高考数学一轮复习文科习题: 第11节 导数在研究函数中的应用第四课时 导数与函数零点 Word版含解析

合集下载

全国近年高考数学一轮复习第2章函数、导数及其应用第11讲导数在研究函数中的应用学案(2021年整理)

全国近年高考数学一轮复习第2章函数、导数及其应用第11讲导数在研究函数中的应用学案(2021年整理)

(全国版)2019版高考数学一轮复习第2章函数、导数及其应用第11讲导数在研究函数中的应用学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国版)2019版高考数学一轮复习第2章函数、导数及其应用第11讲导数在研究函数中的应用学案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国版)2019版高考数学一轮复习第2章函数、导数及其应用第11讲导数在研究函数中的应用学案的全部内容。

第11讲导数在研究函数中的应用板块一知识梳理·自主学习[必备知识]考点1 函数的导数与单调性的关系函数y=f(x)在某个区间内可导:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.考点2 函数的极值与导数1.函数的极小值与极小值点若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,且f′(a)=0,而且在x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数的极小值点,f(a)叫做函数的极小值;2.函数的极大值与极大值点若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,且f′(b)=0,而且在x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数的极大值点,f(b)叫做函数的极大值.考点3 函数的最值与导数1.函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.2.求y=f(x)在[a,b]上的最大(小)值的步骤(1)求函数y=f(x)在(a,b)内的极值.(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.[必会结论]1.若函数f(x)的图象连续不断,则f(x)在[a,b]内一定有最值.2.若函数f(x)在[a,b]内是单调函数,则f(x)一定在区间端点处取得最值.3.若函数f(x)在开区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.[考点自测]1.判断下列结论的正误.(正确的打“√",错误的打“×")(1)函数y=错误!x2-ln x的单调减区间为(-1,1).()(2)在函数y=f(x)中,若f′(x0)=0,则x=x0一定是函数y=f(x)的极值.()(3)函数的极大值不一定比极小值大.( )(4)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()答案(1)×(2)×(3)√(4)√2.[课本改编]函数y=x2(x-3)的单调递减区间是( )A.(-∞,0) B.(2,+∞)C.(0,2)D.(-2,2)答案C解析y′=3x2-6x,由y′<0,得0<x<2。

高考数学一轮复习 第2章 函数、导数及其应用 第11讲 导数在研究函数中的应用课件

高考数学一轮复习 第2章 函数、导数及其应用 第11讲 导数在研究函数中的应用课件

12/11/2021
第二十八页,共六十七页。
解析 由条件知 f′(x)=2x+a-x12≥0 在12,+∞上恒
成立,即 a≥x12-2x 在12,+∞上恒成立.∵函数 y=x12-
2x 在12,+∞上为减函数,∴ymax<112-2×12=3,∴a≥3. 2
经检验,当 a=3 时,满足题意.
12/11/2021
12/11/2021
第十六页,共六十七页。
∴对应函数 f(x)的增减性从左到右依次为减、增、减、 增.
观察选项可知,排除 A,C. 如图所示,f′(x)有 3 个零点,从左到右依次设为 x1, x2,x3,且 x1,x3 是极小值点,x2 是极大值点,且 x2>0,故 选项 D 正确.故选 D.
12/11/2021
12/11/2021
第五页,共六十七页。
2.函数的极大值与极大值点 若函数 f(x)在点 x=b 处的函数值 f(b)比它在点 x=b 附 近其他点的函数值 都大 ,且 f′(b)=0,而且在 x=b 附近 的左侧 f′(x)>0 ,右侧 f′(x)<0 ,则点 b 叫做函数的 极大值点,f(b)叫做函数的极大值.
A.函数 f(x)有极大值 f(2)和极小值 f(1) B.函数 f(x)有极大值 f(-2)和极小值 f(1) C.函数 f(x)有极大值 f(2)和极小值 f(-2) D.函数 f(x)有极大值 f(-2)和极小值 f(2)
12/11/2021
第三十三页,共六十七页。
解析 由图可得函数 y=(1-x)f′(x)的零点为-2,1,2, 则当 x<1 时,1-x>0,此时在(-∞,-2)上 f′(x)>0,在(- 2,1)上 f′(x)<0;当 x>1 时,1-x<0,此时在(1,2)上 f′(x)<0, 在(2,+∞)上 f′(x)>0.所以 f(x)在(-∞,-2)为增函数, 在(-2,2)为减函数,在(2,+∞)为增函数,因此 f(x)有极大 值 f(-2),极小值 f(2).故选 D.

高三数学人教版A版数学(理)高考一轮复习教案 导数在函数研究中的应用

高三数学人教版A版数学(理)高考一轮复习教案 导数在函数研究中的应用

第十一节 导数在函数研究中的应用1.函数的单调性了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.函数的极值了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).知识点一 利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与其导数的正负有如下关系 (1)若f ′(x )>0,则f (x )在这个区间上是增加的. (2)若f ′(x )<0,则f (x )在这个区间上是减少的. (3)若f __′(x )=0,则f (x )在这个区间内是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f __′(x ).(2)在定义域内解不等式f __′(x )>0或f __′(x )<0. (3)根据结果确定f (x )的单调区间. 易误提醒1.在某个区间(a ,b )上,若f ′(x )>0,则f (x )在这个区间上单调递增;若f ′(x )<0,则f (x )在这个区间上单调递减;若f ′(x )=0恒成立,则f (x )在这个区间上为常数函数;若f ′(x )的符号不确定,则f (x )不是单调函数.2.若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.[自测练习]1.函数f (x )=x +eln x 的单调递增区间为( ) A .(0,+∞)B .(-∞,0)C .(-∞,0)和(0,+∞)D .R解析:函数定义域为(0,+∞),f ′(x )=1+ex >0,故单调增区间是(0,+∞).答案:A2.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数,∴f ′(x )≥0恒成立,∴Δ=4-12m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞ 知识点二 利用导数研究函数的极值 1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值.2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.易误提醒 f ′(x 0)=0是x 0为f (x )的极值点的非充分非必要条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点;又如f (x )=|x |,x =0是它的极小值点,但f ′(0)不存在.[自测练习]3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个解析:导函数f ′(x )的图象与x 轴的交点中,左侧图象在x 轴下方,右侧图象在x 轴上方的只有一个,故选A.答案:A4.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4D .5解析:f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2×(-3)a +3=0,解得a =5.答案:D考点一 利用导数研究函数的单调性|(2015·高考全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. [解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0, 所以f (x )在(0,+∞)单调递增. 若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝⎛⎭⎫0,1a 单调递增, 在⎝⎛⎭⎫1a ,+∞单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝⎛⎭⎫1a =ln 1a +a ⎝⎛⎭⎫1-1a =-ln a +a -1. 因此f ⎝⎛⎭⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).利用导数研究函数的单调性应注意两点(1)在区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. (2)可导函数f (x )在(a ,b )内是增(减)函数的充要条件是:∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒为零.1.已知函数f (x )=m ln x -12x 2(m ∈R ),求函数f (x )的单调区间.解:函数f (x )=m ln x -12x 2的定义域是(0,+∞).f ′(x )=mx -x =m -x 2x .当m ≤0时,f ′(x )≤-x 2x=-x <0,函数f (x )=m ln x -12x 2在(0,+∞)上为减函数.当m >0时,令f ′(x )=0,得:x =m 或-m (舍去). 当x ∈(0,m )时,f ′(x )>0, ∴f (x )在(0,m )上是增函数. 当x ∈(m ,+∞)时,f ′(x )<0, ∴f (x )在(m ,+∞)上是减函数.综上所述,当m ≤0时,f (x )的单调递减区间为(0,+∞),当m >0时,f (x )的单调递增区间为(0,m ),单调递减区间为(m ,+∞).考点二 已知单调性求参数范围|(2015·福州模拟)已知函数f (x )=e x 2-1e x -ax (a ∈R ).(1)当a =32时,求函数f (x )的单调区间;(2)若函数f (x )在[-1,1]上为单调函数,求实数a 的取值范围. [解] (1)当a =32时,f (x )=e x 2-1e x -32x ,f ′(x )=12e x [(e x )2-3e x +2]=12e x (e x -1)(e x -2),令f ′(x )=0,得e x =1或e x =2,即x =0或x =ln 2; 令f ′(x )>0,得x <0或x >ln 2; 令f ′(x )<0,则0<x <ln 2.∴f (x )在(-∞,0],[ln 2,+∞)上单调递增,在(0,ln 2)上单调递减. (2)f ′(x )=e x 2+1e x -a ,令e x =t ,由于x ∈[-1,1],∴t ∈⎣⎡⎦⎤1e ,e .令h (t )=t 2+1t ⎝⎛⎭⎫t ∈⎣⎡⎦⎤1e ,e , h ′(t )=12-1t 2=t 2-22t2,∴当t ∈⎣⎡⎭⎫1e ,2时,h ′(t )<0,函数h (t )为单调减函数; 当t ∈(2,e]时,h ′(t )>0,函数h (t )为单调增函数. 故h (t )在⎣⎡⎦⎤1e ,e 上的极小值点为t = 2. 又h (e)=e 2+1e <h ⎝⎛⎭⎫1e =12e +e ,∴2≤h (t )≤e +12e.∵函数f (x )在[-1,1]上为单调函数,若函数在[-1,1]上单调递增,则a ≤t 2+1t 对t ∈⎣⎡⎦⎤1e ,e 恒成立,所以a ≤2;若函数f (x )在[-1,1]上单调递减,则a ≥t 2+1t 对t ∈⎣⎡⎦⎤1e ,e 恒成立,所以a ≥e +12e,综上可得a ≤ 2或a ≥e +12e.已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.提醒:f (x )为增函数的充要条件是对任意的x ∈(a ,b ),都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.2.已知函数f (x )=e x -ax (a ∈R ,e 为自然对数的底数). (1)讨论函数f (x )的单调性;(2)若a =1,函数g (x )=(x -m )f (x )-e x +x 2+x 在(2,+∞)上为增函数,求实数m 的取值范围.解:(1)函数f (x )的定义域为R ,f ′(x )=e x -a . 当a ≤0时,f ′(x )>0,∴f (x )在R 上为增函数; 当a >0时,由f ′(x )=0得x =ln a ,则当x ∈(-∞,ln a )时,f ′(x )<0,∴函数f (x )在(-∞,ln a )上为减函数, 当x ∈(ln a ,+∞)时,f ′(x )>0, ∴函数f (x )在(ln a ,+∞)上为增函数.(2)当a =1时,g (x )=(x -m )(e x -x )-e x +x 2+x , ∵g (x )在(2,+∞)上为增函数,∴g ′(x )=x e x -m e x +m +1≥0在(2,+∞)上恒成立, 即m ≤x e x +1e x -1在(2,+∞)上恒成立,令h (x )=x e x +1e x -1,x ∈(2,+∞),h ′(x )=(e x )2-x e x -2e x (e x -1)2=e x (e x -x -2)(e x -1)2. 令L (x )=e x -x -2,L ′(x )=e x -1>0在(2,+∞)上恒成立, 即L (x )=e x -x -2在(2,+∞)上为增函数, 即L (x )>L (2)=e 2-4>0,∴h ′(x )>0, 即h (x )=x e x +1e x -1在(2,+∞)上为增函数,∴h (x )>h (2)=2e 2+1e 2-1,∴m ≤2e 2+1e 2-1.考点三 利用导数研究极值|设函数f (x )=x 2-ax +b .讨论函数f (sin x )在⎝⎛⎭⎫-π2,π2内的单调性并判断有无极值,有极值时求出极值. [解] f (sin x )=sin 2x -a sin x +b =sin x (sin x -a )+b ,-π2<x <π2.[f (sin x )]′=(2sin x -a )cos x ,-π2<x <π2.因为-π2<x <π2,所以cos x >0,-2<2sin x <2.①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值. ②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值.③对于-2<a <2,在⎝⎛⎭⎫-π2,π2内存在唯一的x 0,使得2sin x 0=a .-π2<x ≤x 0时, 函数f (sin x )单调递减;x 0≤x <π2时,函数f (sin x )单调递增.因此,-2<a <2,b ∈R 时,函数f (sin x )在x 0处有极小值 f (sin x 0)=f ⎝⎛⎭⎫a 2=b -a24.3.(2015·太原一模)已知函数f (x )=(x 2-ax +a )e x -x 2,a ∈R . (1)若函数f (x )在(0,+∞)上单调递增,求a 的取值范围; (2)若函数f (x )在x =0处取得极小值,求a 的取值范围. 解:(1)由题意得f ′(x )=x [(x +2-a )e x -2]= x e x ⎝⎛⎭⎫x +2-2e x -a ,x ∈R , ∵f (x )在(0,+∞)上单调递增, ∴f ′(x )≥0在(0,+∞)上恒成立, ∴x +2-2ex ≥a 在(0,+∞)上恒成立,又函数g (x )=x +2-2e x 在(0,+∞)上单调递增,∴a ≤g (0)=0,∴a 的取值范围是(-∞,0].(2)由(1)得f ′(x )=x e x ⎝⎛⎭⎫x +2-2e x -a ,x ∈R , 令f ′(x )=0,则x =0或x +2-2e x -a =0,即x =0或g (x )=a ,∵g (x )=x +2-2e x 在(-∞,+∞)上单调递增,其值域为R ,∴存在唯一x 0∈R ,使得g (x 0)=a ,①若x 0>0,当x ∈(-∞,0)时,g (x )<a ,f ′(x )>0;当x ∈(0,x 0)时,g (x )<a ,f ′(x )<0,∴f (x )在x =0处取得极大值,这与题设矛盾.②若x 0=0,当x ∈(-∞,0)时,g (x )<a ,f ′(x )>0;当x ∈(0,+∞)时,g (x )>a ,f ′(x )>0,∴f (x )在x =0处不取极值,这与题设矛盾.③若x 0<0,当x ∈(x 0,0)时,g (x )>a ,f ′(x )<0;当x ∈(0,+∞)时,g (x )>a ,f ′(x )>0,∴f (x )在x =0处取得极小值.综上所述,x 0<0,∴a =g (x 0)<g (0)=0, ∴a 的取值范围是(-∞,0). 8.分类讨论思想在导数中的应用【典例】 (2015·贵阳期末)已知函数f (x )=ax -ae x (a ∈R ,a ≠0).(1)当a =-1时,求函数f (x )的极值;(2)若函数F (x )=f (x )+1没有零点,求实数a 的取值范围.[思维点拨] (1)求f ′(x )后判断f (x )在(-∞,+∞)上的单调性,可求极值. (2)分类讨论f (x )在(-∞,+∞)的单调性,利用极值建立所求参数a 的不等式求解. [解] (1)当a =-1时,f (x )=-x +1e x ,f ′(x )=x -2ex . 由f ′(x )=0,得x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的极小值为f (2)=-1e2,函数f (x )无极大值.(2)F ′(x )=f ′(x )=a e x -(ax -a )e x e 2x =-a (x -2)e x .①当a <0时,F (x ),F ′(x )的变化情况如下表:若使函数F (x )没有零点,当且仅当F (2)=ae 2+1>0,解得a >-e 2,所以此时-e 2<a <0;②当a >0时,F (x ),F ′(x )的变化情况如下表:因为F (2)>F (1)>0,且F ⎝⎛⎭⎫1-10a =e1-10a -10e1-10a <e -10e1-10a <0, 所以此时函数F (x )总存在零点. (或:当x >2时,F (x )=a (x -1)e x+1>1,当x <2时,令F (x )=a (x -1)e x+1<0,即a (x -1)+e x <0, 由于a (x -1)+e x <a (x -1)+e 2, 令a (x -1)+e 2≤0,得x ≤1-e 2a ,即x ≤1-e 2a时,F (x )<0,即F (x )存在零点)综上所述,所求实数a 的取值范围是(-e 2,0).[思想点评] 分类讨论思想在导数研究函数的应用中运用普遍常见的分类讨论点有: (1)f ′(x )=0是否有根.(2)若f ′(x )=0有根,根是否在定义域内. (3)若f ′(x )=0有两根,两根大小比较问题.A 组 考点能力演练1.(2015·岳阳一模)下列函数中,既是奇函数又存在极值的是( ) A .y =x 3 B .y =ln(-x ) C .y =x e -xD .y =x +2x解析:A 、B 为单调函数,不存在极值,C 不是奇函数,故选D. 答案:D2.(2016·厦门质检)函数y =12x 2-ln x 的单调递减区间为( )A .(0,1)B .(0,1]C .(1,+∞)D .(0,2)解析:由题意知,函数的定义域为(0,+∞),又由y ′=x -1x ≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].答案:B3.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22=( )A.23B.43C.83D.163解析:由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2.x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两根,因此x 1+x 2=2,x 1·x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1·x 2=4-43=83,故选C.答案:C4.已知函数f (x )=x ⎝⎛⎭⎫e x -1e x ,若f (x 1)<f (x 2),则( ) A .x 1>x 2 B .x 1+x 2=0C .x 1<x 2D .x 21<x 22解析:因为f (-x )=-x ⎝ ⎛⎭⎪⎫e -x -1e -x =x ⎝⎛⎭⎫e x -1e x =f (x ),所以f (x )为偶函数.由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|)(*).又f ′(x )=e x-1e x +x ⎝⎛⎭⎫e x +1e x =e 2x(x +1)+x -1ex,当x ≥0时,e 2x (x +1)+x -1≥e 0(0+1)+0-1=0,所以f ′(x )≥0,所以f (x )在[0,+∞)上为增函数,由(*)式得|x 1|<|x 2|,即x 21<x 22,故选D.答案:D5.若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A.⎝⎛⎦⎤-∞,518 B .(-∞,3] C.⎣⎡⎭⎫518,+∞ D .[3,+∞)解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝⎛⎭⎫x +1x 在[1,4]上恒成立,因为y =32⎝⎛⎭⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝⎛⎭⎫4+14=518,故选C. 答案:C6.(2016·九江一模)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为________.解析:由题意知f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立,∵⎝⎛⎭⎫-x +1x max =83,∴2a ≥83,即a ≥43. 答案:⎣⎡⎭⎫43,+∞7.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________.解析:本题考查利用导数研究函数的极值及不等式的解法.由f ′(x )=3x 2-4ax +a 2=0得x 1=a3,x 2=a .又∵x 1<2<x 2,∴⎩⎪⎨⎪⎧a >2,a 3<2,∴2<a <6.答案:(2,6)8.(2015·兰州一模)若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________.解析:∵f (x )=x 2-e x -ax ,∴f ′(x )=2x -e x -a , ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a ≥0,即a ≤2x -e x 有解,设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,解得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a ≤2ln 2-2.答案:(-∞,2ln 2-2)9.已知函数f (x )=x -2ln x -ax +1,g (x )=e x (2ln x -x ).(1)若函数f (x )在定义域上是增函数,求a 的取值范围; (2)求g (x )的最大值.解:(1)由题意得x >0,f ′(x )=1-2x +ax2.由函数f (x )在定义域上是增函数,得f ′(x )≥0,即a ≥2x -x 2=-(x -1)2+1(x >0). 因为-(x -1)2+1≤1(当x =1时,取等号), 所以a 的取值范围是[1,+∞). (2)g ′(x )=e x ⎝⎛⎭⎫2x -1+2ln x -x , 由(1)得a =2时,f (x )=x -2ln x -2x +1,且f (x )在定义域上是增函数,又f (1)=0,所以,当x ∈(0,1)时,f (x )<0,当x ∈(1,+∞)时,f (x )>0. 所以,当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0. 故当x =1时,g (x )取得最大值-e.10.(2015·安徽六校联考)设函数f (x )=(x -1)e x -kx 2(其中k ∈R ). (1)当k =1时,求函数f (x )的单调区间和极值;(2)当k ∈[0,+∞)时,证明函数f (x )在R 上有且只有一个零点.解:(1)当k =1时,f (x )=(x -1)e x -x 2,f ′(x )=e x +(x -1)e x -2x =x e x -2x =x (e x -2), 令f ′(x )=0,得x 1=0,x 2=ln 2. 当x 变化时,f ′(x ),f (x )的变化如下表:∞).f (x )的极大值为f (0)=-1,极小值为f (ln 2)= -(ln 2)2+2ln 2-2.(2)f ′(x )=e x +(x -1)e x -2kx =x e x -2kx =x (e x -2k ), 当x <1时,f (x )<0,所以f (x )在(-∞,1)上无零点. 故只需证明函数f (x )在[1,+∞)上有且只有一个零点.①若k ∈⎣⎡⎦⎤0,e2,则当x ≥1时,f ′(x )≥0,f (x )在[1,+∞)上单调递增. ∵f (1)=-k ≤0,f (2)=e 2-4k ≥e 2-2e>0, ∴f (x )在[1,+∞)上有且只有一个零点.②若k ∈⎝⎛⎭⎫e2,+∞,则f (x )在[1,ln 2k ]上单调递减,在[ln 2k ,+∞)上单调递增. f (1)=-k <0,f (k +1)=k e k +1-k (k +1)2=k [e k +1-(k +1)2], 令g (t )=e t -t 2,t =k +1>2,则g ′(t )=e t -2t , g ″(t )=e t -2,∵t >2,∴g ″(t )>0,g ′(t )在(2,+∞)上单调递增. ∴g ′(t )>g ′(2)=e 2-4>0,∴g (t )在(2,+∞)上单调递增. ∴g (t )>g (2)=e 2-4>0. ∴f (k +1)>0.∴f (x )在[1,+∞)上有且只有一个零点.综上,当k ∈[0,+∞)时,f (x )在R 上有且只有一个零点.B 组 高考题型专练1.(2015·高考重庆卷)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,讨论g (x )的单调性. 解:(1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝⎛⎭⎫-43=0, 所以3a ·169+2·⎝⎛⎭⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝⎛⎭⎫12x 3+x 2e x, 故g ′(x )=⎝⎛⎭⎫32x 2+2x e x +⎝⎛⎭⎫12x 3+x 2e x =⎝⎛⎭⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x . 令g ′(x )=0,解得x =0,x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数. 2.(2015·高考安徽卷)已知函数f (x )=ax (x +r )2(a >0,r >0).(1)求f (x )的定义域,并讨论f (x )的单调性; (2)若ar=400,求f (x )在(0,+∞)内的极值.解:(1)由题意知x ≠-r ,所求的定义域为(-∞,-r )∪(-r ,+∞). f (x )=ax (x +r )2=axx 2+2rx +r 2,f ′(x )=a (x 2+2rx +r 2)-ax (2x +2r )(x 2+2rx +r 2)2=a (r -x )(x +r )(x +r )4,所以当x <-r 或x >r 时,f ′(x )<0,当-r <x <r 时,f ′(x )>0,因此,f (x )的单调递减区间为(-∞,-r ),(r ,+∞);f (x )的单调递增区间为(-r ,r ). (2)由(1)的解答可知f ′(r )=0,f (x )在(0,r )上单调递增,在(r ,+∞)上单调递减. 因此,x =r 是f (x )的极大值点,所以f (x )在(0,+∞)上的极大值为f (r )=ar (2r )2=a 4r =4004=100.3.(2016·宁夏银川一中联考)函数f (x )=x 2-2ln x ,h (x )=x 2-x +a . (1)求函数f (x )的极值;(2)设函数k (x )=f (x )-h (x ),若函数k (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围.解:(1)∵f ′(x )=2x -2x,令f ′(x )=0,∵x >0,∴x =1.x (0,1) 1 (1,+∞)f ′(x ) - 0 + f (x )单调递减1单调递增∴f (x )的极小值为1,无极大值.(2)∵k (x )=f (x )-h (x )=-2ln x +x -a ,k ′(x )=-2x +1.若k ′(x )=0,则x =2.当x ∈[1,2)时,k ′(x )<0;当x ∈(2,3]时,k ′(x )>0. 故k (x )在x ∈[1,2)上单调递减,在x ∈(2,3]上单调递增.∴{ k (1)≥0,k (2)<0,k (3)≥0,∴{a ≤1,a >2-2ln 2,a ≤3-2ln 3, ∴实数a 的取值范围是(2-2ln 2,3-2ln 3].。

高考数学一轮总复习第二章函数导数及其应用第十一节导数在研究函数中的应用课件理

高考数学一轮总复习第二章函数导数及其应用第十一节导数在研究函数中的应用课件理
∴ f′ (x)<0 的解集为 (x1,x2),∴ a>0. 又 x1,x2 均为正数,∴ 3ca>0,-23ba>0,可得 c>0,b<0. 答案: A
(2014·江西卷 ) 已知函数 f(x) = (x 2 + bx + b)· 1- 2x
(b ∈ R) .
(1) 当 b= 4 时,求 f(x) 的极值;
(1)函数 y=12x2-ln x 的单调递减区间为 (
)
A.(-1,1]
B.(0,1]
C.[1,+∞ )
D.(0,+∞ )
解:由题意知,函数的定义域为 (0,+∞ ),
又由 y′=x-1x≤ 0,解得 0<x≤ 1,
所以函数的单调递减区间为 (0,1].
答案: B
(2)(2015·安徽卷)` 函数 f(x)=ax3+bx2+cx+d 的图象如图所示, 则下列结论成立的是 ( )
解:(1)对 f(x)求导得 f′(x)=2ae2x+2be-2x-c, 由 f′(x)为偶函数,知 f′(-x)=f′(x), 即 2(a-b)(e2x-e-2x)=0 恒成立. 因 e2x-e-2x>0,所以 a=b. 又 f′(0)=2a+2b-c=4-c, 故 a=1,b=1. (2)当 c=3 时,f(x)=e2x-e-2x-3x, 则 f′(x)=2e2x+2e-2x-3 ≥ 2 2e2x· 2e-2x-3=1>0. 故 f(x)在 R 上为增函数.
当 x∈ (- 2, 0) 时, f′ (x)>0 , f(x) 单调递增;
当 x∈???0,12???时,f′ (x)<0,f(x)单调递减, 故 f(x)在 x=-2 取得极小值 f(-2)=0,在 x=0 取得极大值 f(0)

高考数学 2.11 导数在研究函数中的应用

高考数学 2.11 导数在研究函数中的应用

(2)函数的极值与导数: ①函数的极小值与极小值点: 若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数 值_都__小__,且f′(a)=0,而且在x=a附近的左侧_f_′__(_x_)_<_0_,右侧_f_′__(_x_)_ _>_0_,则a点叫做函数的极小值点,f(a)叫做函数的极小值; ②函数的极大值与极大值点: 若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值 ___都__大,且f′(b)=0,而且在x=b附近的左侧___f_′__(_x_)_>,0右侧___f_′__(_x) _<_0_,则b点叫做函数的极大值点,f(b)叫做函数的极大值.
2.必备结论 教材提炼 记一记 (1)可导函数f(x)在[a,b]上是增函数,则有_f_′__(_x_)_≥__0_在[a,b]上恒 成立. (2)可导函数f(x)在[a,b]上是减函数,则有_f_′__(_x_)_≤__0_在[a,b]上恒 成立.
3.必用技法 核心总结 看一看 (1)常用方法:利用导数判断单调性的方法,利用导数求极值、最值的 方法. (2)数学思想:分类讨论、数形结合. (3)记忆口诀:导数应用比较广,单调极值及最值;
第十一节 导数在研究函数中的应用
【知识梳理】 1.必会知识 教材回扣 填一填 (1)函数的导数与单调性的关系: 函数y=f(x)在某个区间内可导: ①若f′(x)>0,则f(x)在这个区间内_单__调__递__增__; ②若f′(x)<0,则f(x)在这个区间内_单__调__递__减__; ③若f′(x)=0,则f(x)在这个区间内是_常__数__函__数__.
导数恒正单调增,导数恒负当然减; 求出导数为零点,左增右减极大值; 左减右增是极小,同增同减非极值; 若是加上端点值,最大最小皆晓得.

高考数学一轮复习 第2章 第11节 导数在研究函数中的应用课件 理 苏教版

高考数学一轮复习 第2章 第11节 导数在研究函数中的应用课件 理 苏教版

ppt精选
4
3.函数的最值
(1)最大值与最小值的概念
如果在函数定义域 I 内存在 x0,使得对任意的 x∈I,总有 f(x)≤f(x0) ,则称 f(x0)为函数 f(x)在定义域上的最大值.如果在函 数定义域 I 内存在 x0,使得对任意的 x∈I,总有f(x)≥f(x0) ,则称
f(x0)为函数 f(x)在定义域上的最小值.
[解] f′(x)=cos x-xsin x-cos x=-xsin x. 令 f′(x)=0,得 x=kπ(k∈N*). 当 x∈(2kπ,(2k+1)π)(k∈N)时,sin x>0,此时 f′(x)<0; 当 x∈((2k+1)π,(2k+2)π)(k∈N)时,sin x<0,此时 f′(x)>0. 故 f(x)的单调递减区间为(2kπ,(2k+1)π)(k∈N),单调递增区 间为((2k+1)π,(2k+2)π)(k∈N).
ppt精选
13
[解] (1)f′(x)=x2+2x+a,方程 x2+2x+a=0 的判别式 Δ=4 -4a,
∴当 a≥1 时,Δ≤0,∴f′(x)≥0, 此时 f(x)在(-∞,+∞)上单调递增.
当 a<1 时,方程 x2+2x+a=0 的两根为-1± 1-a,
当 x∈(-∞,-1- 1-a)时,f′(x)>0,此时 f(x)单调递增,
[解析] ∵f′(x)=6x2-12x=6x(x-2), 由 f′(x)=0,得 x=0 或 x=2. ∵f(0)=m,f(2)=-8+m,f(-2)=-40+m, 有 f(0)>f(2)>f(-2). ∴m=3,最小值为 f(-2)=-37. [答案] -37
ppt精选
9
4.(2014·新课标Ⅱ)若函数 f(x)=kx-ln x 在区间(1,+∞)上单 调递增,则 k 的取值范围是________.

高考数学一轮复习第2章第11节导数在研究函数中的应用课后限时自测理苏教版

高考数学一轮复习第2章第11节导数在研究函数中的应用课后限时自测理苏教版

【高考讲坛】 高考数学一轮复习 第2章 第11节 导数在研究函数中的应用课后限时自测 理 苏教版[A 级 基础达标练]一、填空题1.函数f (x )=x +eln x 的单调递增区间为________.[解析] 函数定义域为(0,+∞),f ′(x )=1+ex>0,故单调增区间是(0,+∞).[答案] (0,+∞)2.函数f (x )=x 3-15x 2-33x +6的单调减区间为________. [解析] 由已知f ′(x )=3x 2-30x -33=3(x -11)(x +1), 由(x -11)(x +1)≤0得单调减区间为[-1,11]. [答案] [-1,11]3.(2014·苏州调研)函数y =e x -ln x 的值域为________.[解析] 函数的定义域为{x |x >0},y ′=e -1x =e x -1x ,令y ′=0得x =1e,y =f (x )在⎝ ⎛⎭⎪⎫0,1e 上为减函数,⎝ ⎛⎭⎪⎫1e ,+∞上为增函数,x =1e 时,y min=2,即y ≥2.[答案] [2,+∞)4.(2011·广东高考)函数f (x )=x 3-3x 2+1在x =________处取得极小值. [解析] 由已知f ′(x )=3x 2-6x =3x (x -2), 当x <0时,f ′(x )>0, 当0<x <2时,f ′(x )<0, 当x >2时,f ′(x )>0, 故当x =2时f (x )取得极小值. [答案] 25.(2014·无锡市北高中检测)函数f (x )=x ln x 在区间[1,t +1](t >0)上的最小值为________.[解析] f ′(x )=ln x +1,当x ≥1时,f ′(x )>0, ∴f (x )=x ln x 在区间[1,t +1](t >0)是增函数. ∴最小值为f (1)=0. [答案] 06.(2014·盐城期中检测)已知函数f (x )=2f ′(1)ln x -x ,则f (x )的极大值为________.[解析] f ′(x )=2f ′1x-1,令x =1,f ′(1)=2f ′(1)-1得f ′(1)=1, ∴f (x )=2ln x -x ,f ′(x )=2x-1.当x ∈(0,2)时,f ′(x )>0,f (x )为增函数, 当x ∈(2,+∞)时,f ′(x )<0,f (x )为减函数, ∴f (x )的极大值为f (2)=2ln 2-2. [答案] 2ln 2-27.(2013·浙江高考改编)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k(k =1,2),则下面四种说法正确的是________(填序号).①当k =1时,f (x )在x =1处取到极小值 ②当k =1时,f (x )在x =1处取到极大值 ③当k =2时,f (x )在x =1处取到极小值 ④当k =2时,f (x )在x =1处取到极大值 [解析] 当k =1时,f (x )=(e x-1)(x -1), 则f ′(x )=e x (x -1)+(e x -1)=e xx -1, 所以f ′(1)=e -1≠0, 所以f (1)不是极值.当k =2时,f (x )=(e x -1)(x -1)2, 则f ′(x )=e x (x -1)2+2(e x-1)(x -1) =e x(x 2-1)-2(x -1) =(x -1)[e x(x +1)-2],所以f ′(1)=0,且当x >1时,f ′(x )>0;在x =1附近的左侧,f ′(x )<0,所以f (1)是极小值.[答案] ③8.(2014·山东高考改编)函数f (x )=1log 2x2-1的定义域为________.[解析] 由题意知⎩⎪⎨⎪⎧x >0,log 2x2>1,解得x >2或0<x <12.[答案] ⎝⎛⎭⎪⎫0,12∪(2,+∞)二、解答题9.(2013·课标全国卷Ⅰ)已知函数f (x )=e x(ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. [解] (1)f ′(x )=e x(ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4.故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x(x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)⎝⎛⎭⎪⎫e x-12.令f ′(x )=0,得x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增, 在(-2,-ln 2)上单调递减.当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2). 10.(2011·安徽高考)设f (x )=ex1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. [解] 对f (x )求导得f ′(x )=e x1+ax 2-2ax1+ax22①(1)当a =43时,若f ′(x )=0则4x 2-8x +3=0解得x 1=32,x 2=12又当x 变化时,f ′(x )和f (x )的变化情况如下:x ⎝⎛⎭⎪⎫-∞,12 12 ⎝ ⎛⎭⎪⎫12,32 32 ⎝ ⎛⎭⎪⎫32,+∞ f ′(x ) +0 -0 +f (x )极大值极小值∴x 1=2是极小值点,x 2=2是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,由Δ=4a 2-4a =4a (a -1)≤0得0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.[B 级 能力提升练]一、填空题1.(2014·苏州模拟)若函数f (x )=x 2-12ln x +1在其定义域内的一个子区间(k -1,k+1)内不是单调函数,则实数k 的取值范围________.[解析] 函数f (x )的定义域为(0,+∞),f ′(x )=2x -12x =2x 2-12x=2x +12x -12x ,由f ′(x )>0得x >12,由f ′(x )<0得0<x <12,要使函数在定义域内的一个子区间(k -1,k +1)内不是单调函数,则有0≤k -1<12<k +1,解得1≤k <32,即k 的取值范围是⎣⎢⎡⎭⎪⎫1,32.[答案] ⎣⎢⎡⎭⎪⎫1,32 2.已知函数f (x )=ln x -m x(m ∈R)在区间[1,e]上取得最小值4,则m =________. [解析] 函数定义域为(0,+∞),f ′(x )=1x +m x 2=x +mx2,①当m ≥0时,f ′(x )>0,∴f (x )在[1,e]上单调递增, ∴f (x )min =f (1)=-m =4, ∴m =-4,舍去.②当m <0时,f (x )在(0,-m )上递减,在(-m ,+∞)上递增. ⅰ.当-m >e ,即m <-e 时,f (x )min =f (e)=1-me=4,∴m =-3e.ⅱ.当1≤-m ≤e,即-e≤m ≤-1时,f (x )min =f (-m )=ln(-m )+1=4,∴m =-e 3,舍去.ⅲ.当-m <1,即m >-1时,f (x )min =f (1)=-m =4, ∴m =-4,舍去. [答案] -3e 二、解答题3.(2014·连云港质检)已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间,并求其在区间(-∞,-1]上的最大值.[解] (1)f ′(x )=2ax ,g ′(x )=3x 2+b ,因为曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,所以f (1)=g (1),且f ′(1)=g ′(1).则a +1=1+b ,且2a =3+b .解得a =3,b =3. (2)记h (x )=f (x )+g (x ).当b =14a 2时,h (x )=x 3+ax 2+14a 2x +1,h ′(x )=3x 2+2ax +14a 2.令h ′(x )=0,得x 1=-a 2,x 2=-a6.a >0时,h (x )与h ′(x )的变化情况如下:所以h (x )的单调递增区间为⎝ ⎭⎪⎫-∞,-2和⎝ ⎭⎪-6,+∞;单调递减区间为⎝ ⎭⎪⎫-2,-6.当-a2≥-1,即0<a ≤2时,函数h (x )在区间(-∞,-1]上单调递增,h (x )在区间(-∞,-1]上的最大值为h (-1)=a -14a 2.当-a 2<-1,且-a6≥-1,即2<a ≤6时,函数h (x )在区间⎝ ⎛⎭⎪⎫-∞,-a 2上单调递增,在区间⎝ ⎛⎦⎥⎤-a2,-1上单调递减,h (x )在区间(-∞,-1]上的最大值为h ⎝ ⎛⎭⎪⎫-a 2=1. 当-a6<-1,即a >6时,函数h (x )在区间⎝ ⎛⎭⎪⎫-∞,-a 2上单调递增,在区间⎝ ⎛⎭⎪⎫-a 2,-a 6上单调递减,在区间⎝ ⎛⎦⎥⎤-a 6,-1上单调递增,又因为h ⎝ ⎛⎭⎪⎫-a 2-h (-1)=1-a +14a 2=14(a -2)2>0,所以h (x )在区间(-∞,-1]上的最大值为h -a2=1.。

高考文科数学一轮复习:导数在研究函数中的应用

高考文科数学一轮复习:导数在研究函数中的应用

5年5考
情况求参数的取值范围
题,发展数学建模和数学运算素养
夯实双基·自主梳理
题型考向·层级突破
练习测评·课时作业
趋势分析 函数的极值与最值是高考热点内容,对极值的考查主要有两个命题角度: ①判断极值的情况;②已知函数求极值.考查函数最值时必定涉及函数的 单调性,还会涉及方程和不等式.题型有大题也有小题且有一定难度.另 外已知函数的极值(最值)情况求参数的取值范围也是热点考查内容,涉及 函数的单调性时,往往需要进行分类讨论,这类题综合性强,难度较大
夯实双基·自主梳理
题型考向·层级突破
练习测评·课时作业
2.求可导函数 f(x)的极值的步骤 (1)求导函数 f′(x); (2)求方程 f′(x)=0 的根; (3)检验 f′(x)在方程 f′(x)=0 的根的左右两侧函数值的符号,如果 左左正右负 ,那么函数 y=f(x)在这个根处取得极大值;如果 左左负负右右正正 , 那么函数 y=f(x)在这个根处取得极小值,可列表完成.
夯实双基·自主梳理
题型考向·层级突破
练习测评·课时作业
(3)对可导函数 f(x),f′(x0)=0 是 x0 为极值点的充要条件.(× ) 解析 对可导函数 f(x),f′(x0)=0 只是 x0 为极值点的必要条件,如 y= x3 在 x=0 时 f′(0)=0,而函数在 R 上为增函数,所以 0 不是极值点. (4) 函 数 的 最 大 值 不 一 定 是 极 大 值 , 函 数 的 最 小 值 也 不 一 定 是 极 小 值.(√ )
解析 当函数在区间端点处取得最值时,这时的最值不是极值.
夯实双基·自主梳理
题型考向·层级突破
练习测评·课时作业
(5)开区间上的单调连续函数无最值.(√ ) (6)函数 f(x)=1x在区间[-1,1]上有最值.(×)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四课时导数与函数零点
【选题明细表】
基础巩固(时间:30分钟)
1.(2018·河北邢台第二次月考)已知f(x)=e x-ax
2.
命题p:∀a≥1,y=f(x)有三个零点;
命题q:∃a∈R,f(x)≤0恒成立.
则下列命题为真命题的是( B )
(A)p∧q (B)(¬p)∧(¬q)
(C)(¬p)∧q (D)p∧(¬q)
解析:对于命题p:当a=1时,f(x)=e x-x2,在同一坐标系中作出y=e x,
y=x2的图象(图略),由图可知y=e x与y=x2的图象有1个交点,所以f(x)=e x-x2有1个零点,故命题p为假命题,因为f(0)=1,所以命题q显然为假命题.故(¬p)∧(¬q)为真.
2.(2018·贵阳联考)已知函数f(x)的定义域为[-1,4],部分对应值
如表:
f(x)的导函数y=f′(x)的图象如图所示.
当1<a<2时,函数y=f(x)-a的零点的个数为( D )
(A)1 (B)2 (C)3 (D)4
解析:根据导函数图象,知2是函数的极小值点,函数y=f(x)的大致图象如图所示.
由于f(0)=f(3)=2,1<a<2,
所以y=f(x)-a的零点个数为4.
3.若函数f(x)=+1(a<0)没有零点,则实数a的取值范围
为.解析:f′(x)==(a<0).
当x<2时,f′(x)<0;
当x>2时,f′(x)>0,
所以当x=2时,f(x)有极小值f(2)=+1,
若使函数f(x)没有零点,当且仅当f(2)=+1>0,
解之得a>-e2,因此-e2<a<0.
答案:(-e2,0)
4.(2018·河北武邑中学第二次调研)已知函数f(x)=x3-x2-ax-2的图象过点A(4,).
(1)求函数f(x)的单调增区间;
(2)若函数g(x)=f(x)-2m+3有3个零点,求m的取值范围.
解:(1)因为函数f(x)=x3-x2-ax-2的图象过点A(4,),
所以-4a-4a-2=,解得a=2,
即f(x)=x3-x2-2x-2,
所以f′(x)=x2-x-2.
由f′(x)>0,得x<-1或x>2.
所以函数f(x)的单调增区间是(-∞,-1),(2,+∞).
(2)由(1)知f(x)极大值=f(-1)=--+2-2=-,
f(x)极小值=f(2)=-2-4-2=-,
由数形结合,可知要使函数g(x)=f(x)-2m+3有三个零点,
则-<2m-3<-,
解得-<m<.
所以m的取值范围为(-,).
能力提升(时间:15分钟)
5.已知函数f(x)=e x-1,g(x)=+x,其中e是自然对数的底数,e= 2.718 28….
(1)证明:函数h(x)=f(x)-g(x)在区间(1,2)上有零点;
(2)求方程f(x)=g(x)的根的个数,并说明理由.
(1)证明:由题意可得
h(x)=f(x)-g(x)=e x-1--x.
所以h(1)=e-3<0,h(2)=e2-3->0,
所以h(1)h(2)<0,
所以函数h(x)在区间(1,2)上有零点.
(2)解:由(1)可知h(x)=f(x)-g(x)=e x-1--x.
由g(x)=+x知x∈[0,+∞),
而h(0)=0,则x=0为h(x)的一个零点.
又h(x)在(1,2)内有零点,
因此h(x)在[0,+∞)上至少有两个零点.
h′(x)=e x--1,记ϕ(x)=e x--1,
则ϕ′(x)=e x+.
当x∈(0,+∞)时,ϕ′(x)>0,
因此ϕ(x)在(0,+∞)上单调递增,
易知ϕ(x)在(0,+∞)内只有一个零点,
则h(x)在[0,+∞)上有且只有两个零点,
所以方程f(x)=g(x)的根的个数为2.
6.已知函数f(x)=e x+ax-a(a∈R且a≠0).
(1)若f(0)=2,求实数a的值,并求此时f(x)在[-2,1]上的最小值;
(2)若函数f(x)不存在零点,求实数a的取值范围.
解:(1)由f(0)=1-a=2,得a=-1.
易知f(x)在[-2,0]上单调递减,在[0,1]上单调递增,
所以当x=0时,f(x)在[-2,1]上取得最小值2.
(2)f′(x)=e x+a,由于e x>0.
①当a>0时,f′(x)>0,f(x)是增函数,
当x>1时,f(x)=e x+a(x-1)>0.
当x<0时,取x=-,
则f(-)<1+a(--1)=-a<0.
所以函数f(x)存在零点,不满足题意.
②当a<0时,f′(x)=e x+a,
令f′(x)=0,得x=ln(-a),
在(-∞,ln(-a))上,f′(x)<0,f(x)单调递减,
在(ln(-a),+∞)上,f′(x)>0,f(x)单调递增,
所以当x=ln(-a)时,f(x)取得最小值.
函数f(x)不存在零点,等价于
f(ln(-a))=e ln(-a)+aln(-a)-a=-2a+aln(-a)>0,
解得-e2<a<0.
综上所述,所求实数a的取值范围是(-e2,0).
7.已知函数f(x)=ax+ln x,其中a为常数.
(1)当a=-1时,求f(x)的单调递增区间;
(2)当0<-<e时,若f(x)在区间(0,e)上的最大值为-3,求a的值;
(3)当a=-1时,试推断方程|f(x)|=+是否有实数根.
解:(1)由已知可知函数f(x)的定义域为{x|x>0},
当a=-1时,f(x)=-x+ln x(x>0),
f′(x)=(x>0);
当0<x<1时,f′(x)>0;
当x>1时,f′(x)<0.
所以f(x)的单调递增区间为(0,1).
(2)因为f′(x)=a+(x>0),
令f′(x)=0,解得x=-;
由f′(x)>0,解得0<x<-;
由f′(x)<0,解得-<x<e.
从而f(x)的单调递增区间为(0,-),
递减区间为(-,e),
所以f(x)max=f(-)=-1+ln(-)=-3,
解得a=-e2.
(3)由(1)知当a=-1时,f(x)max=f(1)=-1,
所以|f(x)|≥1.
令g(x)=+,则g′(x)=.
当0<x<e时,g′(x)>0;
当x>e时,g′(x)<0.
从而g(x)在(0,e)上单调递增,在(e,+∞)上单调递减.
所以g(x)max=g(e)=+<1,
所以|f(x)|>g(x),
即|f(x)|>+,
所以,方程|f(x)|=+没有实数根.。

相关文档
最新文档