土力学论文

合集下载

土力学与地基基础论文

土力学与地基基础论文

土力学与地基基础论文引言:土力学是土壤力学的简称,是研究土壤力学性质和土壤力学变形规律的科学。

在土木工程中,地基基础是承受建筑物自身重力和外部荷载传递到地下的结构部分。

因此,土力学与地基基础的研究对于确保工程的安全性和可靠性至关重要。

本文将重点探讨土力学与地基基础的相关理论和实践。

一、土力学基础知识1. 土壤力学性质土壤力学性质是指土壤在受力作用下的力学反应。

其中包括土壤的颗粒组成、密实度、含水量、含气量等基本性质。

了解土壤的这些性质对于土力学分析和地基基础设计至关重要。

2. 土壤力学参数土壤力学参数是描述土壤物理和力学特性的参数。

常用的土壤力学参数包括内摩擦角、剪切强度、孔隙比等。

这些参数的测定对于土力学和地基基础分析具有重要意义。

3. 土壤力学变形规律土壤在受力作用下会发生变形,土壤力学变形规律研究了土壤的弹性和塑性变形规律。

包括土壤的应力应变关系、体积变形等。

了解土壤的变形规律对于地基基础的设计和施工具有重要的指导作用。

二、地基基础设计原理1. 地基基础分类地基基础根据其形式可以分为浅基础和深基础。

浅基础包括承台、连续墙基础等,适用于较小的建筑物;深基础包括桩基、基槽等,适用于较大和特殊荷载的建筑物。

选择合适的基础形式是地基基础设计的重要环节。

2. 荷载分析地基基础设计需要进行荷载分析,即确定荷载的大小和作用方式。

常见的荷载包括建筑物自重、地震力、风力、水荷载等。

准确的荷载分析对于地基基础的强度计算和稳定性分析至关重要。

3. 基础设计计算基础设计计算是根据土壤力学理论和工程实践,计算基础结构的尺寸和强度。

基础设计计算需要考虑土壤的力学性质、地震作用、地下水位等因素。

合理的基础设计计算可以确保工程的安全和可靠。

三、地基基础施工和监测1. 地基基础施工地基基础施工是将设计好的地基基础安全地建造起来的过程。

地基基础施工包括基坑开挖、基础浇筑、基础处理等步骤。

施工过程中需注意土壤的侧压力、水平位移等因素,确保施工的质量和稳定性。

土力学论文

土力学论文

太沙基土力学的精髓与缺陷作为土力学的奠基人之一,卡尔·太沙基发表的著作总共达二百七十六件, 其中包括著书、论文和讨论等,他和他所提出的土力学基本原理以及各项研究成果所作出的贡献是极其重要并且不可替代的。

一、太沙基土力学的精髓1923年太沙基发表了渗透固结理论,第一次科学地研究土体的固结过程,同时提出了土力学的一个基本原理,即有效应力原理。

1925年,他发表的世界上第一本土力学专著《建立在土的物理学基础的土力学》被公认为是进入现代土力学时代的标志。

随后发表的《理论土力学》和《实用土力学》(中译名)全面总结和发展了土力学的原理和应用经验,至今仍为工程界的重要参考文献。

太沙基在1943年出版的巨著《理论土力学(Theoretical SoilMechanics)》,论述了土力学的几个最基本的理论,如有效应力原理、固结理论、沉降计算、剪切强度、承载力理论,以及土压力与边坡稳定等。

其中的有效应力原理奠定了土力学的基础,是土力学成为一门科学的重要标志。

【1】太沙基提出的有效应力原理的基本概念,阐明了碎散颗粒材料与连续固体材料在应力--应变关系上的重大区别。

土的抗剪强度和土的变形是土力学中两大主要问题。

土是由固相、液相、气相组成的三相介质。

三相组成间的比例不同,土的性质具有明显差别。

正是因为土的三相介质组成,相对于一般连续介质表现出不同的特点,土的强度问题和土的变形问题也就具有特殊性。

外荷载作用后,土中应力被土骨架和土中的水气共同承担,但是只有通过土颗粒传递的有效应力才会使土产生变形,具有抗剪强度。

而通过孔隙中的水气传递的孔隙压力对土的强度和变形没有贡献。

从试验中观察到在饱和土体中土的变形及强度与土体中的有效应力σ′密切相关,并建立了有效应力原理:σ =σ′+μ式中:σ为平面上法向总应力, kPa;σ′为平面上有效法向应力, kPa;μ为孔隙水压力, kPa。

有效应力原理阐明了碎散颗粒材料与连续固体材料在应力———应变关系上的重大区别,有效应力原理表示研究平面上的总应力、有效应力与孔隙水压力三者之间的关系:当总应力保持不变时,孔隙水压力与有效应力可以相互转化,即:有效孔隙水压力减小等于有效应力的等量增加。

土力学学术论文

土力学学术论文

土力学学术论文随着社会的高度现代化,土力学在工程上的应用范围越来越广,人类对土力学的研究也更加的深入。

下面是小编精心推荐的土力学学术论文,希望你能有所感触!土力学学术论文篇一岩土塑性力学摘要:分析了经典塑性力学用于岩土类材料的问题,它采用了3个不符合岩土材料变形机制的假设。

从固体力学原理直接导出广义塑性位势理论,将经典塑性力学改造为更一般的塑性力学―广义塑性力学。

广义塑性力学采用了塑性力学中的分量理论,能反映应力路径转折的影响,并避免了采用正交流动法则所引起的过大剪胀等不合理现象,也不会产生当前非关联流动法则中任意假定塑性势面引起的误差。

给出了广义塑性力学的屈服面理论、硬化定律和应力一应变关系,并建立了考虑应力主轴旋转的广义塑性位势理论。

屈服条件是状态参数,也是试验参数,只能由试验给出。

应用表明,广义塑性力学可作为岩土材料的建模理论,还可应用于诸如极限分析等土力学的诸多领域,具有广阔的应用前景。

关键词:岩土塑性力学;广义塑性力学1、前言多数岩土工程都处于弹塑性状态,因而岩土塑性在岩土工程的设计中至关重要。

早在1773年 Coulomb提出了土体破坏条件,其后推广为Mohr― Coulomb条件。

1857年 Rankine研究了半无限体的极限平衡,提出了滑移面概念。

1903年Kotter建立了滑移线方法。

Felenius(1929)提出了极限平衡法。

以后 Terzaghi、Sokolovski又将其发展形成了较完善的岩土滑移线场方法与极限平衡法。

1975 年,W.F.Chen在极限分析法的基础上又发展了土的极限分析法,尤其是上限法。

不过上述方法都是在采用正交流动法则的基础上进行的。

滑移线法与极限分析法只研究力的平衡,未涉及土体的变形与位移。

[1]20世纪50年代开始,人们致力于岩土本构模型的研究,力求获得岩土塑性的应力一应变关系,再结合平衡方程与连续方程,从而求解岩土塑性问题。

由此,双屈服面与多重屈服面模型l1-41、非正交流动法则在岩土本构模型中应运而生。

土木工程毕业论文7篇

土木工程毕业论文7篇

土木工程毕业论文7篇土木,指土木工程、建筑工程。

很多同学在写作土木毕业论文时候,不知道如何去拿捏题目,题目的选择一定要拿捏准,我们先看看别人的论文题目进行参考。

为了让您对于土木工程毕业论文的写作了解的更为全面,下面山草香给大家分享了7篇土木工程毕业论文,希望可以给予您一定的参考与启发。

土木工程论文篇一1土木工程施工中质量控制的内容1.1施工技术控制在进行土木工程施工时,管理人员必须监督和控制施工人员采用正确的施工工艺,以做到对施工技术的有效控制。

在运用新材料、新技术之前,必须了解使用性能,避免安全事故发生,使施工人员的生命安全得到可靠保障。

在施工现场,监管人员必须加强现场的监控力度,保证土木工程的施工质量。

1.2施工人员把控在土木工程施工中质量控制中,施工人员是最核心的组成部分,直接关系着土木工程的施工质量和完工时间,因此,企业要注重以人为本,增强质量控制意识,按照相关质量控制管理制度和标准,加强对全体工作人员的'考核。

在土木工程的施工过程中,采用激励制度增强施工人员的工作热情,才能保证建筑工程项目的顺利进行,以做到对土木工程施工质量的有效控制。

1.3施工工序调整在建筑工程项目施工期间,会因为气候、温度等原因影响施工工期,因此,想要保证土木工程施的工质量,不断加强施工质量控制,必须对施工工序进行合理调整,促进土木工程施工技术不断创新,达到提升土木工程施工技术水平的目的。

2土木工程施工中质量控制的有效策略面对土木工程施工过程可能出现的各种问题,企业必须采用有效策略,不断加强土木工程施工中的质量控制,才能保证建筑工程项目的施工质量,减低施工成本,促进建筑工程项目顺利完成。

2.1提高认识,完善土木工程施工质量管理体系随着建筑工程项目施工要求不断升高,想要加强土木工程施工中的质量控制,企业必须提高全体工作人员对质量控制的认识,增强质量管理意识,促进土木工程施工质量管理体系不断完善,才能给土木工程施工质量控制提供有力支持。

土力学论文

土力学论文

土力学论文土质学与土力学课程建议摘要:土质学与土力学在我们的本科阶段扮演着十分重要的角色,但在学习的过程中也存在一定的难度,本人根据自己学习这门课程的体会,产生了一些自己的想法和见解,在本文中作了简要阐述,希望老师能采纳并能得到最优化的授课效果。

希望在整个学习的过程中老师和我们都能有所收获,共同取得进步。

关键词:土质学与土力学、体会、建议首先,要说明一下,《土质学与土力学》这门课程在本科生学习阶段占3.5学分,是本学期同类课程中学分最高的一门课。

足以见得这门课对我们专业的重要性。

经过了将近8周的学习,我对这门课也有了相对熟悉的了解。

下面就谈一谈我的学习体会以及对这门课的一些建议:1、把握课堂,增加互动课堂学习对于我们学生来讲是非常重要的一个环节,根据我自己的体会,如果没有听好课,那么课下就要花费很长的时间来弥补,甚至还不一定能收到很好的效果,所以应该重视课堂学习,利用好每一节课。

但是我发现,《土质学与土力学》这门课相对来讲不是很容易就能消化吸收的,如果能够调动我们的学习兴趣,我想势必会收到很好的效果。

所以,我建议沿用我们在高中的讲课方式----互动学习,也就是在上课时多提出思考性的问题,听到我们去思考,然后解决,而不是一味的有老师讲授,让我们有一种听天书的感觉。

这样的互动学习既锻炼了我们的独立解决问题能力,又能对课程有比较深刻的印象,可以说一举两得。

2、定时答疑,不留疑问正是由于这门课的重要性,所以我们在学习的过程中不能留下疑问。

所以建议老师可以抽出部分课堂时间供学生答疑。

《师说》中说:“师者,所以传道授业解惑者也。

”这一“解惑”的环节,对于我们的专业学习会有很大的帮助。

我想,老师不仅可以帮助我们解决关于这一个学科的知识,关于专业工作以后会遇到的问题以及前沿性的一些问题,相信老师也可以给我们一些经验性的指导,为我们以后的发展提供帮助,这才是“解惑”的真正意义。

3、课堂测验,深入讲解首先肯定一下老师的课堂测验的考核方式。

孙聚龙土力学论文-渗流对边坡稳定性的影响

孙聚龙土力学论文-渗流对边坡稳定性的影响

渗流对边坡稳定性的影响孙聚龙(长沙理工大学市政工程专业103104020449)摘要边坡稳定性问题一直是工程地质、岩土工程等领域中一项最基本而又十分重要的研究课题。

影响边坡稳定性的因素较多,渗流既是一个重要影响因素,也是一个难点课题。

近年来,随着有限元理论和计算机技术的发展,进行渗流对边坡稳定影响的研究也越来越多。

渗流场和应力场作为边坡稳定分析的重要组成部分,二者相互作用、相互联系。

所以要对边坡稳定情况进行研究必须正确分析渗流对其作用。

一方面,渗流产生渗流场形成孔隙水压力,孔隙水压力作用到边坡上将改变边坡的应力状态,边坡的应力状态改变会造成土体的孔隙率和渗透系数的改变;另一方面,渗流系数和孔隙率的改变会使渗流场发生变化。

这样的渗流场相互作用,将对边坡稳定性产生影响。

边坡稳定性分析始于二十世纪初,发展至今形成了多种方法,虽然各种方法并存,具有各自的计算准则,但总体来说,边坡稳定性分析的发展遵循了以下这条主线,即从定性分析发展到定量分析。

其中,定量分析又经历了从确定性分析到非确定性分析的过程。

本文对国内外渗流及边坡稳定的研究现状进行了归纳总结。

概述了现在边坡稳定研究的方法,渗流的计算及边坡渗流的趋势进行了阐述。

关键词:渗流,边坡,稳定性,确定性目录摘要 (1)目录 (2)第一章边坡稳定性研究的现状 (3)1.1 定性分析方法 (3)1.2 定量分析方法 (3)1.2.1 确定性分析方法 (3)1.2.2 非确定性分析方法 (5)第二章渗流研究的现状 (5)2.1以实验研究为主的初级阶段 (6)2.2 以解析法为主要研究手段的发展阶段 (6)2.3 以数值模拟为主的高级阶段 (6)第三章渗流作用下边坡稳定性研究现状 (7)第四章渗流的计算 (7)4.1 渗流模型 (7)4.1.1 物理模型 (8)4.1.2 数学模型 (8)4.2 渗流计算 (9)4.2.1 解析法 (9)4.2.2 数值法 (9)4.2.3 实验模拟法 (9)4.3 应力场和渗流场的耦合作用 (9)4.4 渗流自由面 (11)4.5 渗透系数 (12)4.5.1 确定型模型结合实验方法 (12)4.5.2 随机模型方法 (12)4.5.3 克里格法 (13)4.5.4 数学模型反演求解法 (14)4.5.5 分形理论 (14)第五章边坡渗流研究的趋势 (14)参考文献 (16)第一章边坡稳定性研究的现状1.1定性分析方法该方法从边坡演化破坏中的主要影响因素、失稳力学机制以及变形破坏方式等进行考虑,以此分析评价边坡稳定的状态及预测边坡发展的趋势。

岩土试验力学课程论文

岩土试验力学课程论文

岩土试验力学课程论文第一篇:岩土试验力学课程论文岩土试验力学课程论文题目:岩土试验力学发展现状和前景专业:岩土工程一、岩土力学试验1.岩土力学试验概况要很好的解决岩土工程问题、防灾、治灾,必须首先进行勘察与测试、试验与分析,并利用土力学、岩石力学、基础工程、工程地质学等的理论与方法,对各类工程进行系统研究。

因此,岩土力学试验是岩土工程规划设计、防灾的前期工程,也是地基与基础设计,治理地质灾害的不可缺少的重要环节。

2.岩土力学试验目的(1)了解岩石本身的物理和力学性质;(2)岩体质量分级、工程地质条件与问题评价;(3)边坡、地基和隧道围岩变形及稳定性分析,地质灾害防治工程方案论证等;(4)为岩土工程设计与施工提供参数和依据;(5)揭示岩土的变形规律和强度特征及破裂机理,建立其数学力学模型,进行岩土工程结构的力学分析。

3.岩土力学试验内容(1)岩石物理性质试验含水率、颗粒密度、块体密度;(2)岩石水理性质试验吸水性、渗透性、膨胀性、耐崩解性和冻融性。

(3)岩石力学性质试验单轴压缩强度和变形试验、三轴压缩强度和变形试验、抗拉强度试验、直剪强度试验和点荷载强度。

二、岩土试验力学概况岩土试验力学是土木工程岩土专业的一个分支,它是一门十分重要的技术基础课。

它主要包括学习岩土实验力学的基本理论,知道岩土的物理力学性质、强度变形计算、稳定性分析、挡土墙及基坑围护的设计与计算、地基承载力等岩土力学基本理论与方法。

结合有关交通土建、建筑工程、土木工程的理论和施工知识,分析和解决岩体工程及地基基础问题。

三、岩土试验力学的发展现状1.计算方面由于岩土材料比较特殊,那么在研究岩土试验力学方面就会比较复杂。

岩土体本身就是一个复杂的系统,具有不确定性,不规则性和不明确性。

目前,我国的岩土试验力学工作者倾向于采用理想数学模型和力学模型建立和描述岩土的各类特性,结果往往不是很理想,甚至出现很大的偏差。

那么,为解决这一现状,为突破创新,新的方法和技术是必不可少的。

土力学论文(地基处理技术)

土力学论文(地基处理技术)

《土工原理与计算》结课论文论文题目:地基处理技术及发展趋势综述学院:专业:班级:学号:学生姓名:导师:2014年6 月2 日地基处理技术及发展趋势综述摘要:本文首先扼要介绍在我国应用的各种地基处理方法的分类、常用的传统处理方法基本原理和适用范围, 扼要介绍地基处理新技术,最后对今后地基处理的发展趋势做了探讨。

关键词:地基处理;分类;方法;发展趋势一.引言地基是建筑工程的基础,对于保护建筑工程稳定性以及抗震性具有重要的作用。

由于一般的建筑工程其实际的地基基础一般都处于地下埋深较浅的部位,因此,其基本的建筑承载力不足以支撑上层建筑。

所以,在实际的工程中需要首先对建筑地基进行基础处理,通过提高地基基础的承载能力,来有效改善建筑地基抗变形及其渗透性能。

在具体的建筑工程中,通过地基处理方法主要改变地基基础五方面的性质,地基的剪切性能、地基的抗变形压缩性能、地基基础的透水性能、地基的动力特性以及土的各种不良特性。

通过有效的地基处理手段,提高地基土的抗压、抗拉、抗剪以及渗透性等能力,从而保证建筑工程的施工稳定性。

随着建筑工程技术的发展,地基基础处理方法也逐渐丰富起来,有效的保证了建筑工程质量的稳定性和安全性,提高了实际建筑工程的质量。

二.地基处理方法的分类工业的发展、技术的进步促进了各种地基处理技术的发展。

近年来为满足工程建设的需要, 我国引进、发展了许多地基处理新技术。

目前在我国得到应用的地基处理技术有几十种之多。

事实上, 对地基处理方法进行严格的分类是很困难的。

不少地基处理方法具有多种效用,例如土桩和灰土桩法既有挤密作用又有置换作用又如砂石桩法既有置换作用, 在荷载作用下也有排水固结作用。

另外, 还有一些地基处理方法的加固机理和计算方法目前还不是十分明确, 尚需进一步探讨。

地基处理方法不断发展, 功能不断地扩大, 也使分类变得更加困难。

本文按照加固原理的不同, 将地基处理方法分为置换、排水固结、灌入固化物、振密或挤密、加筋、冷热处理、托换和纠倾等八大类, 每一类又含多种处理方法,见表一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非饱和土的抗剪强度研究曹琴(西南科技大学,绵阳,621010)摘要:非饱和土的抗剪强度是非饱和土中的基本问题。

如何快速经济地确定非饱和土的抗剪强度指标是非饱和土工程应用的关键性问题之一。

非饱和土抗剪强度的黏聚力和内摩擦角是含水指标的函数,通过模拟不同路径下非饱和土抗剪实验,得到黏-饱和度曲线(CDSC曲线),和内摩擦角-饱和度曲线(IFADSC曲线),进而得到非饱和土抗剪强度指标,在同一路径小区间范围内CDSC和IFADSC 曲线近似为直线,通过抗剪强度路径模拟,用常规试验和含水指标得到非饱和抗剪强度指标,大大地简化了非饱和土抗剪强度指标的确定,为非饱和土土力学理论应用于实际工程提供了有力条件。

根据土的卸载抗剪强度的计算方法推导出土的黏聚力和土的内摩擦角两者之间的相互关系,最后分析得到了非饱和土抗剪强度的计算方法。

关键词:非饱和土抗剪强度指标土的黏聚力土的内摩擦角导言:非饱和土力学的研究始于上世纪30年代,是伴随着水文学、土力学及土壤物理学等多学科的发展而形成[1].与饱和土相比,非饱和土除了由固体颗粒、孔隙水、孔隙气等三相系组成之外,它在液-气交界面上形成的收缩膜作为第四相考虑,并在交界面上产生了基质吸力[2],因此,有关非饱和土的研究也就紧密地依赖于基质吸力而展开。

由于非饱和土复杂的特性,长期以来其研究受测试手段和计算手段的限制,许多针对非饱和土力学的研究仍然停留在试验室研究阶段,理论成果远不能满足实际工程要求.然而,自上世纪九十年代开始,计算机技术被广泛地应用于各学科研究领域,越来越多的学者也尝试将该技术应用于对非饱和土力学特性方面研究,例如应用计算机工具进行自动控制试验、有限元分析及模型计算等.再加上物理学、热力学等多门学科的知识被有效地用于非饱和土力学的相关研究领域,并与新的工程问题相结合,开始不断涌现出了新理论、新认识和新技术.本文将从黏聚力曲线,内摩擦角曲线、线、变形和强度特性、等多方面阐述非饱和土力学的研究现状,并尝试对非饱和土力学抗剪强度指标进行研究。

1.抗剪强度公式运用抗剪强度是非饱和土土力学中的基本问题之一,众多专家学者对此进行了深入的探讨,至今仍存在不同的观点,其中Fredlund 基于双应力变量理论提出的扩展摩尔-库仑抗剪强度公式,得到了国际公认和局部采用,具体公式如下[3]:τf= c′ + (σ n −u a ) tanϕ′ + (u a −u w ) tanϕ(1)式中:τf为非饱和土的抗剪强度;c′为有效黏聚力;ϕ′为有效内摩擦角;ϕ b 为基质角;u a 为破坏时破坏面上的孔隙气压力;u w 为破坏时破坏面上的孔隙水压力;u a−u w 为破坏时破坏面上基质吸力;σn −σa为破坏时破坏面上净法向应力。

繆林昌等[4]提出了下列公式:τf = c tol+σtanϕtol (2)式中:c tol、ϕtol类似于Mohr-Coulumb 中的c 和ϕ,是含水指标的函数。

陈敬虞和Fredlund[5]把非饱和土的抗剪强度,公式总结如下:τf= c′ + (σn−u a) tanϕ′ +τa(3)文中列举出了以往非饱和土的各种抗剪强度理论,其中τs 为基质吸力引起的吸附强度,本文不再赘述。

考虑到非饱和土中的基质吸力、渗透吸力等因素,姚攀峰提出下列形式的摩尔-库仑抗剪强度公式[5-7]:τf =c g+(σn-ua)tanϕgc g=c′+c e ϕg=ϕe+ϕ′ (4)式中:ϕ g 为摩擦角,即包线与净法向应力轴的倾角;c g为黏聚力,即净法向应力为 0 时,摩尔-库仑破坏包线在剪应力轴上的截距(见图 1);c e、ϕe为基质吸力和其他因素在τ−(σn−u a) 坐标系中引起的的等效黏聚力、等效摩擦角。

对于基质吸力以外的因素对非饱和土抗剪强度的影响,目前尚缺乏必要的研究。

对于非饱和土,一般情况可认为基质吸力和静法向应力为非饱和土的两个独立应力状态变量[1],对抗剪强度等起决定性作用,以下均针对此种情况进行探讨。

本文首先分析了3 个典型的非饱和土抗剪试验;然后尝试对非饱和土抗剪强度包络面进行几何描述,给出其抗剪强度的函数表达式,并用试验进行了验证;最后,用干土和饱和土两个极限状态进行验证。

2.抗剪强度试验2.1 Escario 试验Escario 和Sáze[8]对非饱和马德里灰色黏土等3种土样进行了直剪试验(简称Escario 试验),试验结果见图2,根据式(4)可求出c g和ϕg,详见表1。

图2 不同基质吸力下的摩尔-库仑包线2.2 龚壁卫试验龚壁卫等[9]对非饱和土进行了不同路径的抗剪试验研究(简称龚壁卫试验),土样为湖北枣阳某渠道一处已经发生滑坡的边坡,脱湿路径下的试验结果见图3,根据式(4)可求出c g和ϕ g,见表2。

图3 不同基质吸力下的摩尔-库仑包线表2 不同基质吸力下的c g、ϕg (龚壁卫试验)2.3 林鸿州试验林鸿州等[10]对北京非饱和粉质黏土等3 种土样进行了直剪试验(简称林鸿州试验),假定u a =0kPa,根据式(4)可求出c g和ϕ g,结果见表 3。

对上述试验进行分析,可得出不同基质吸力条件下黏聚力和摩擦角的比值,见表4。

由图2 和图3 可知,对于同一基质吸力,静法向应力在一定区间内,非饱和土的抗剪强度包线为直线;由表4 可知,当吸力的变化区间为0~981 kPa时,黏聚力变化为227.3 %~981.4 %,摩擦角变化为120.8 %~149.3 %;对于高基质吸力状态下,无准确的吸力数据,但从试验3 可知,剪切后饱和度为5 %时,摩擦角变化为160.0 %。

根据上述3 个非饱和土抗剪强度试验,可得出以下结论:①对于同一基质吸力,静法向应力在一定区间内,非饱和土的抗剪强度包线近似为直线,符合摩尔-库仑破坏准则;②对于不同吸力,黏聚力和摩擦角是不同的,摩擦角相对变化可高达160.0 %,在一定情况下不可忽略摩擦角的变化;③吸力变化时,黏聚力变化较大,摩擦角变化较小。

3.摩尔-库仑抗剪强度公式根据上述非饱和土的3 个抗剪强度试验可知,非饱和土抗剪强度包络面在τ-(σ−u a)-(u a−u w)坐标系中是一个曲面。

当(u a −u w)为定值时,静法向应力在n一定区间内,其破坏包线为一条直线,符合摩尔-库仑破坏准则;当 (u a−u w)−u a)-(u a 变化时,该破坏包线的在τ轴上的截距是变化的,该破坏包线与(σn−u w)平面的夹角也是变化的,也就是说,黏聚力c g和摩擦角ϕg是变化的。

该抗剪包络曲面从几何学上属于直纹面的一种,见图4。

该直纹面可以用式(3)来描述,对于基质吸力和静法向应力为非饱和土的两个独立应力状态变量的情况,式(3)可简化为τf = c g +(σn −u a )tan ϕg (5)c m =c g −c ′,ϕm =ϕg −ϕ ′ (6) τf =c ′+c m +(σn −u a )tan(ϕ′+ϕm ) (7)式中:c m 、ϕm 为基质吸力(u a −u w )引起的的等效黏聚力和等效摩擦角:c m 、ϕm 为吸力的函数,假定其函数函数关系为式(8)、(9)c m = f 1(u a −u w ) (8) ϕm = f 2(u a −u w ) (9) 式(8)、(9)可通过下列方法求出:①根据饱和土试验求出c ′和ϕ ′;②根据非饱土抗剪试验得出c g 和ϕg ,绘制出黏聚力-吸力曲线(简称CSC 曲线和摩擦角-吸力曲线(简称FASC 曲线);③根据式(5)求出c m 和ϕm ,绘制出等效黏聚力-吸力曲线(简称ECSC 曲线)和等效摩擦角-吸力曲线(简称EFASC 曲线);④对于不同的基质吸力区间,直接根据试验曲线选择合适的函数进行拟合或者插值,该函数表达式即式(8)、(9)。

通常情况下,基质吸力在一定的区间范围内式(8)、(9)可选择线性函数表达:c m =c mo +(u a –u w )tan ϕb (10)式中:c m0为ECSC 直线在c m 轴上的截距,tan ϕb =Δc m /Δ(u a −u w )。

ϕm =ϕm0+(u a –u w )tan θb (11)式中:ϕm0为EFASC 直线在ϕm 轴上的截距,tan θb =Δϕm /Δ(u a −u w )。

图5、6 分别为Escario 试验和林鸿州试验中的ECSC 曲线和EFASC 曲线。

对于Escario试验,(u a−u w)在区间[0,196]上,c m=0+0.267(u a −u),c mo=0,ϕb=14.95,ϕm=0,ϕmo=0,θb =0,其他区间的函数关系均可利用上述方式w求出。

由图5、6 的Escario 试验可知,对某些非饱和土,当基质吸力较小时,ECSC 曲线近似为一条直线,EFASC 曲线为一条截距为0、倾角为0 的直线,即等效摩擦角为0,可以用式(1)描述;当基质吸力较大时,在一定区间内ECSC曲线近似为一条直线,EFASC 曲线为一条截距和倾角不为0 的直线,等效摩擦角不能忽略为0,式(1)是不能描述该种情况的。

由图5、6 中的林鸿州试验数据曲线可知,对某些重塑非饱和土,在不同的基质吸力区间上,ECSC 曲线和EFASC 曲线近似为直线,即使基质吸力较小时,EFASC 曲线也是一条倾角不为0 的直线,等效摩擦角不能忽略为0,式(1)是不能描述该种情况的。

式(3)、(5)、(6)可较好地描述非饱和土的抗剪强度特性,可称之为改进的摩尔-库仑抗剪强度公式,该公式描述的抗剪强度包络面是直纹面的一种,也可用轨迹面来描述,母线是摩尔-库仑包线,轨迹线是CSC 曲线,母线与(σn −u a )-(u a −u w )坐标面的夹角随着基质吸力的变化而改变,改变的规律遵照FASC 曲线所对应的函数关系。

4.非饱和土极端状态饱和土和干土是非饱和土的两个极端状态,一个合理的非饱和土抗剪强度公式应该能够概括该状态。

对于饱和土,抗剪强度公式为τf =c ′+(σn –u w )tan ϕ ′ (12)当土体饱和时,此时气溶解于水,由于ua=uw,cm =0kPa, ϕm =0,所以式(1)和式(5)均可退化到式(12);而式(2)为τ=c tol +σ tan ϕtol,同总应力状态下的摩尔-库仑抗剪强度公式,无法真正描述饱和土的破坏形式。

对于干砂,ua =0kPa 时,抗剪强度公式为τf =σn tan ϕ (13)式中:ϕ 为干砂中摩尔-库仑抗剪强度公式的摩擦角。

当为干砂时,基质吸力引起的等效黏聚力为0kPa ,c g =0kPa, ϕg =ϕ;c tol =0kPa, ϕtol =ϕ,式(2)和式(5)可退化到式(13);式(1)为τf =σn tan ϕ ′。

相关文档
最新文档