三角形的三边长分别是3、8、x ,若x 的值为偶数,则x 的值有 ( ) A.6个 B.5个 C.4个 D.3个解:选D .根据三角形三边关系有:8-3<x <8+3即5<x <11,若x 为偶数,则x=6,8,10.1.探新知 预习乐园提素能 自测自评A B ECD O214版北师七上学案教用P12左上T22.如图,ABC △与A B C '''△关于直线l 对称,则B ∠的度数为( ) A .30B .50C .90D 100.3.下列图形中,哪一幅成轴对称( )4.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有 ( )A.6个B.5个C.4个D.3个5.为估计池塘两岸A 、B 间的距离,杨阳在池塘一侧选取 了一点P ,测得PA=16m ,PB=12m ,那么AB 间的距离不可能是( )A.5mB.15mC.20mD.28m6.一辆汽车的牌号在水中的倒影如图所示,则这辆汽车的牌号应为______.7.如图,三角形纸片ABC ,10cm 7cm 6cm AB BC AC ===,,,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则AED △的周长为 cm .8.两根木棒的长分别是8cm ,10cm ,要选择第三根木棒将它们钉成三角形,那么第三根木棒的长x 的取值范围是________.9.如图所示,在△ABC 中,D ,E 是BC ,AC 上的两点,连结BE ,AD 交于F ,(1)图中有几个三角形?并表示出来;(2)△BDF 的三个顶点是什么?三条边是什么? (3)AB 边是哪些三角形的边? (4)F 点是哪些三角形的顶点?10.一个等腰三角形的周长是36 cm .(1)已知腰长是底边长的2倍,求各边的长; (2)已知其中一边长8cm ,求另外两边的长.11.已知三角形的两边长分别是4cm 和9cm .(1)求第三边的取值范围; (2)已知第三边长是偶数,求第三边长;(3)求周长的取值范围.12.(全家总动员)一次晚会上,主持人出了一道题目:“如何把变成一个真正的等式",很长时间没有人答出,小兰仅仅拿出了一面镜子,就很快解决了这道题目,你知道她是怎样做的吗?答案探新知,预习乐园:一、1.互相重合 对称轴2.(1)(2)(4)(5)是轴对称图形,都有2条对称轴,(3)是轴对称图形,有无数条对称轴。

七年级数学 第五章 生活中的轴对称 1 轴对称现象 2 探索轴对称的性质教学

七年级数学 第五章 生活中的轴对称 1 轴对称现象  2 探索轴对称的性质教学

A
D B
C m C'
1
2
3
4
F F'
E
E'
A'
D' B'
12/6/2021
打开
A
D B
C
m C'
1
2
3
4
F F'
E
E'
A'
D' B'
如果连接C、C′,F、F′,那么所构造的线段与直线m有 什么关系? 对应点所连接的线段被对称轴垂直平分.
12/6/2021
【做一做】
如图是一个轴对称图形:
(1)你能找出它的对称轴吗?
12/6/2021
【练一练】
l
1.如何画线段AB关于直线l 的对称线段A′B′?
A
A′
找关键点A,B作出其对称点A',B',
然后连接A'B'即可.
B
B′
12/6/2021
2.如何画 △ABC关于直线 l 的 对称△ A′B′C′?
l
A
A′
B
找关键点作出其对称点,
C C′
B′
然后首尾顺次连接线段构成三角形.
A'
(4)∠1与∠2与∠4呢?说
说你的理由.
∠1= ∠2 ∠3=∠4 对应角相等.
12
12/6/2021
归纳:轴对称的性质
1.对应点所连接的线段被对称轴垂直平分. 2.对应线段相等,对应角相等.
12/6/2021
【跟踪训练】
1.在下列图形中,找出轴对称图形,并画出其对称轴.
主球 A
M

轴对称 知识讲解

轴对称  知识讲解

轴对称责编:杜少波【学习目标】1.认识和欣赏身边的轴对称图形,增进学习数学的兴趣.2.了解轴对称以及轴对称图形的概念,弄清它们之间的区别与联系,能识别轴对称图形.2.探索轴对称的基本性质,会画一些简单的关于某直线对称的图形.【要点梳理】【高清课堂 389298 轴对称知识要点】要点一、轴对称图形轴对称图形的定义一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.要点二、轴对称1.轴对称定义把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点.要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.要点三、轴对称与轴对称图形的性质轴对称、轴对称图形的性质在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.要点诠释:(1)若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.【典型例题】类型一、判断轴对称图形【高清课堂389298 轴对称例1】1、在下图的几何图形中,一定是轴对称图形的有()A.2个B.3个C.4个D.5个【思路点拨】我们将图中的图形分别沿着某条直线对折,看看图形的两边能否重合,若重合则是轴对称图形,否则就不是.【答案】D;【解析】每个图形都能找到对称轴,使对称轴两边的图形重合【总结升华】找对称轴要注意从不同的角度去观察,做到不重复、不遗漏.举一反三:【变式1】下列图形中,对称轴最少的对称图形是 ( )【答案】A;提示:A一条对称轴,B四条对称轴,C五条对称轴,D三条对称轴.【变式2】在直线、角、线段、等边三角形四个图形中,对称轴最多的是,它有条对称轴;最少的是,它有条对称轴【答案】直线、无数、角、1.【高清课堂389298 轴对称例2】2、观察图形…并判断照此规律从左到右第四个图形是()A . B. C . D.【思路点拨】根据题意分析图形涂黑规律,求得结果,采用排除法判定正确选项.【答案】D;【总结升华】本题考查学生根据图形,归纳、发现并运用规律的能力.注意结合图形解题的思想.举一反三:【变式】(2014春•太谷县校级期末)将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A .B .C .D .【答案】C. 类型二、轴对称或轴对称图形的应用【高清课堂389298 轴对称 例3】3、如图,将矩形纸片ABCD (图①)按如下步骤操作:(1)以过点A 的直线为折痕折叠纸片,使点B 恰好落在AD 边上,折痕与BC 边交于点E (如图②);(2)以过点E 的直线为折痕折叠纸片,使点A 落在BC 边上,折痕EF 交AD 边于点F (如图③);(3)将纸片收展平,那么∠AEF 的度数为( )A .60°B .67.5°C .72°D .75° 【答案】B ;【解析】∠AEF =(180°-45°)÷2=67.5°. 【总结升华】折叠所形成的图形是轴对称图形,对应角相等.举一反三: 【变式1】如图,△ABC 中,AB =BC ,△ABC 沿DE 折叠后,点A 落在BC 边上的A '处,若点D 为AB 边的中点,∠A =70°,求∠BD A '的度数.【答案】100°;∵AB =BC ,∴∠A =∠C =70°,∠B =40°又∵ΔABC 沿DE 折叠后,点A 落在BC 边上的A '处,点D 为AB 边的中点, ∴BD =D A ',∠B =∠D A 'B =40°,∴∠BD A '=180°-40°-40°=100°.【变式2】将矩形ABCD 沿AE 折叠,得到如图所示图形. 若'CED ∠=56°,则∠AED 的大小是_______.【答案】62°;4、(2015春•启东市校级月考)如图,点P在∠AOB内,M、N分别是点P关于AO、BO的对称点,MN分别交AO,BO于点E、F,若△PEF的周长等于20cm,求MN的长.【思路点拨】根据轴对称的性质可得ME=PE,NF=PF,然后求出MN=△PEF的周长.【答案与解析】解:∵M、N分别是点P关于AO、BO的对称点,∴ME=PE,NF=PF,∴MN=ME+EF+FN=PE+EF+PF=△PEF的周长,∵△PEF的周长等于20cm,∴MN=20cm.【总结升华】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它的两组对应线段.
如图:将一张长方形形的纸对折,然后用 笔尖扎出“14”这个数字,将纸打开后铺平:
打开
A C
1
m
C'
2
A'
3
4
D B E
F
F' E'
D' B'
1、上图中,两个“14”有什么关系?
关于直线m成轴对称
பைடு நூலகம்
打开
A
C
1
m
C'
2
A'
3
4
D B E
F
F' E'
D' B'
2、线段 AB与A B ,CD与C D 有什么关系?




对应线段:相等
打开
A
C
1
m
C'
2
A'
3
4
D B E
F
F' E'
D' B'
∠1与∠2有什么关系? ∠3与∠4呢?
对应角:相等
打开
A
C
1
m
C'
2
A'
3
4
D B E
F
F' E'
D' B'
如果连接C、C′,F、F′那么所构 造的线段与直线m有什么关系? 对应点所连接的线段被对称 轴垂直平分

再见!
A
40
D
65
B
C
F
1、如图:△ABC与 △DEF关于直线L成 轴对称,则△ABC 与△DEF具有怎样 的关系?
E
全等与轴对称的关系: 轴对称的两个图形一定全等,但全等 的两个图形不一定成轴对称
2、若两三角形全 等,则是否一定关 于某条直线对称?
L
A
40
D
65
B
C
F
对应点:沿某条直线 折叠后,能够重合的 一对点叫对应点 对应边:沿某条直线 折叠后,能够重合的 一对边叫对应边 E 对应角:沿某条直线 折叠后,能够重合的 一对角叫对应角
A
B
D
C
A
D E 答:相等,理由如下: 在DC上截取DE使DE=DB,连接AE ∵AD⊥BE且DB=DE ∴B、E关于AD对称 ∴△ABD与△AED关于直线AD对称 ∴ △ABD ≌ △AED ∴AB=AE,∠AED= ∠B 又∵ ∠B=2 ∠C ∴ ∠AED= 2 ∠C 而∠AED= ∠C + ∠CAE ∴ ∠CAE = ∠ C ∴AE=CE ∴AB=CE 故AB+BD=DE+EC 即:AB+BD=CD
轴对称的性质
1.对应点的连线被对称轴垂直平分
2.对应线段相等,对应角相等
做一做:
右图是一个轴对称图形: (1)你能找出它的对称 轴吗?
D 3
C D1 4 C1
(2)连接点A与点A1的 A
线段与对称轴有什么关 系?连接点B与点B1的 线段呢?
B
A1
B1
对应点所连的线段被对称轴 垂直平分.
1
2
(3)线段AD与线段A1D1有什 么关系?线段BC与B1C1呢? 为什么? (4)∠1与∠2有什么 关系? ∠ 3与∠4呢? A 说说你的理由?
B
C
1、再次感受对称美
2、轴对称图形是一个图形关于某条直线 对称
3、轴对称是两个图形关于某条直线对称 4、轴对称的性质:
⑴对应点的连线被对称轴垂直且平分
⑵对应边相等,对应角相等
作业
正式作业:
习题7.3 第2题
课外作业:
轻巧夺冠
《探索轴对称图形的性质》A卷
感谢语:
谢谢各位老师的光临!感谢大家的支持! 您的鼓励是我前进的动力!
7.3 探索轴对称的性质
轴对称图形:
如果一个图形沿某条直线对折后,直线 两旁的部分能够完全重合,那么这个图 形叫做轴对称图形. 这条直线叫这个图形的对称轴.
轴对称:
对于两个图形,把一个图形沿着某一 条直线对折,如果它能够与另一个图 形完全重合,那么就说这两个图形成 轴对称。 这条直线就是对称轴
L
“对称是一种思想,通过它,人们毕生 追求,并创造次序、美丽和完善……”
让我们走进轴对称的世界!去感 受对称的奇妙和美丽吧!
探索轴对称的性质
车标设计
交通标志
实物图案
练一练:
1、在下列图形中,找出轴对称图形,并找 出它的两组对应点.
2.在下面的图形中找到轴对称图形,并找出
D 3 C D1 4
C1
A1
B
B1
对应线段相等, 对应角相等.
1 2
后面还有智力测验,你想试一试吗?
试一试:
1、一次晚会上,主持人出了一道题目:“如 何把 变成一个真正的等式",很长时 间没有人答出,小兰仅仅拿出了一面镜子, 就很快解决了这道题目,你知道她是怎样做 的吗?
拓展练习
例:如图所示,AD为 △ABC 的 高,∠B= 2∠C ,借助于轴对称 的性质想一想:CD与AB+BD相 等吗?请说明你的理由.
相关文档
最新文档