Ch2线性规划
线性规划知识点总结

线性规划知识点总结线性规划(Linear Programming)是一种优化问题的数学方法,用于在一定的约束条件下,寻找一个线性目标函数的最优解。
线性规划常被应用于经济、生产、管理等领域,旨在优化资源的利用,实现目标的最大化或最小化。
本文将对线性规划的基本概念、问题建模、解决方法以及应用领域进行总结。
一、基本概念1.1 目标函数目标函数是线性规划的核心部分,通常用来衡量系统的效益。
它是一个关于决策变量的线性函数,其形式可以是最大化或最小化。
1.2 约束条件约束条件用来限制决策变量的取值范围,确保问题的解满足实际情况。
约束条件可以是等式约束或不等式约束,也可以包含多个条件。
1.3 决策变量决策变量是问题中的未知数,决策者需要根据实际情况确定其取值范围,以达到最优解。
二、问题建模2.1 目标函数的确定根据实际问题确定目标函数,并明确最大化或最小化的目标。
2.2 约束条件的设定根据问题的实际情况,将约束条件转化为线性等式或不等式,并将其表示成一组数学表达式。
2.3 决策变量的确定根据问题的要求,确定决策变量的取值范围,可用数学符号表示。
三、解决方法3.1 图形法图形法是线性规划中最直观的解法,适用于二维或三维线性规划问题。
通过绘制等式或不等式的图形,找出目标函数的最优解。
3.2 单纯形法单纯形法是一种高效的解法,适用于多维线性规划问题。
通过构建初始可行解,通过迭代计算,逐步接近最优解。
3.3 整数规划整数规划是线性规划的扩展,要求决策变量取值为整数。
其求解方法包括分支定界法、割平面法等。
四、应用领域4.1 生产与运作管理线性规划可用于生产计划、物流优化、资源调度等问题,通过最优化资源利用,降低成本、提高效益。
4.2 金融领域线性规划被广泛应用于证券组合优化、资产配置、风险管理等领域,帮助投资者做出最佳投资决策。
4.3 能源与环境管理线性规划用于能源生产、污染物排放控制等问题,通过均衡能源利用,降低环境影响。
线性规划知识点总结

线性规划知识点总结一、概述线性规划是一种数学优化方法,用于在给定的约束条件下最大化或最小化线性目标函数。
它在各个领域中都有广泛的应用,包括经济学、管理科学、工程等。
本文将对线性规划的基本概念、模型构建、解法以及应用进行详细总结。
二、基本概念1. 可行解:满足所有约束条件的解称为可行解。
2. 最优解:在所有可行解中,使目标函数达到最大或最小值的解称为最优解。
3. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
4. 约束条件:线性规划的变量需要满足一系列线性等式或不等式,称为约束条件。
三、模型构建1. 决策变量:线性规划中需要决策的变量,通常用x1, x2, ..., xn表示。
2. 目标函数:根据问题的要求,构建一个线性函数作为目标函数。
3. 约束条件:根据问题的限制条件,构建一系列线性等式或不等式作为约束条件。
四、解法1. 图形法:适用于二维线性规划问题,通过绘制约束条件的图形,找出目标函数的最优解。
2. 单纯形法:适用于多维线性规划问题,通过迭代计算,找出最优解。
3. 整数规划法:适用于决策变量需要为整数的线性规划问题,通过限制变量的取值范围,找出最优解。
4. 网络流法:适用于网络优化问题,通过建立网络模型,找出最优解。
五、应用1. 生产计划:线性规划可以帮助企业制定最优的生产计划,以最小化成本或最大化利润。
2. 资源分配:线性规划可以帮助政府或组织合理分配资源,以满足各方面的需求。
3. 运输问题:线性规划可以帮助解决物流运输问题,以最小化运输成本。
4. 投资组合:线性规划可以帮助投资者选择最优的投资组合,以最大化收益或最小化风险。
六、案例分析以生产计划为例,假设某公司有两种产品A和B,每单位产品A的利润为10元,每单位产品B的利润为15元。
公司有两个工厂,分别生产产品A和产品B。
工厂1每天生产产品A需要耗费2小时,生产产品B需要耗费1小时;工厂2每天生产产品A需要耗费1小时,生产产品B需要耗费3小时。
线性规划的约束条件与解的存在性知识点总结

线性规划的约束条件与解的存在性知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
在解决各种实际问题中,线性规划发挥着重要作用,而理解线性规划的约束条件与解的存在性是掌握这一方法的关键。
一、线性规划的基本概念线性规划问题通常是在一组线性约束条件下,求一个线性目标函数的最大值或最小值。
这些约束条件和目标函数都是由线性方程或线性不等式组成。
目标函数可以表示为:Z = c₁x₁+ c₂x₂+… + cnxn ,其中 cj(j =1, 2, …, n)是常数,xj(j =1, 2, …, n)是决策变量。
约束条件则可以写成:a₁₁x₁+ a₁₂x₂+… + a₁nxn ≤(≥、=)b₁;a₂₁x₁+ a₂₂x₂+… + a₂nxn ≤(≥、=)b₂;…… ;am₁x₁+ am₂x₂+… +amnxn ≤(≥、=)bm 。
二、约束条件约束条件是对决策变量取值的限制。
它们决定了可行解的范围。
1、不等式约束不等式约束可以分为小于等于(≤)、大于等于(≥)两种情况。
例如,3x +2y ≤ 12 表示了一个约束条件,意味着变量 x 和 y 的取值组合必须使得 3x + 2y 的值不超过 12 。
2、等式约束等式约束形如 ax + by = c ,表示变量 x 和 y 的取值组合必须满足该等式。
3、非负约束在许多实际问题中,决策变量通常要求是非负的,即x ≥ 0 ,y ≥ 0 。
这是因为某些资源或数量不能为负数。
三、可行解与可行域满足所有约束条件的解称为可行解。
所有可行解的集合构成可行域。
例如,对于约束条件:x +y ≤ 5 ,x ≥ 0 ,y ≥ 0 ,点(2, 2) 是一个可行解,因为 2 + 2 =4 ≤ 5 ,且2 ≥ 0 ,2 ≥ 0 。
而所有满足这些条件的点(x, y) 构成的区域就是可行域。
可行域通常是一个凸多边形或凸多面体。
凸的性质意味着如果在可行域中取两个点,那么连接这两个点的线段上的所有点也都在可行域内。
线性规划的定义及解题方法

线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
线性规划知识点

线性规划知识点一、概述线性规划是一种数学优化方法,用于求解线性约束条件下的最优解。
它广泛应用于经济、工程、运输、资源分配等领域。
本文将介绍线性规划的基本概念、模型建立、求解方法以及应用案例。
二、基本概念1. 变量:线性规划中的决策变量表示问题中需要优化的量,可以是实数、整数或布尔值。
2. 目标函数:线性规划的目标函数是需要最小化或最大化的线性表达式,通常表示为求解最小值或最大值。
3. 约束条件:线性规划的约束条件是限制变量取值范围的线性等式或不等式。
4. 可行解:满足所有约束条件的变量取值组合称为可行解。
5. 最优解:在所有可行解中,使目标函数取得最小值或最大值的解称为最优解。
三、模型建立线性规划的建模过程包括确定决策变量、建立目标函数和约束条件。
1. 决策变量的确定:根据问题的实际情况,确定需要优化的变量及其取值范围。
2. 目标函数的建立:根据问题的要求,将需要最小化或最大化的目标转化为线性表达式。
3. 约束条件的建立:根据问题的限制条件,将约束条件转化为线性等式或不等式。
四、求解方法线性规划可以使用多种方法求解,常见的有单纯形法和内点法。
1. 单纯形法:单纯形法是一种迭代求解方法,通过不断移动顶点来逼近最优解。
它从一个可行解开始,通过交换变量的值来改进目标函数的值,直到找到最优解。
2. 内点法:内点法是一种基于迭代的方法,通过在可行域内寻找最优解。
它通过将可行域内的点逐渐移向最优解,直到找到最优解。
五、应用案例线性规划在实际应用中具有广泛的应用场景,以下是一个简单的应用案例:假设某公司生产两种产品A和B,每单位产品A的利润为10元,每单位产品B的利润为8元。
公司有两个车间可供生产,每个车间每天的工作时间为8小时。
产品A每单位需要1小时的生产时间,产品B每单位需要2小时的生产时间。
车间1每天最多可生产100单位产品A或80单位产品B,车间2每天最多可生产80单位产品A或60单位产品B。
公司希望确定每天的生产计划,以最大化利润。
线性规划通过线性规划解决实际问题

线性规划通过线性规划解决实际问题线性规划是一种数学优化方法,广泛应用于解决实际问题。
它能够帮助我们合理安排资源,最大化利益或最小化成本。
通过线性规划,我们可以得到一个最优的决策方案。
一、线性规划的基本概念和原理线性规划是一种在约束条件下求解线性目标函数的优化问题。
它的基本概念包括决策变量、目标函数和约束条件。
1. 决策变量: 在线性规划中,我们需要定义一些决策变量,它们代表着我们需要做出的决策或者选择的方案。
2. 目标函数: 目标函数是线性规划中需要优化的目标,可以是最大化利润、最小化成本等。
3. 约束条件: 约束条件是限制线性规划问题的条件,可以是资源的限制、技术要求等。
线性规划的原理是通过建立数学模型,将实际问题转化为数学问题,然后通过求解数学模型来得到最优解。
二、线性规划的应用领域线性规划在实际中有着广泛的应用领域,下面举几个例子来说明:1. 生产计划: 一家制造厂需要决定如何安排生产计划,以最大化利润。
线性规划可以帮助厂商确定每种产品的生产数量,以及每种产品所需要的资源和人力安排。
2. 运输调度: 一个物流公司需要决定如何合理地调度运输车辆,以最小化运输成本。
线性规划可以帮助物流公司确定各个仓库之间的物流路径和货物的运输量。
3. 资源分配: 一个学校需要决定如何合理地分配教职工和学生的资源,以最大化教育效益。
线性规划可以帮助学校确定教职工的安排和学生的班级编排。
三、线性规划的解决步骤解决线性规划问题一般需要以下几个步骤:1. 建立模型: 根据实际问题,将问题转化为线性规划模型,包括确定决策变量、目标函数和约束条件。
2. 求解方法: 使用线性规划方法,如单纯形法、对偶法等,求解线性规划模型,得到最优解。
3. 解释结果: 对最优解进行解释和分析,确定最优决策方案。
四、线性规划方法的优势和局限性线性规划方法有一定的优势和局限性。
1. 优势:线性规划方法是一种成熟、有效、可靠的数学方法,能够提供合理的决策方案。
线性规划知识点

线性规划知识点一、什么是线性规划线性规划是一种数学优化方法,用于解决在给定约束条件下的线性目标函数的最优化问题。
线性规划的目标函数和约束条件都是线性的,因此可以通过线性代数的方法进行求解。
线性规划在实际问题中有广泛的应用,如生产计划、资源分配、运输问题等。
二、线性规划的基本要素1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,通常表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中 Z 为目标函数值,c₁, c₂, ..., cₙ 为系数,x₁,x₂, ..., xₙ 为决策变量。
2. 决策变量:决策变量是问题中需要决策的变量,通常表示为x₁, x₂, ..., xₙ。
决策变量的取值决定了目标函数的值。
3. 约束条件:约束条件限制了决策变量的取值范围。
约束条件可以是等式约束或不等式约束,通常表示为 a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,a₂₁x₁ +a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂,...,aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ,其中 a₁₁, a₁₂, ..., aₙₙ 为系数,b₁, b₂, ..., bₙ 为常数。
4. 非负约束:线性规划中通常要求决策变量的取值非负,即 x₁ ≥ 0, x₂ ≥ 0, ...,xₙ ≥ 0。
三、线性规划的解法线性规划可以通过不同的方法进行求解,常见的方法包括图形法、单纯形法和内点法。
1. 图形法:图形法适用于二维或三维的线性规划问题。
首先将目标函数和约束条件转化为几何形式,然后在坐标系中绘制约束条件的图形,最后通过图形的分析找到最优解点。
2. 单纯形法:单纯形法是一种通过迭代寻找最优解的方法。
该方法从一个可行解开始,通过不断移动到相邻的可行解来逐步接近最优解。
单纯形法的核心是单纯形表,通过表格的变换和计算来确定下一个迭代点,直到找到最优解。
3. 内点法:内点法是一种通过迭代寻找最优解的方法。
线性规划知识点总结

线性规划知识点总结引言概述:线性规划是一种数学优化方法,用于在给定的约束条件下最大化或者最小化线性目标函数。
它在各种领域中都有广泛的应用,包括经济学、管理学、工程学等。
本文将对线性规划的基本概念、模型构建、求解方法和应用进行详细阐述。
一、线性规划的基本概念1.1 目标函数:线性规划的目标函数是一个线性函数,用于表示需要最大化或者最小化的目标。
1.2 约束条件:线性规划的约束条件是一组线性等式或者不等式,用于限制变量的取值范围。
1.3 可行解与最优解:线性规划问题存在无穷多个可行解,但惟独一个最优解,即使满足所有约束条件且使目标函数取得最大(或者最小)值的解。
二、线性规划模型构建2.1 决策变量:线性规划模型中的决策变量是需要优化的变量,可以是实数、整数或者二进制数。
2.2 目标函数的构建:根据问题的具体要求,将目标转化为线性函数的形式,并确定是最大化还是最小化。
2.3 约束条件的建立:根据问题的限制条件,将其转化为线性等式或者不等式的形式,并确定约束条件的数学表达式。
三、线性规划的求解方法3.1 图形法:对于二维线性规划问题,可以使用图形法进行求解。
通过绘制约束条件的直线或者曲线,找到目标函数的最优解点。
3.2 单纯形法:单纯形法是一种常用的求解线性规划问题的方法。
通过迭代计算,不断改变基变量和非基变量的取值,直到找到最优解。
3.3 整数规划法:当决策变量需要取整数值时,可以使用整数规划法进行求解。
该方法将线性规划问题转化为整数规划问题,并采用分支定界等算法求解最优解。
四、线性规划的应用4.1 生产计划:线性规划可以用于确定最佳的生产计划,以最大化产量或者最小化成本。
4.2 资源分配:线性规划可以用于优化资源的分配,如确定最佳的人力资源配置、物资采购策略等。
4.3 运输问题:线性规划可以用于解决运输问题,如确定最佳的货物运输路线和运输量,以降低运输成本。
4.4 金融投资:线性规划可以用于优化金融投资组合,以最大化收益或者最小化风险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
生产计划的问题
Page 17
解:设 x1,x2,x3 分别为三道工序都由本公司加工的甲、乙、丙三种
产品的件数,x4,x5 分别为由外协铸造再由本公司加工和装配的甲、乙两
种产品的件数。 求 xi 的利润:利润 = 售价 - 各成本之和
产品甲全部自制的利润
产品甲铸造外协,其余自制的利润 产品乙全部自制的利润
人力资源分配的问题
Page 23
解:设 xi 表示第i班次时开始上班的司机和乘务人员数 ,这样我们建立如下的数学模型。
x1 + x2 + x3 + x4 + x5 + x6 约束条件:s.t. x1 + x6 ≥ 60 x1 + x2 ≥ 70 x2 + x3 ≥ 60 x3 + x4 ≥ 50 x4 + x5 ≥ 20 x5 + x6 ≥ 30 x1,x2,x3,x4,x5,x6 ≥ 0且全为整数
=23-(3+2+3)=15
=23-(5+2+3)=13 =18-(5+1+2)=10
产品乙铸造外协,其余自制的利润
产品丙的利润
=18-(6+1+2)=9
=16-(4+3+2)=7
可得到 xi (i = 1,2,3,4,5) 的利润分别为 15、10、7、13、9
元。
17
生产计划的问题
பைடு நூலகம்
Page 18
材料A 材料B
2 1
1 1.5
40 30
利润(元/件)
300
400
2.1 典型问题举例
2015年1月25日星期日 Page 6
线性规划的数学模型由 决策变量 Decision variables 目标函数Objective function 及约束条件Constraints 构成。称为三个要素。
怎样辨别一个模型是线性规划模型?
max(min) Z c1 x1 c2 x2
cn xn
a11 x 1 a12 x2 a1n xn (或 , )b1 a x a x a x (或 , )b 2n n 2 21 1 22 2 a x a x a x (或 , )b mn n m m1 1 m 2 2 x j 0, j 1, 2, , n
其特征是: 1.解决问题的目标函数是多个决策变量的
线性函数,通常是求最大值或 最小值; 2.解决问题的约束条件是一组多个决策变量 的线性不等式或等式。
2.1 典型问题举例
2015年1月25日星期日 Page 7
【例2-2】某商场决定:营业员每周连续工作5天后连续休息2天, 轮流休息。根据统计,商场每天需要的营业员如表1-2所示。
20
生产计划的问题
目标函数为计算利润最大化,利润的计算公式为: 利润 = [(销售单价 - 原料单价)* 产品件数]之和 -
Page 21
(每台时的设备费用*设备实际使用的总台时数)之和。
这样得到目标函数:
Max(1.25-0.25)(x111+x112)+(2-0.35)x221+(2.80-0.5)x312 – 300/6000(5x111+10x211)-321/10000(7x112+9x212+12x312)250/4000(6x121+8x221)-783/7000(4x122+11x322)200/4000(7x123).
2.1 典型问题举例
2015年1月25日星期日 Page 4
应用模型举例
【例2-1】生产计划问题。某企业在计划期内计划生产甲、乙两 种产品。按工艺资料规定,每件产品甲需要消耗材料A 2公斤, 消耗材料B 1公斤,每件产品乙需要消耗材料 A 1公斤,消耗材 料B 1.5公斤。已知在计划期内可供材料分别为 40、30公斤;每 生产一件甲、乙两产品,企业可获得利润分别为 300、400元, 如表1- 1所示。假定市场需求无限制。企业决策者应如何安排 生产计划,使企业在计划期内总的利润收入最大。
min Z x1 x 2 x3 x 4 x5 x 6 x 7 x1 x 4 x5 x 6 x 7 x x x x x 2 5 6 7 1 x1 x 2 x3 x 6 x 7 x1 x 2 x3 x 4 x 7 x1 x 2 x3 x 4 x5 x 2 x3 x 4 x5 x 6 x3 x 4 x5 x 6 x 7 x 0, j 1,2, ,7 j 300 300 350 400 480 600 550
Page 13
2.4 一些应用案例建模
2.1 典型问题举例
2015年1月25日星期日 Page 14
生产计划问题
人力资源规划问题 合理下料问题
配料问题(营养配餐、混合问题)
购销存问题(生产和库存系统优化、木材库存) 合理搭载问题(货轮装运优化) 投资计划问题(连续投资) 运输问题 仓库租赁问题(贷款问题)
2.4 一些应用案例建模
2015年1月25日星期日
Page 15
项目投资优化问题
厂址选择问题
飞行器能源优化问题
机械租赁问题 种植计划问题
生产计划的问题
Page 16
例.某公司面临一个是外包协作还是自行生产的问题 。该公司生产甲、乙、丙三种产品,都需要经过铸造、机 加工和装配三个车间。甲、乙两种产品的铸件可以外包协 作,亦可以自行生产,但产品丙必须本厂铸造才能保证质 量。数据如表。问:公司为了获得最大利润,甲、乙、丙 三种产品各生产多少件?甲、乙两种产品的铸造中,由本 公司铸造和由外包协作各应多少件?
班次 1 2 3 4 5 6 时间 6:00 —— 10:00 10:00 —— 14:00 14:00 —— 18:00 18:00 —— 22:00 22:00 —— 2:00 2:00 —— 6:00 所需人数 60 70 60 50 20 30
Page 22
设司机和乘务人员分别在各时间段一开始时上班,并 连续工作八小时,问该公交线路怎样安排司机和乘务人员, 既能满足工作需要,又配备最少司机和乘务人员? 22
x1,x2,x3,x4,x5 ≥ 0且全为整数
18
生产计划的问题
例.永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两 道工序加工。设有两种规格的设备A1、A2能完成 A 工序; 有三种规格的设备B1、B2、B3能完成 B 工序。Ⅰ可在A、B 的任何规格的设备上加工;Ⅱ 可在任意规格的A设备上加 工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设 备上加工。数据如表。问:为使该厂获得最大利润,应如 何制定产品加工方案?
表1-2 营业员需要量统计表
星期 一 二 三 四
需要人数 300 300 350 400
星期 五 六 日
需要人数 480 600 550
商场人力资源部应如何安排每天的上班人数,使商场总的营业员 最少。
2.1 典型问题举例
2015年1月25日星期日 Page 8
【解】 设xj(j=1,2,…,7)为休息2天后星期一到星期日开始上班 的营业员,则这个问题的线性规划模型为
为了书写方便,上式也可写成:
2.2 线性规划模型的一般形式
2015年1月25日星期日
Page 12
max(min) Z c j x j
j 1
n
n aij x j (或 , )bi j 1 x 0, j 1, 2, , n j
i 1, 2,
,m
在实际中一般xj≥0,但有时xj≤0或xj无符号限制。
星 期 一 二 三 四 需要 人数 300 300 350 400 星 期 五 六 日 需要 人数 480 600 550
2.1 典型问题举例
2015年1月25日星期日 Page 9
最优解:
1 X1 2 X2 3 X3 0 C1 67 C2 146 C3 404 >= 301 >= 350 >= 300 300 350 104 1 0
经整理可得:
Max0.75x111+0.7753x112+1.15x211+1.3611x212+1.9148x312-0.375x121-
0.5x221-0.4475x122-1.2304x322-0.35x123
21
人力资源分配的问题
某昼夜服务的公交线路每天各时间段内所需司机 和乘务人员数如下:
通过以上分析,可建立如下的数学模型:
目标函数: 约束条件:
Max
15x1 + 10x2 + 7x3 + 13x4 + 9x5 4x2 + 8x3 + 6x4 + 4x5 ≤ 12000 2x2 + 2x3 + 3x4 + 2x5 ≤ 10000
5x1 + 10x2 + 7x3 ≤ 8000 6x 1 + 3x 1 +
Page 19
19
生产计划的问题
5x111 + 10x211 6x121 + 8x221 4x122 s.t. 7x123 ≤ 6000 ( 设备 A1 ) ( 设备 A2 ) ( 设备 B1 ) ( 设备 B2 ) ( 设备 B3 )
Page 20
解:设 xijk 表示第 i 种产品,在第 j 种工序上的第 k 种设备上加工的数 量。建立如下的数学模型: 7x112 + 9x212 + 12x312 ≤ 10000 ≤ 4000 + 11x322 ≤ 7000 ≤ 4000