七年级数学线段有关的计算题

合集下载

浙教版数学七年级上册专项突破四 与线段、角有关的计算(含答案)

浙教版数学七年级上册专项突破四  与线段、角有关的计算(含答案)
接近7点,他又看了一下手表,发现此时分针与时针再次成120°,
则张师傅此次散步的时间是________分钟.
【解析】
分钟每分钟走6°,时针每分钟走
1 2
°.设张师傅此次
散步的时间是x分钟.由题意,得6x-
1 2
x=120×2,解得x=
480 11

∴张师傅此次散步的时间是41810分钟.
【答案】
480 11
【答案】 60
抓重点
9.(2021秋·杭州市钱塘区期末)已知线段AB=24 cm, D是线段AB的中点,直线AB上有一点C,且CD=3BC, 则线段CD=________cm.
【答案】 9 或 18
抓重点
10.(2021秋·舟山市定海区期末)张师傅晚上出门散步,出门时6点
多一点,他看到手表上的分针与时针的夹角恰好为120°,回来时
13.(2021秋·湖州市长兴县期末)已知∠AOB=160°,∠COE是直角,OF平分 ∠AOE. (1)如图①,若∠COF=32°,则∠BOE=________.
抓重点
(2)如图①,若∠COF=m°,则∠BOE=____________.∠BOE与∠COF之间 的数量关系为__________________. (3)在已知条件不变的前提下,当∠COE绕点O按逆时针方向转动到如图②所示 的位置时,(2)中∠BOE与∠COF之间的数量关系是否仍然成立?请说明理由.
三、解答题抓重点
11.(2020秋·湖州市安吉县期末)如图,已知线段CD,延
长线段CD到点B,使DB=
1 2
CB,延长DC到点A,使AC
=2DB.若AB=8 cm,求CD与AD的长.
【解析】∵DB=12CB,∴CD=DB. ∵AC=2DB,∴AC=BC=12AB. ∵AB=8 cm,∴CD=14AB=2 cm,AD=34AB=6 cm.

七年级数学上册《第四章-几何图形初步》有关线段的计算问题练习题(含知识点)

七年级数学上册《第四章-几何图形初步》有关线段的计算问题练习题(含知识点)

2021-2022学年度 秋季 七年级上学期 人教版数学 《第四章 几何图形初步》有关线段的计算问题练习题(新版)新人教版1. 如图,4AB cm =,3BC cm =,如果O 是线段AC 的中点,求线段OA 、OB 的长度.2. 如图,已知C 、D 是线段AB 上的两点,36AB cm =,且D 为AB 的中点,14CD cm =,求线段BC 和AD 的长3. 如图所示,已知线段80AB cm =,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14NB cm =,求PA 的长.4. (1)如图所示,点C 在线段A B 上,线段6AC cm =,4BC cm =,点M 和N 分别是AC 和BC 的中点,求线段MN 的长度. (2)根据(1)的计算过程和结果,设AB a =,C 是线段AB 上一点,点M 和N 分别是AC 和B C 的中点,你能猜出MN 的长度吗?请用一句简洁的话表述你发现的规律.5. 已知P 为线段AB 上的一点,且25AP AB =,M 是AB 的中点,若2PM cm =,求AB 的长.人教版数学七年级上册 6. 如图,C 、D 是线段AB 上的两点,已知14BC AB =,13AD AB =,12AB cm =,求CD 、BD 的长.7. 在一条直线上顺次取A 、B 、C 三点,已知8.9. 人教版七年级数学上册必须要记、背的知识点1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1a a>⇔= ; 0a 1a a <⇔-=;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小: (1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。

七年级数学上《有关线段、角的计算》专项练习

七年级数学上《有关线段、角的计算》专项练习

七年级数学上《有关线段、角的计算》专项练习1. 如图,4AB cm =,3BC cm =,如果O 是线段AC 的中点,求线段OA 、OB 的长度.2. 如图,已知C 、D 是线段AB 上的两点,36AB cm =,且D 为AB 的中点,14CD cm =,求线段BC 和AD 的长3. 如图所示,已知线段80AB cm =,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14NB cm =,求PA 的长.4. 如图所示,点C 在线段A B 上,线段6AC cm =,4BC cm =,点M 和N 分别是AC 和BC 的中点,求线段MN 的长度.5. 已知P 为线段AB 上的一点,且25AP AB =,M 是AB 的中点,若2PM cm =,求AB 的长.6. 如图,C 、D 是线段AB 上的两点,已知14BC AB =,13AD AB =,12AB cm =,求CD 、BD 的长.7. 在一条直线上顺次取A 、B 、C 三点,已知5AB cm =,点O 是线段AC 的中点,且 1.5OB cm =,求线段BC 的长.(两种情况)8. 已知A 、B 、C 三点共线,且10AB cm =,4BC cm =,M 是A C 的中点,求AM 的长.9.如图所示,B 、C 两点把线段AD 分成2:3:4三部分,M 是AD 中点,CD =8,求MC 的长.10.如图所示,回答问题:’(1)在线段AB 上取一点C 时,共有几条线段?(2)在线段AB 上取两点C 、D 时,共有几条线段?(3)在线段AB 上取两点C 、D 、E 时,共有几条线段?(4)你能否说出,在线段AB 上取n 个点时(不与A 、B 重合),直线A 上共有多少条线段?你发现它们有什么规律,你能试着总结出来吗?和同学们交流一下.1.如图所示,OE平分∠BOC,OD平分∠AOC,∠BOE=20°,∠AOD=•40•°,求∠DOE的度数.2.已知一条射线OA,若从点O再引两条射线OB和OC,使∠AOB=50°,∠BOC=10°,•求∠AOC的度数.3.如图所示,OE平分∠BOC,OD平分∠AOC,∠BOE= 200,∠AOD =400,求∠DOE的度数4.如图所示,BD平分∠ABC,BE分∠ABC成2:5的两部分,∠DBE=27•°,•求∠ABC的度数.5.如图所示,OM平分∠AOB,ON平分∠COD,∠MON=90°,∠BOC=26•°,•求∠AOD的度数.6、以∠AOB的顶点O为端点引射线OC,使∠AOC: ∠BO C=5:4,若∠AOB=150,求∠AOC的度数.7.如图所示,O是直线AB上的点,OD是∠AOC的平分线,OE是∠COB的平分线,∠COD =280,求∠EOB的度数.8如图,已知OE为∠BOC的平分线,OD为∠AOC的平分线,且∠AOB=1500,求∠DOE的度数.9.如图所示,OB,OC是∠AOD内任意两条射线,OM平分∠AOB,ON平分∠COD,•若∠MON=α,∠BOC=β,试用α,β表示∠AOD.10(1)如图,∠AOB= 900,∠BOC =300,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数?(3)如果(1)中∠BOC=β(β是锐角),其他条件不变,求∠MON的度数?(4)从(1),(2),(3)的结果能看出什么规律?。

基本平面图形 专题练习题

基本平面图形 专题练习题

北师大版七年级数学上册第四章基本平面图形专题练习题专题(一) 线段的计算1、如图,点C在线段AB上,点M,N分别是AC,BC的中点.(1)若AC=9 cm,CB=6 cm,则MN=_____cm;(2)若AC=a cm,CB=b cm,则MN=_____cm;(3)若AB=m cm,求线段MN的长;(4)若C为线段AB上任意一点,且AB=n cm,其他条件不变,你能猜想MN的长吗?并用一句简洁的话描述你发现的结论.2、若MN=k cm,求线段AB的长.3、若C在线段AB的延长线上,且满足AB=p cm,M,N分别为AC,BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由.4、如图,已知点C,D为线段AB上顺次两点,M,N分别是AC,BD的中点.(1)若AB=24,CD=10,求MN的长;(2)若AB=a,CD=b,请用含有a,b的式子表示出MN的长.5、如图,N 为线段AC 中点,点M ,B 分别为线段AN ,NC 上的点,且满足AM ∶MB ∶BC =1∶4∶3.(1)若AN =6,求AM 的长; (2)若NB =2,求AC 的长.6、如图,点B ,D 在线段AC 上,BD =13AB ,AB =34CD ,线段AB ,CD 的中点E ,F 之间的距离是20,求线段AC 的长.7、已知线段AB =60 cm ,在直线AB 上画线段BC ,使BC =20 cm ,点D 是AC 的中点,求CD 的长.8、如图,数轴上A ,B 两点对应的有理数分别为10和15,点P 从点A 出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q 同时从原点O 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒.(1)当0<t <5时,用含t 的式子填空:BP =____,AQ =____; (2)当t =2时,求PQ 的值; (3)当PQ =12AB 时,求t 的值.专题(二) 角度的计算1、如图,已知∠AOB 内部有三条射线OE ,OC ,OF ,且OE 平分∠BOC ,OF 平分∠AOC. (1)若∠AOC =30°,∠BOC =60°,则∠EOF =____; (2)若∠AOC =α,∠BOC =β,则∠EOF =____;(3)若∠AOB =θ,你能猜想出∠EOF 与∠AOB 之间的数量关系吗?请说明理由.2、若∠EOF =γ,求∠AOB.3、如图,若射线OC 在∠AOB 的外部,且∠AOB =θ,OE 平分∠BOC ,OF 平分∠AOC ,则上述(3)中的结论还成立吗?请说明理由.4、如图,已知∠AOB内部有顺次的四条射线:OE,OC,OD,OF,且OE平分∠AOC,OF平分∠BOD.(1)若∠AOB=160°,∠COD=40°,则∠EOF的度数为____;(2)若∠AOB=α,∠COD=β,求∠EOF的度数;(3)从(1)(2)的结果中,你能看出什么规律吗?5、如图,OC平分∠AOB,∠AOD∶∠BOD=3∶5,已知∠COD=15°,求∠AOB的度数.6、如图,OC是∠AOB的平分线.(1)当∠AOB=60°时,求∠AOC的度数;(2)在(1)的条件下,∠EOC=90°,请在图中补全图形,并求∠AOE的度数;(3)当∠AOB=α,∠EOC=90°时,直接写出∠AOE的度数.(用含α的式子表示)7、如图1,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =60°,将一直角三角板的直角顶点放在点O 处,一边ON 在射线OB 上,另一边OM 在直线AB 的上方.(1)在图1中,∠COM =30度;(2)将图1中的三角板绕点O 按逆时针方向旋转,使得ON 在∠BOC 的内部,如图2,若∠NOC =16∠MOA ,求∠BON 的度数; (3)将图1中的三角板绕点O 以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,当直线ON 恰好平分锐角∠BOC 时,旋转的时间是____秒;(直接写出结果) (4)在旋转过程中,∠MOC 与∠NOB 始终保持的数量关系是____,并请说明理由. 参考答案专题(一) 线段的计算1、如图,点C 在线段AB 上,点M ,N 分别是AC ,BC 的中点.(1)若AC =9 cm ,CB =6 cm ,则MN =7.5cm ; (2)若AC =a cm ,CB =b cm ,则MN =12(a +b)cm ;(3)若AB =m cm ,求线段MN 的长;(4)若C 为线段AB 上任意一点,且AB =n cm ,其他条件不变,你能猜想MN 的长吗?并用一句简洁的话描述你发现的结论.解:(3)因为点M 是AC 的中点,所以CM =12AC.因为点N 是BC 的中点,所以CN =12BC.所以MN =CM +CN =12AC +12BC =12AB =12m cm.(4)猜想:MN =12AB =12n cm.结论:当C 为线段AB 上一点,且M ,N 分别是AC ,BC 的中点,则MN =12AB 一定成立.2、若MN =k cm ,求线段AB 的长. 解:因为点M 是AC 的中点,所以CM =12AC.因为点N 是BC 的中点,所以CN =12BC.所以MN =CM +CN =12AC +12BC =12AB.所以AB =2MN =2k cm.3、若C 在线段AB 的延长线上,且满足AB =p cm ,M ,N 分别为AC ,BC 的中点,你能猜想MN 的长度吗?请画出图形,并说明理由.解:猜想:MN =12AB =12p cm.理由如下:当点C 在线段AB 的延长线上时,如图.因为点M 是AC 的中点,所以CM =12AC.因为点N 是BC 的中点,所以CN =12BC.所以MN =CM -CN =12(AC -BC)=12AB =12p cm.4、如图,已知点C ,D 为线段AB 上顺次两点,M ,N 分别是AC ,BD 的中点. (1)若AB =24,CD =10,求MN 的长;(2)若AB =a ,CD =b ,请用含有a ,b 的式子表示出MN 的长.解:(1)因为AB =24,CD =10, 所以AC +DB =AB -CD =14. 因为M ,N 分别是AC ,BD 的中点, 所以MC +DN =12(AC +DB)=7.所以MN =MC +DN +CD =17. (2)因为AB =a ,CD =b , 所以AC +DB =AB -CD =a -b. 因为M ,N 分别是AC ,BD 的中点, 所以MC +DN =12(AC +DB)=12(a -b).所以MN =MC +DN +CD =12(a -b)+b =12(a +b).5、如图,N 为线段AC 中点,点M ,B 分别为线段AN ,NC 上的点,且满足AM ∶MB ∶BC =1∶4∶3.(1)若AN =6,求AM 的长; (2)若NB =2,求AC 的长.解:设AM =x ,则MB =4x ,BC =3x , 所以AC =AM +MB +BC =8x. 因为N 为线段AC 中点, 所以AN =NC =12AC =4x.(1)因为AN =6, 所以4x =6.解得x =32.所以AM =32.(2)NB =NC -BC =4x -3x =2,解得x =2. 所以AC =8x =16.6、如图,点B ,D 在线段AC 上,BD =13AB ,AB =34CD ,线段AB ,CD 的中点E ,F 之间的距离是20,求线段AC 的长.解:设BD =x ,则AB =3x ,CD =4x , 因为线段AB ,CD 的中点分别是E ,F , 所以BE =12AB =1.5x ,DF =12CD =2x.因为EF =BE +DF -BD =20, 所以1.5x +2x -x =20.解得x =8.所以AC =AE +EF +CF =1.5x +20+2x =12+20+16=48.7、已知线段AB =60 cm ,在直线AB 上画线段BC ,使BC =20 cm ,点D 是AC 的中点,求CD 的长.解:当点C 在线段AB 上时,如图1.图1CD =12AC =12(AB -BC)=12×(60-20)=12×40=20(cm).当点C 在线段AB 的延长线上时,如图2.图2CD =12AC =12(AB +BC)=12×(60+20)=12×80=40(cm).所以CD 的长为20 cm 或40 cm.8、如图,数轴上A ,B 两点对应的有理数分别为10和15,点P 从点A 出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q 同时从原点O 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒.(1)当0<t <5时,用含t 的式子填空: BP =5-t ,AQ =10-2t ; (2)当t =2时,求PQ 的值; (3)当PQ =12AB 时,求t 的值.解:(2)当t =2时,AP <5,点P 在线段AB 上,OQ <10,点Q 在线段OA 上,如图1.图1此时PQ =OP -OQ =(OA +AP)-OQ =(10+t)-2t =10-t =8. (3)①当点P 在点Q 右边时,如图2.图2此时,AP =t ,OQ =2t ,OA =10,AB =5. 所以PQ =OA +AP -OQ =10+t -2t =10-t. 当PQ =12AB 时,即10-t =2.5,解得t =7.5.②当点P 在点Q 左边时,如图3.图3此时,OQ =2t ,AP =t ,OA =10,AB =5. 所以PQ =OQ -OA -AP =2t -10-t =t -10.当PQ =12AB 时,即t -10=2.5,解得t =12.5. 综上所述,当PQ =12AB 时,t =7.5或12.5.专题(二) 角度的计算1、如图,已知∠AOB 内部有三条射线OE ,OC ,OF ,且OE 平分∠BOC ,OF 平分∠AOC.(1)若∠AOC =30°,∠BOC =60°,则∠EOF =45°;(2)若∠AOC =α,∠BOC =β,则∠EOF =α+β2; (3)若∠AOB =θ,你能猜想出∠EOF 与∠AOB 之间的数量关系吗?请说明理由.解:∠EOF 与∠AOB 之间的数量关系是∠EOF =12∠AOB =12θ. 理由:因为OE 平分∠BOC ,OF 平分∠AOC ,所以∠EOC =12∠BOC ,∠COF =12∠AOC. 所以∠EOF =∠EOC +∠COF =12∠BOC +12∠AOC =12(∠BOC +∠AOC)=12∠AOB =12θ.2、若∠EOF =γ,求∠AOB.解:因为OE 平分∠BOC ,OF 平分∠AOC ,所以∠EOC =12∠BOC ,∠COF =12∠AOC. 所以∠EOF =∠EOC +∠COF =12∠BOC +12∠AOC =12(∠BOC +∠AOC)=12∠AOB. 因为∠EOF =γ,所以∠AOB =2γ.3、如图,若射线OC 在∠AOB 的外部,且∠AOB =θ,OE 平分∠BOC ,OF 平分∠AOC ,则上述(3)中的结论还成立吗?请说明理由.解:∠EOF =12θ成立, 理由:因为OE 平分∠BOC ,OF 平分∠AOC ,所以∠EOC =12∠BOC ,∠COF =12∠AOC. 所以∠EOF =∠COF -∠EOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC)=12∠AOB =12θ. 4、如图,已知∠AOB 内部有顺次的四条射线:OE ,OC ,OD ,OF ,且OE 平分∠AOC ,OF 平分∠BOD.(1)若∠AOB =160°,∠COD =40°,则∠EOF 的度数为100°;(2)若∠AOB =α,∠COD =β,求∠EOF 的度数;(3)从(1)(2)的结果中,你能看出什么规律吗?解:(2)因为∠EOF =∠COE +∠COD +∠FOD =12∠AOC +∠COD +12∠BOD =12(∠AOC +∠BOD)+∠COD =12(∠AOB -∠COD)+∠COD =12∠AOB +12∠COD ,∠AOB =α,∠COD =β, 所以∠EOF =12α+12β=12(α+β). (3)若∠AOB 内部有顺次的四条射线:OE ,OC ,OD ,OF ,且OE 平分∠AOC ,OF 平分∠BOD ,则∠EOF =12(∠AOB +∠COD). 5、如图,OC 平分∠AOB ,∠AOD ∶∠BOD =3∶5,已知∠COD =15°,求∠AOB 的度数.解:设∠AOD =3x ,则∠BOD =5x.所以∠AOB =∠AOD +∠BOD =3x +5x =8x.因为OC 平分∠AOB ,所以∠AOC =12∠AOB =12×8x =4x. 所以∠COD =∠AOC -∠AOD =4x -3x =x.因为∠COD =15°,所以x =15°.所以∠AOB =8x =8×15°=120°.6、如图,OC 是∠AOB 的平分线.(1)当∠AOB =60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB =α,∠EOC =90°时,直接写出∠AOE 的度数.(用含α的式子表示)解:(1)因为OC 是∠AOB 的平分线,所以∠AOC =12∠AOB. 因为∠AOB =60°,所以∠AOC =30°.(2)如图1,∠AOE =∠EOC +∠AOC =90°+30°=120°.如图2,∠AOE =∠EOC -∠AOC =90°-30°=60°.所以∠AOE 的度数为120°或60°.(3)90°+α2或90°-α2. 7、如图1,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =60°,将一直角三角板的直角顶点放在点O 处,一边ON 在射线OB 上,另一边OM 在直线AB 的上方.(1)在图1中,∠COM =30度;(2)将图1中的三角板绕点O 按逆时针方向旋转,使得ON 在∠BOC 的内部,如图2,若∠NOC =16∠MOA ,求∠BON 的度数; (3)将图1中的三角板绕点O 以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,当直线ON 恰好平分锐角∠BOC 时,旋转的时间是3或21秒;(直接写出结果)(4)在旋转过程中,∠MOC与∠NOB始终保持的数量关系是∠MOC-∠NOB=30°,并请说明理由.解:(2)设∠NOC=x°,则∠MOA=6x°,∠BON=60°-x°.由题意,得6x°+90°+60°-x°=180°,解得x=6.所以∠BON=60°-x°=60°-6°=54°.图3(4)∠MOC-∠NOB=30°,①当ON在∠BOC的内部时,如图3,因为∠MOC+∠CON=∠NOM=90°,所以∠MOC+(∠BOC-∠NOB)=90°.所以∠MOC+60°-∠NOB=90°.所以∠MOC-∠NOB=30°.图4②当ON在∠BOC的外部时,如图4,因为∠MOC-∠CON=∠NOM=90°,所以∠MOC-(∠NOB-∠BOC)=90°.所以∠MOC-∠NOB+60°=90°.所以∠MOC-∠NOB=30°.综上所述,∠MOC-∠NOB=30°.。

七年级数学人教版(上册)小专题(十四)线段的计算

七年级数学人教版(上册)小专题(十四)线段的计算

(3)若点 C 为线段 AB 上任意一点,且 AB=n cm,其他条件不变, 你能猜想 MN 的长度吗?并用一句简洁的话描述你发现的结论.
1n 解:猜想:MN=2AB=2 cm. 结论:若点 C 为线段 AB 上一点,且点 M,N 分别是 AC,BC
1 的中点,则 MN=2AB.
【变式 1】 若 MN=k cm,求线段 AB 的长.
(1)若 AB=10 cm,2 cm<AM<4 cm,当点 C,D 运动了 2 s 时, 求 AC+MD 的值.
解:(1)当点 C,D 运动了 2 s 时,CM=2 cm,BD=6 cm, 因为 AB=10 cm, 所以 AC+MD=AB-CM-BD=10-2-6=2(cm).
1 (2)若点 C,D 运动时,总有 MD=3AC,则 AM= 4 AB.
n 解:MN=2 cm 成立.理由如下: 当点 C 在线段 AB 的延长线上时,如图.
因为点 M,N 分别是 AC,BC 的中点,
1
1
所以 MC=2AC,CN=2BC.
又因为 MN=MC-CN,
1
1n
所以 MN=2(AC-BC)=2AB=2 cm.
如图,如果点 C 在线段 AB 所在的直线上,点 M,N 分别是 AC, 1
(1)当 0<t<5 时,用含 t 的式子填空: BP= 5-t ,AQ= 10-2t .
(2)当 t=2 时,求 PQ 的值. 解:(2)当 t=2 时,AP=1×2=2<5,点 P 在线段 AB 上;OQ=2×2 =4<10,点 Q 在线段 OA 上,如图所示:
此时 PQ=OP-OQ=(OA+AP)-OQ=(10+2)-4=8.
第四章 几何图形初步
小专题(十四) 线段的计算

七年级数学上册 第四章 线段和差计算习题练习 试题

七年级数学上册 第四章 线段和差计算习题练习 试题

欠风丹州匀乌凤市新城学校线段的和差计算知识要求:1会从图形中找出线段的和差关系2会利用中点的定义3会书写简单的推理过程一例题1. 在直线l 上取 A ,B 两点,使AB=10厘米,再在l 上取一点C ,使AC=2厘米,M ,N 分别是AB ,AC 中点.求MN 的长度。

2.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF 。

3.如图,线段AB 和CD 的公共局部BD=31AB=41CD,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB ,CD 的长 二稳固1.如下列图,AB=12厘米,25AM AB =,13BN BM =,求MN 的长. 2.如图,C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度。

3.如图,AB=20cm,C 是AB 上一点,且AC=12cm,D 是AC 的中点,E 是BC 的中点,求线段DE 的长.4.如图,AB=8cm,O 为线段AB 上的任意一点, C 为AO 的中点,D 为OB 的中点,你能求出线段CD 的长吗?并说明理由。

5. 线段AB ,反向延长AB 至C ,使AC =13BC ,点D 为AC 的中点,假设CD =3cm ,求AB 的长. 6. 线段AB =12cm ,直线AB 上有一点C ,且BC =6cm ,M 是线段AC 的中点,求线段AM 的长.7.如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点。

〔1〕求线段MN 的长;〔2〕假设C 为线段AB 上任一点,满足acm =+BC AC ,其它条件不变,你能猜想MN 的长度吗?并说明理由。

〔3〕假设C 在线段AB 的延长线上,且满足AC CB bcm -=,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由。

七年级数学上册专题训练 线段或角的计算

七年级数学上册专题训练  线段或角的计算

专题训练 线段或角的计算一、线段的和或差的计算1.如图,C 是线段AB 上的一点,M 是线段AC 的中点,若AB =8 cm ,BC =2 cm ,则MC 的长度为( )A.2 cmB.3 cmC.4 cmD.6 cm 2.平坦的草地上有A ,B ,C 三个球,A 球距B 球3 m ,A 球距C 球1 m ,则B 球与C 球相距( )A.4 mB.3 mC.2 mD.无法确定3.如图已知线段AD =16 cm ,线段AC =BD =10 cm ,E ,F 分别是AB ,CD 的中点,则EF 长为 cm .4.如图,C ,D 是线段AB 上的两点,已知BC =14AB ,AD =13AB ,AB =12 cm ,则DC = cm.5.过点P 作直线l 的垂线PO ,垂足为O ,连接PA ,PB ;比较线段PO ,PA ,PB 的长短,并按从小到大的顺序排列 .6.如图,已知线段AB =6 cm ,延长AB 至点C ,使BC =13AB ,若点D 为线段AC 的中点,求线段BD 的长.7.已知线段AB =6 cm ,在直线AB 上画点C ,使BC =4 cm ,若M ,N 分别是AB ,BC 的中点.(1)求点M ,N 之间的距离;(2)若AB =a cm ,BC =b cm ,其他条件不变,此时M ,N 间的距离是多少? (3)分析(1)(2)的解答过程,从中你发现了什么规律?二、角的和或差的计算8.已知∠α=75°,则∠α的补角的度数是( )A.15°B.25°C.105°D.125° 9.上午10:00时,钟表上分针与时针所夹角的度数为( )A.45°B.60°C.75°D.90° 10.一个角的余角比它的补角的12少20°,则这个角为( )A.30°B.40°C.60°D.75°11.如图,已知∠AOC =90°,∠COB =50°,OD 平分∠AOB ,则∠COD 的度数为______.第11题图 第12题图12.如图,∠AOB =160°,OC 平分∠AOB ,OD 为∠BOC 内任一射线,OE 平分∠BOD ,且∠BOE =30°,则∠COD = .13.如图,已知∠AOB =m 度,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,…,OA n 平分∠AOA n -1,则∠AOA n 的度数为 度.14.如图,OC 为∠AOB 的内部任一条射线,OD ,OE 分别是∠AOC ,∠BOC 的平分线.若∠AOB =80°,求∠DOE 的度数.15.如图,选择适当的方向击打白球,可以使白球反弹后将红球撞入袋中,此时∠1=∠2.如果红球与洞口连线和台球桌面边缘夹角∠3=30°,那么∠1应等于多少度,才能保证红球能直接入袋?16.如图,已知小明家(A )在商场(O )的南偏东60°方向,小华家(B )在商场的东北方向.(1)若王亮家(C)在商场的北偏西19°20′的方向,试问:∠AOB和∠AOC的度数分别是多少?(2)若∠BOC=67°20′,试说明王亮家(C)在商场的什么方向上?17.把一副三角板的直角顶点O重叠在一起.(1)如图1,当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图2,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?18.将一张长方形纸片按如图所示方式折叠,若∠AEM′=120°,则∠BCN′的度数为多少?。

【专题复习】2019年 七年级数学上册 线段的计算 专题练习20题(含答案)

【专题复习】2019年 七年级数学上册 线段的计算 专题练习20题(含答案)

2019年七年级数学上册线段的计算专题练习一、解答题:1、如图,己知线段AB=80,M为AB的中点,P在MB上,N为PB的中点,且NB=14,(1)求MB的长;(2)求PB的长;(3)求PM的长.2、如图,点C、D是线段AB上两点,点D是AC的中点,若BC=6cm,BD=10cm,求线段AB的长度.3、如图,已知点C是线段AB的中点,点D是线段AC的中点,点E是线段BC的中点.(1)若线段DE=9cm,求线段AB的长.(2)若线段CE=5cm,求线段DB的长.4、点A,B,C在同一直线上,AB=8,AC:BC=3:1,求线段BC的长度.5、如图所示,线段AB=8cm,E为线段AB的中点,点C为线段EB上一点,且EC=3cm,点D为线段AC的中点,求线段DE的长度.6、如图,已知线段AB=32,C为线段AB上一点,且3AC=BC,E为线段BC的中点,F为线段AB的中点,求线段EF的长.7、如图,M是线段AC中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.8、如图,线段AC=8 cm,线段BC=18 cm,点M是AC的中点,在CB上取一点N,使得CN∶NB=1∶2.求MN的长.9、如图,已知BC=AB=CD,点E,F分别是AB,CD的中点,且EF=60厘米,求AB,CD的长.10、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.11、如图,点B、C在线段AD上,CD=2AB+3.(1)若点C是线段AD的中点,求BC-AB的值;(2)若4BC=AD,求BC-AB的值;(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.12、A、B、C、D四个车站的位置如图所示,B、C两站之间的距离BC=2a+b,B、D两站之间的距离BD=4a +3b.求:⑴ C、D两站之间的距离CD;⑵若C站到A、D两站的距离相等,则A、B两站之间的距离AB是多少?13、如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,并说明理由.14、如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN 的长.15、如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP= ,AQ= ;(2)当t=2时,求PQ的值;(3)当AB=2PQ时,求t的值.16、如图,已知点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=6 ,CB=4 ,求线段MN的长;(2)若点C为线段AB上任一点,其它条件不变,你能猜想线段MN与AB的数量关系吗?并说明你的理由;(3)若点C在线段AB的延长线上,其它条件不变,你上述猜想的结论是否仍然成立?请画出图形,写出你的结论,并说明你的理由;17、如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.18、已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数: ;用含t的代数式表示点P和点C的距离:PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A.①点P、Q同时运动运动的过程中有处相遇,相遇时t= 秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.19、如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.20、探索性问题:已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a= ,b= ,c= ;(2)数轴上a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用t的关系式表示);②请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案1、解:(1)∵M是AB的中点∴MB=40(2)∵N为PB的中点,且NB=14 ∴PB=2NB=2×14=28(3)∵MB=40,PB=28 ∴PM=MB﹣PB=40﹣28=122、解:已知BC=6cm,BD=10cm,∴DC=BD﹣BC=4cm,又点D是AC的中点,∴DA=DC=4cm,所以AB=BD+DA=10+4=14(cm).答:线段AB的长度为14cm.3、解:(1)∵DE=9cm,∴DC+CE=9cm.∵点D是线段AC的中点,点E是线段BC的中点,∴AC=2CD,BC=2CE.∵AB=AC+BC=2(CD+CE)=2DE=18cm;(2)点C是线段AB的中点,∴AB=ACB.∵点E是线段BC的中点,∴BC=2CE=10cm.∵点D是线段AC的中点,∴DC=AC=BC=5cm.∴DB=DC+CB=5+10=15cm.4、解:由于AC:BC=3:1,设BC=x,则AC=3x第一种情况:当点C在线段AB上时,AC+BC=AB.因为 AB=8,所以3x+x=8解得 x=2所以 BC=2第二种情况:当点C在AB的延长线上时,AC﹣BC=AB因为 AB=8,所以3x﹣x=8解得 x=4所以 BC=4综上,BC的长为2或4.5、解:∵线段AB=8cm,E为线段AB的中点,∴BE4cm,∴BC=BE﹣EC=4﹣3=1cm,∴AC=AB﹣BC=8﹣1=7cm,∵点D为线段AC的中点,∴CD=3.5cm,∴DE=CD﹣EC=3.5﹣3=0.5cm.6、解:∵F为线段AB的中点,∴BF=AB=16,∵AC=BC,∴BC=AB=24,∵E为线段BC的中点,∴BE=12,∴EF=BF﹣BE=16﹣12=4.7、解:∵AB=4cm,BC=2AB,∴BC=8cm,∴AC=AB+BC=4+8=12cm,∵M是线段AC中点,∴MC=AM=AC=6cm,∴BM=AM﹣AB=6﹣4=2cm.8、解:BC=18cm所以CN=18×1÷(1+2)=6mM是AC中点所以MC=AC/2=4cm所以MN=MC+CN=4+6=10cm9、解:设BC=x厘米,由题意得:AB=3x,CD=4x∵E,F分别是AB,CD的中点∴BE=AB=x,CF=CD=2x∴EF=BE+CF﹣BC=x+2x﹣x即x+2x﹣x=60,解得x=24∴AB=3x=72(厘米),CD=4x=96(厘米).答:线段AB长为72厘米,线段CD长为96厘米.10、解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×10=5cm.11、解:12、解:⑴ CD=(4a+3b)-(2a+b)=2a+2b 答:C、D两站之间的距离CD为(2a+2b)⑵ AB=AC-BC=CD-BC=(2a+2b)-(2a+b)=b 答:A、B两站之间的距离AB是b.13、解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.14、解:∵M是AC的中点,AC=6,∴MC=3,又因为CN∶NB=1∶2,BC=15,∴CN=5,∴MN=MC+CN=3+5=8,∴MN的长为8 cm15、解:16、解:17、解:18、解:(1)P点对应的数为﹣26+t;PC=36﹣t;故答案为:﹣26+t;36﹣t;(2)①有2处相遇;分两种情况:Q返回前相遇:3(t﹣16)﹣16=t﹣16,解得:t=24,Q返回后相遇:3(t﹣16)+t=36×2.解得:t=30.综上所述,相遇时t=24秒或30秒.故答案为:24或30;②当16≤t≤24时 PQ=t﹣3(t﹣16)=﹣2t+48,当24<t≤28时 PQ=3(t﹣16)﹣t=2t﹣48,当28<t≤30时 PQ=72﹣3(t﹣16)﹣t=120﹣4t,当30<t≤36时 PQ=t﹣[72﹣3(t﹣16)]=4t﹣120,当36<t≤40时 PQ=3(t﹣16)﹣36=3t﹣84.19、解:20、解:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学线段有关的计算题
【典型例题】
[例1] 填空
如图,把线段AB延长到点C,使BC=2AB,再延长BA到点D,使AD=3AB,则
①DC=_____AB=_____BC
②DB=_____CD=_____BC
[例2] 填空
如图,点M为线段AC的中点,点N为线段BC的中点
①若AC=2cm,BC=3cm,则MN=_____cm
②若AB=6cm,则MN=_____cm
③若AM=1cm,BC=3cm,则AB=_____cm
④若AB=5cm,MC=1cm,则NB=_____cm
M N
C
A B
[例3] 根据下列语句画图并计算
(1)作线段AB,在线段AB的延长线上取点C,使BC=2AB,M是线段BC的中点,若AB=30cm,求线段BM的长
(2)作线段AB,在线段AB的延长线上取点C,使BC=2AB,M是线段AC的中点,若AB=30cm,求线段BM的长
[例4] 如图,已知AB= 40,点C是线段AB的中点,点D为线段CB上的一点,点E为线段DB的中点,EB=6,求线段CD的长。

C D E
A B
[例5] 如图,AE=
21EB ,点F 是线段BC 的中点,BF=5
1
AC=1.5,求线段EF 的长。

A
B
C E
F
[例6] 点O 是线段AB=28cm 的中点,而点P 将线段AB 分为两部分AP:PB=32:15
4,求线段OP 的长。

[例7] (1)如图,分别在线段AB 和BA 的延长线上取BD=AE=1.5cm ,又EF=5cm ,DG=4cm ,GF=1cm ,若GF 的中点为点M ,求线段AM 和BM 的长度。

(2)若线段a 、b 、c ,满足:a:b:c=3:4:5,且a+b+c=60,求线段2c -3a -
5
1
b 的长。

B
F
M
G
练习:
一. 选择题:
1. 已知点C 是线段AB 的中点,现有三个表达式:
① AC=BC ② AB=2AC=2BC ③ AC=CB=
2
1
AB 其中正确的个数是( ) A. 0 B. 1 C.2 D. 3
2. 如图,C 、B 在线段AD 上,且AB=CD ,则AC 与BD 的大小关系是( )
A
C
B D
A. AC>BD
B. AC=BD
C. AC<BD
D. 不能确定
3. 点A、B是平面上两点,AB=10cm,点P为平面上一点,若PA+PB=20cm,则P点()
A. 只能在直线AB外
B. 只能在直线AB 上
C. 不能在直线AB上
D. 不能在线段AB上
4. 已知线段AB=
5.4,AB的中点C,AB的三等分点为D,则C、D两点间距离为()
A. 1.2
B. 0.9
C.1.4
D. 0.7
二. 填空题:
1. 如图,AB+AC______BC(选填“>”或“<”),理由是______________________。

A
B
C
2. 已知线段AB,延长AB到C,使BC=AB,在线段AB的反向延长线上截取AD=AC,则有DB:AB=_________,CD:BD=___________。

3. 如图,已知AB:AC=1:3,AC:AD=1:4,且AB+AC+AD=40,则AB=_____,BC=______,CD=_______。

A B D
C
4. 两条相等的线段AB、CD有三分之一部分重合,M、N分别为AB、CD的中点,若MN=12cm,则AB的长为_________。

三. 解答题:
1. 已知B、C是线段AD上的两点,若AD=18cm,BC=5cm,且M、N分别为AB、CD 的中点,
(1)求AB+CD的长度;
(2)求M、N的距离。

2. 如图,在已知直线MN的两侧各有一点A和B,在MN上找出一点C,使C点到A、B的距离之和最短,画出图形,并说明为什么最短?
A
M N
B
3. 如图,已知C是AB的中点,D是AC的中点,E是BC的中点.
(1)若AB=18cm,求DE的长;(2)若CE=5cm,求DB的长.
B。

相关文档
最新文档