高中数学必修4(北师版)第一章1.3 弧度制(与最新教材完全匹配)知识点总结含同步练习题及答案
1-3 弧度制 课件高中数学必修4(北师大版)

3 3 180 (2)10π=10π· π ° =54° . π 3 (3)67° 30′=67.5° =180 rad×67.5=8π rad. (4)-2
180 rad=(-2)× π ° ≈-57.30° ×2=-114.60° .
规律方法
(1)进行角度与弧度换算时, 要抓住关系: π rad=180° ;
180 π ° (2)度数× =弧度数,弧度数 × =度数; 180 π
(3)特殊角的度数与弧度数对应值要记熟.
5 【训练 1】 (1)把 112° 30′化成弧度;(2)把-12π 化成度. 解
225 225 π 5π (1)112° 30′= 2 ° = 2 ×180= 8 .
题型三 用弧度表示区域角 【例 3】 (12 分)用弧度表示顶点在原点,始边重合于 x 轴的非 负半轴,终边落在阴影部分内的角的集合(不包括边界,如图所 示).
题型一
角度制与弧度制的互化
【例 1】 将下列角转化为另一种形式表示: 3 (1)-18° ;(2) π;(3)67° 30′;(4)-2 rad. 10
180 π [思路探索] 直接利用 1° = rad,1 rad= π ° 进行转化. 180
解ห้องสมุดไป่ตู้
π π (1)-18° =180 rad×(-18)=-10 rad.
5π 180 5π (2)-12=-12× π ° =-75° .
题型二
弧长公式与扇形面积公式的应用
【例 2】 已知扇形的周长为 8 cm,圆心角为 2 rad,求该扇形 的面积. [思路探索] 设出扇形的半径和弧长,利用弧长公式和扇形的周 长求出半径,问题即可解决.
解 设扇形的半径为 r cm,弧长为 l cm,由圆心角为 2 rad,依 据弧长公式可得 l=2r,从而扇形的周长为 l+2r=4r=8,解得 r=2,则 l=4. 1 1 故扇形的面积 S=2rl=2×2×4=4(cm2). 规律方法 有关扇形的弧长 l,圆心角 α,面积 S 的题目,一般
高中数学必修4知识点总结(最新最全)

高中数学必修4知识点总结第一章:三角函数§1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角α终边相同的角的集合:{}Z k k ∈+=,2παββ.§1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 rl =α. 3、弧长公式:R Rn l απ==180.§1.2.1、任意角的三角函数1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin 2、 设点(),A x y为角α终边上任意一点,那么:(设r =sin y r α=,cos x r α=,tan yxα=,cot x y α=3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法.正弦线:MP; 余弦线:OM; 正切线:AT 4、 特殊角0°,30°,45°,60°,§1.2.2、同角三角函数的基本关系式 1、 平方关系:1cos sin 22=+αα.2、 商数关系:αααcos sin tan =. 3、 倒数关系:tan cot 1αα=§1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”Z k ∈)1、 诱导公式一: ()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k (其中:Z k ∈)2、 诱导公式二: ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+3、诱导公式三: ()()().tan tan ,cos cos ,sin sin αααααα-=-=--=-4、诱导公式四: ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-§1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. §1.4.3、正切函数的图象与性质 1、记住正切函数的图象:2、记住余切函数的图象:3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数()x f,如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有()(),那么函数()x f就叫做周期函数,非零常数T叫做这个函数的周期.图表归纳:正弦、余弦、正切函数的图像及其性质x y sin =x y cos = x y tan =图象定义域 RR},2|{Z k k x x ∈+≠ππ值域[-1,1] [-1,1]R最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,无周期性 π2=Tπ2=Tπ=T奇偶性奇偶奇单调性Z k ∈ 在[2,2]22k k ππππ-+上单调递增 在3[2,2]22k k ππππ++上单调递减 在[2,2]k k πππ-上单调递增在[2,2]k k πππ+上单调递减在(,)22k k ππππ-+上单调递增 对称性 Z k ∈ 对称轴方程:2x k ππ=+对称中心(,0)k π对称轴方程:x k π= 对称中心(,0)2k ππ+无对称轴 对称中心,0)(2k π§1.5、函数()ϕω+=x A y sin 的图象 1、对于函数:()()sin 0,0y A x B A ωφω=++>>有:振幅A ,周期2T πω=,初相ϕ,相位ϕω+x ,频率πω21==Tf .2、能够讲出函数x y sin =的图象与()sin y A x B ωϕ=++的图象之间的平移伸缩变换关系.① 先平移后伸缩:sin y x = 平移||ϕ个单位()sin y x ϕ=+ (左加右减)横坐标不变()sin y A x ϕ=+纵坐标变为原来的A 倍纵坐标不变()sin y A x ωϕ=+横坐标变为原来的1||ω倍平移||B 个单位 ()sin y A x B ωϕ=++(上加下减)② 先伸缩后平移:sin y x = 横坐标不变 sin y A x =纵坐标变为原来的A 倍纵坐标不变sin y A x ω=横坐标变为原来的1||ω倍()sin A x ωϕ=+(左加右减) 平移||B 个单位 ()sin y A x B ωϕ=++(上加下减)3、三角函数的周期,对称轴和对称中心函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=. 对于sin()y A x ωϕ=+和cos()y A x ωϕ=+来说,对称中心与零点相联系,对称轴与最值点联系. 求函数sin()y A x ωϕ=+图像的对称轴与对称中心,只需令()2x k k Z πωϕπ+=+∈与()x k k Z ωϕπ+=∈解出x 即可.余弦函数可与正弦函数类比可得.4、由图像确定三角函数的解析式 利用图像特征:max min 2y y A -=,max min2y y B +=. ω要根据周期来求,ϕ要用图像的关键点来求.§1.6、三角函数模型的简单应用 1、 要求熟悉课本例题.第三章、三角恒等变换§3.1.1、两角差的余弦公式§3.1.2、两角和与差的正弦、余弦、正切公式1、()βαβαβαsin cos cos sin sin +=+2、()βαβαβαsin cos cos sin sin -=-3、()βαβαβαsin sin cos cos cos -=+4、()βαβαβαsin sin cos cos cos +=-第二章:平面向量§2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量. §2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量AB 的大小,也就是向量AB 的长度(或称模),记作AB ;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行. §2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量. §2.2.1、向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2、b a +≤b a +.§2.2.2、向量减法运算及其几何意义1、 与a 长度相等方向相反的向量叫做a 的相反向量.2、 三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、 规定:实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘.记作:a λ,它的长度和方向规定如下: ⑴a a λλ=,⑵当0>λ时, λ的方向与的方向相同;当0<λ时, λ的方向与的方向相反. 2、 平面向量共线定理:向量()≠与 共线,当且仅当有唯一一个实数λ,使λ=. §2.3.1、平面向量基本定理1、 平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内任一向量,有且只有一对实数21,λλ,使2211e e a λλ+=. §2.3.2、平面向量的正交分解及坐标表示 1、 ()y x y x ,=+=. §2.3.3、平面向量的坐标运算 1、 设()()2211,,,y x y x ==,则: ⑴()2121,y y x x ++=+,⑵()2121,y y x x b a --=-, ⑶()11,y x a λλλ=, 2、 设()()2211,,,y x B y x A ,则: ()1212,y y x x --=. §2.3.4、平面向量共线的坐标表示 1、设()()()332211,,,,,y x C y x B y x A ,则⑴线段AB 中点坐标为()222121,y y x x ++, ⑵△ABC 的重心坐标为()33321321,y y y x x x ++++.§2.4.1、平面向量数量积的物理背景及其含义1、 θ=⋅.2、 在θcos .3、 2a =.4、=.5、 0=⋅⇔⊥b a b a .§2.4.2、平面向量数量积的坐标表示、模、夹角 1、 设()()2211,,,y x b y x a ==,则:⑴2121y y x x +=⋅2121y x +=⑶121200a b a b x x y y ⊥⇔⋅=⇔+= 2、 设()()2211,,,y x B y x A ,则:()()212212y y x x -+-=.3、 两向量的夹角公式 21cos a b a bx θ⋅==+4、点的平移公式平移前的点为(,)P x y (原坐标),平移后的对应点为(,)P x y '''(新坐标),平移向量为(,)PP h k '=,则.x x hy y k '=+⎧⎨'=+⎩函数()y f x =的图像按向量(,)a h k =平移后的图像的解析式为().y k f x h -=-。
北师大版高中数学必修4第一章《三角函数》弧度制

7
抽象概括
4、任意一个0°~ 360°的角的弧度数为:
0 X 2
5、弧度制的定义:用弧度做单位来度量角的
制度叫做弧度制。 6、角度与弧度可以互化:
360 2 rad ;
1
180 rad ;
180 180 1rad ( ) 57.30 5718
得出结论:当圆的半径为1个单位长度时, 圆心角所对的弧长就是一个角的弧度数。所以, 我们可以用角的弧度数来度量角的大小。
6Hale Waihona Puke 抽象概括1、1弧度的角的定义:把长度等于半径长的弧 所对的圆心角叫做1弧度的角.符号是rad。
2、正角的弧度数
负角的弧度数 零角的弧度数
正数
负数 零
3、在单位圆中,当圆心角为周角时,它所 对的弧长(即圆周长)为2 ,所以周角的 弧度数是2 。
6 4
3
2
3
4
6
2
弧度制下的角与实数建立 一一对应关系
10
弧长与扇形面积公式
1、角度制下的弧长公式 弧度制下的弧长公式
l
n r 180
lr
n r
2
2、角度制下的扇形面积公式 S扇 弧度制制下的扇形面积公式 S 扇
360
1 lr 2
11
练习
2、把下列各弧度化成角度。
(1) 2 ; 2 ( 3) ; 3
换算关系
180 rad
基本关系
180 1rad 57.30 5718 13 导出关系
作业:
课本P11习题1-3 3、7
14
1、1º 的角是怎样规定的?
规定周角的1/360叫做1度的角。
北师大高中数学必修四知识点非常详细修订版

北师大高中数学必修四知识点非常详细修订版第一章函数的概念与性质1.1函数的概念1.2函数的基本性质函数的基本性质包括奇偶性、周期性、单调性和有界性等。
根据图像和函数表达式可以判断函数的性质。
第二章三角函数与解三角形2.1三角函数的概念与性质三角函数包括正弦函数、余弦函数、正切函数等。
它们的定义域和值域,以及图像和周期都有一定的规律。
2.2三角函数的运算三角函数之间可以进行各种运算,如加减乘除、复合函数、反函数等。
这些运算可以通过公式和性质来推导。
2.3解三角形解三角形是指根据给定的一些条件来确定三角形的各个角度和边长。
解三角形的方法有余弦定理、正弦定理、辅助角等。
第三章平面解析几何3.1向量的概念与运算向量是具有大小和方向的量,可以进行加减乘除等运算。
向量的基本性质有共线、共面、平行、垂直等。
3.2平面上的点与直线平面上的点与直线有一些基本的性质和关系。
可以使用两点式、点斜式、一般式等来表示直线。
3.3圆的概念与性质圆是由平面上与特定点的距离相等的所有点组成的集合。
圆的中心、半径、切线、弦等都有特定的性质。
第四章导数与微分4.1导数的概念与性质导数表示函数在其中一点处的变化率。
导数的性质有加法性、乘法性、链式法则等。
4.2导数的计算可以通过定义法、基本导数公式和导数运算法则等方法来计算导数。
常见的导数有多项式函数、指数函数、对数函数等。
4.3微分与微分中值定理微分是导数的一种近似。
微分中值定理是指在区间内存在特定点,使得该点的斜率等于该区间上的平均斜率。
第五章积分5.1不定积分与定积分不定积分是指求解原函数的过程,定积分是对函数在给定区间上的面积(或弧长等)进行求解。
5.2积分的性质与基本公式积分具有线性性质、区间可加性以及换元积分法等。
常见的积分有多项式积分、三角函数积分等。
5.3定积分的应用定积分可以应用于计算曲线下面的面积、旋转体的体积、弧长、质量、质心等问题。
这些知识点是北师大高中数学必修四的核心内容,对学生的数学能力培养具有重要意义。
北师大版数学必修四:第一章《三角函数》章节归纳梳理ppt课件

2sin 2 sin 2sin cos cos 2sin 2 sin 2sin 1 cos 1 2sin 1 sin tan
若 17 ,
6 1 1 则 f ( 17 ) 17 6 tan( ) tan(3 ) 6 6 1 1 3. 3 tan 6 3
三角函数的图像
对三角函数的图像的几点认识 本章在必修一学习基本初等函数图像画法的基础上,进一 步学习了三角函数图像的画法,完善了函数图像的画法理论,
主要包括以下内容.
(1)描点法.用列表、描点、连线的方式研究未知函数的图像 特征. (2)利用性质画简图,对于熟悉的函数可直接根据特殊点、线 画简图.如“五点法”“三点二线法”等.
【审题指导】解答本题的关键是利用诱导公式和因式分解的 方法化简求值.
【规范解答】f 2sin cos cos
2sin 2 sin( )
2sin cos cos
正弦、余弦、正切函数的诱导公式 对正弦、余弦、正切函数的诱导公式的理解
和应用
(1)理解方法:借助单位圆,根据角终边的对称性和三角函数 的定义理解. (2)记忆方法:奇变偶不变,符号看象限
(3)应用方法:用诱导公式一方面可化任意角为0°~90°的 角,另一方面可实现正弦与余弦之间的互化.因此在应用诱导 公式时,要根据题目的要求恰当选择公式.
4
小的θ 值是( (A)
3 4
) (B)
4
(C)
4
(D)
3 4
(2)已知角α 的终边与角-330°的终边关于原点对称,则其中 绝对值最小的角α 是_______. 【审题指导】(1)解答的关键是判断出θ与
高中数学必修四第一章知识点梳理-1

)高中数学必修四第一章知识点梳理一、角的概念的推广●任意角的概念角可以看成平面内一条射线绕着端点从一个位置转到另一个位置所成的图形。
●正角、负角、零角按逆时针方向旋转成的角叫做正角, 按顺时针方向旋转所成的角叫做负角,一条射线没有作任何旋转所成的叫做零角。
可见,正确理解正角、负角和零角的概、关键是看射线旋转的方向是逆时针、顺时针还是 没有转动。
●象限角、轴线角当角的顶点与坐标原点重合,角的始边与 x 轴的非负半轴重合时,那么角的终边在第几象 限(终边的端点除外),就说这个角是第几象限角。
当角的顶点与坐标原点重合,角的始边与 x 轴的非负半轴重合时,终边落在坐标轴上的角 叫做轴线角。
●终边相同角所有与角α 终边相同的角,连同角α 在内,可构成集合 S={β |β =α +k • 360°,k ∈Z}, 即任一与角α 终边相同的角,都可以表示成角α 与整数个周角的和。
二、弧度制●角度定义制规定周角的1360为一度的角,记做 1°,这种用度作为单位来度量角的单位制叫做角度制,角度制为 60 进制。
●弧度制定义1、长度等于半径的弧度所对的圆心角叫做 1 弧度的角。
用弧度作为单位来度量角的单位 制叫做弧度制。
1 弧度记做 1rad 。
2、根据圆心角定理,对于任意一个圆心角α ,它所对的弧长与半径的比与半径的大小无 关,而是一个仅与角α 有关的常数,故可以取为度量标准。
●弧度数一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是 0.如果半径为 r 的圆的圆心角α 所对的弧的长为 l ,那么,角α 的弧度数的绝对值是|α |= l r。
α 的正负由角α 的终边的旋转方向决定,逆时针方向为正,顺时针方向为负。
三、任意角的三角函数●任意角的三角函数的定义设α 是一个任意大小的角, α 的终边上任意点 P 的坐标是( x,y ),它与原点的距离 r( r = x 2 + y 2 > 0 ,那么1、比值 y r y叫做α 的正弦,记做 sin α ,即 sin α = 。
北师大版高中数学必修四知识点汇总

性 最小正周期为 2
最小正周期为 2
k 0 ;最小正周期为
奇
偶
奇函数
偶函数
奇函数
性
单
调 在 2k
, 2k
性
2
2
在 2k
,2 k k
上 在k
,k
2
2
-3-
k
上是增函数;在
是增函数; 在 2k ,2 k
k
上是增函数.
3
2k
, 2k
2
2
k
上是减函数.
对 对称中心 k ,0 k
称
性 对称轴 x k
k
2
k
上是减函数.
终边在 y 轴上的角的集合为
k 180 90 , k
终边在坐标轴上的角的集合为
k 90 , k
3、与角 终边相同的角,连同角 在内,都可以表示为集合 { |
k 360 ,k Z }
4、弧度制:
( 1)定义:等于半径的弧所对的圆心角叫做 1 弧度的角,用弧度做单位叫弧度制。
半径为 r 的圆的圆心角 所对弧的长为 l ,则角 的弧度数的绝对值是
30
45 60 90 120 135 150 180
2
3
5
的弧度 0
6
4
3
2
3
4
6
sin
0
1 2
2
3
1
2
2
3
2
1
2
2
2
0
cos
1
3
2
1
2
2
2
0
1 2
2 2
3 2
1
tan
0
数学必修四知识点总结

数学必修四知识点总结数学必修四是高中数学学习中的重要组成部分,它涵盖了三角函数、平面向量以及三角恒等变换等内容。
以下是对这些知识点的详细总结。
一、三角函数(一)任意角和弧度制角可以分为正角、负角和零角。
角的度量除了角度制,还有弧度制。
弧度的定义是:长度等于半径长的弧所对的圆心角叫做 1 弧度的角。
弧度与角度的换算公式为:180°=π 弧度。
(二)任意角的三角函数设角α的终边上任意一点 P 的坐标为(x,y),它与原点的距离为r(r>0),则正弦函数sinα = y/r,余弦函数cosα = x/r,正切函数tanα = y/x (x≠0)。
三角函数在各象限的符号规律:一全正,二正弦,三正切,四余弦。
同角三角函数的基本关系:sin²α +cos²α = 1,tanα =sinα/cosα 。
(三)诱导公式诱导公式可以将任意角的三角函数转化为锐角的三角函数。
例如,sin(π +α)=sinα,cos(π +α)=cosα ,sin(α)=sinα ,cos(α)=cosα 等等。
(四)三角函数的图象和性质1、正弦函数 y = sin x 的图象是一个周期为2π 的波浪形曲线,其定义域为 R,值域为-1,1,在π/2 +2kπ,π/2 +2kπ(k∈Z)上单调递增,在π/2 +2kπ,3π/2 +2kπ(k∈Z)上单调递减。
2、余弦函数 y = cos x 的图象也是一个周期为2π 的波浪形曲线,其定义域为 R,值域为-1,1,在2kπ π,2kπ(k∈Z)上单调递增,在2kπ,2kπ +π(k∈Z)上单调递减。
3、正切函数 y = tan x 的图象是由无数个周期为π的曲线组成,其定义域为{x |x ≠ π/2 +kπ,k∈Z},值域为 R,在(π/2 +kπ,π/2 +kπ)(k∈Z)上单调递增。
(五)函数 y = Asin(ωx +φ)的图象通过对 y = sin x 的图象进行平移、伸缩变换,可以得到 y = Asin (ωx +φ)的图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10 < r < 10.于是扇形的面积为 π+1 1 10 S = (20 − 2r)r = −(r − 5)2 + 25( < r < 10).当 r = 5 时,l = 10 ,α = 2,S 取得 2 π+1 最大值,此时最大值为 25cm2 .故当扇形的圆心角 α 等于 2 弧度时,这个扇形的面积最大, 最大面积是 25cm2 . 1 (2)设扇形的半径是 r ,弧长是 l ,扇形的周长为 y ,则 y = l + 2r.由题意得 lr = 25,则 2 50 50 ,所以 y = l= + 2r.利用函数单调性的定义可证明:当 0 < r ≤ 5 时,函数 r r 50 50 y= + 2r 是减函数;当 r > 5 时,函数 y = + 2r 是增函数.所以,当 r = 5 时,y r r l 取得最小值 20,此时 l = 10 ,α = = 2 ,即当扇形圆心角为 2 弧度时,扇形周长取最小值为 r 20. 0 < 20 − 2r < 2πr,所以
π rad 的角的正弦.一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度 3 数是 0 .如果半径为 r 的圆的圆心角 α 所对的弧的长为 l ,那么角 α 的弧度数的绝对值是 l .这里, α 的正负由角 α 的终边的旋转方向决定. |α| = r
角度与弧度的换算
π 表示 3
360 ∘ = 2πrad, 180 ∘ = πrad π rad ≈ 0.01745rad 1∘ = 180 180 ∘ 1rad = ( ) ≈ 57.30∘ = 57∘ 18 ′ π
解:15∘ = 15 × (1)一个扇形的周长为 20cm,当扇形的圆心角等于多少弧度时,这个扇形的面积最大?并求出 这个扇形面积的最大值. (2)一个扇形的面积为 25cm 2 ,当扇形的圆心角等于多少弧度时,这个扇形的周长最小?并求 出这个扇形周长的最小值. 解:(1)设扇形的半径为 r ,则弧长为 l = (20 − 2r).由 0 < l < 2πr ,得
1 1 ,1 弧度的角是圆周角的 ; 360 2π
15∘ ;−135 ∘ ;−
2 π ;1 3 π π
3 π π ; = 180 12 π 3 −135 ∘ = −135 × = − π; 180 4 2 2π 180 ∘ − π=− ×( ) = −120 ∘ ; 3 3 π 180 ∘ 1 = 1×( ) ≈ 57.3 ∘ . π
高中数学必修4(北师版)知识点总结含同步练习题及答案
第一章 三角函数 1.3 弧度制
一、知识清单
弧度制
二、知识讲解
1.弧度制 描述: 角度制与弧度制 用度作为单位来度量角的制度叫做角度制 (degree measure).用弧度作为单位来度量角的制 度叫做弧度制 (radian measure).把长度等于半径长的弧所对的圆心角叫做 1 弧度的角, 用符号 rad 来表示,读作弧度.今后我们在用弧度制表示角的时候,弧度二字或者 rad 可以略 去不写,而只写这个角对应的弧度数.例如 ∠α = 2 表示 α 是 2rad 的角,sin
扇形的弧长公式 l = |α| ⋅ r (其中 α 指扇形的圆心角的弧度数, r 指扇形的半径) 扇形的面积公式
S=
长)ห้องสมุดไป่ตู้
1 1 lr = |α|r2 2 2
(其中 α 指扇形的圆心角的弧度数, r 指扇形的半径, l 指扇形的弧
例题: 下列叙述中,错误的是______. ① “度”与“弧度”是度量角的两种不同的度量单位; ②无论是用角度制还是用弧度制度量角,它们都与圆的半径长度有关; ③1 度的角是圆周角的 ④1 弧度是长度为半径长的弧所对的圆心角. 解:②. 将下列角度与弧度进行互化.
高考不提分,赔付1万元,关注快乐学了解详情。