高考复习文科函数与导数知识点总结
(word完整版)高中文科数学复习-函数与导数知识点,推荐文档

一函数与导数一.函数定义——知识点归纳1函数的定义:设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A2两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f3映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集4映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一二.函数解析式——知识点归纳1函数的三种表示法(1)解析法:把两个变量的函数关系用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式(2)列表法:就是列出表格来表示两个变量的函数关系(3)图象法:就是用函数图象表示两个变量之间的关系2求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组 (5)应用题求函数解析式常用方法有待定系数法等题型讲解(1)已知3311()f x x xx +=+,求()f x ; (2)已知2(1)lg f x x+=,求()f x ;(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x解:(1)∵3331111()()3()f x x x x xx x x+=+=+-+, ∴3()3f x x x =-(2x ≥或2x ≤-)(2)令21t x +=(1t >), 则21x t =-,∴2()lg 1f t t =-,∴2()lg (1)1f x x x =>-(3)设()(0)f x ax b a =+≠,则3(1)2(1)333222f x f x ax a b ax a b +--=++-+-5217ax b a x =++=+,∴2a =,7b =,∴()27f x x =+(4)12()()3f x f x x+= ①,把①中的x 换成1x ,得132()()f f x x x+= ②, ①2⨯-②得33()6f x x x =-,∴1()2f x x x=-注:第(1)题用配凑法;第(2)题用换元法;第(3)题已知一次函数,可用待定系数法;第(4)题用方程组法三.定义域和值域——知识点归纳1求函数解析式的题型有:同上2求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,应考虑使实际问题有意义; (3)已知()f x 的定义域求[()]f g x 的定义域或已知[()]f g x 的定义域求()f x 的定义域: ①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域; ②若已知()f x 的定义域[],a b ,其复合函数[]()f g x 的定义域应由()a g x b ≤≤解出3求函数值域的各种方法函数的值域可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域①直接法:利用常见函数的值域来求一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{ab ac y y 4)4(|2-≥}; 当a<0时,值域为{ab ac y y 4)4(|2-≤}②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;③分式转化法(或改为“分离常数法”)④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域⑨逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型如:),(,n m x dcx bax y ∈++=四.单调性——知识点归纳1函数单调性的定义:2 证明函数单调性的一般方法:①定义法:设2121,x x A x x <∈且;作差)()(21x f x f -(一般结果要分解为若干个因式的乘积,且每一个因式的正或负号能清楚地判断出);判断正负号②用导数证明: 若)(x f 在某个区间A 内有导数,则()0f x ≥’,)x A ∈( ⇔)(x f 在A 内为增函数;⇔∈≤)0)(A x x f ,(’)(x f 在A 内为减函数 3 求单调区间的方法:定义法、导数法、图象法4复合函数[])(x g f y =在公共定义域上的单调性:①若f 与g 的单调性相同,则[])(x g f 为增函数; ②若f 与g 的单调性相反,则[])(x g f 为减函数注意:先求定义域,单调区间是定义域的子集5一些有用的结论:①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数④函数)0,0(>>+=b a x b ax y 在,,b ba a ⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭或上单调递增;在,00b b a a ⎡⎫⎛⎤-⎪ ⎢⎥⎪ ⎣⎭⎝⎦或,上是单调递减 五.奇偶性——知识点归纳1函数的奇偶性的定义;2奇偶函数的性质:(1)定义域关于原点对称;(2)偶函数的图象关于y 轴对称,奇函数的图象关于原点对称; 3()f x 为偶函数()(||)f x f x ⇔=4若奇函数()f x 的定义域包含0,则(0)0f =5判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须注意使定义域不受影响;6牢记奇偶函数的图象特征,有助于判断函数的奇偶性;7判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±- 8设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇1判断函数的奇偶性,必须按照函数的奇偶性定义进行,为了便于判断,常应用定义的等价形式:f(-x)= ±f(x) f(-x) +f(x)=0;2讨论函数的奇偶性的前提条件是函数的定义域关于原点对称,要重视这一点;3若奇函数的定义域包含0,则f(0)=0,因此,“f(x)为奇函数”是"f(0)=0"的非充分非必要条件;4奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,因此根据图象的对称性可以判断函数的奇偶性5若存在常数T ,使得f(x+T)=f(x)对f(x)定义域内任意x 恒成立,则称T 为函数f(x)的周期,(5)函数的周期性定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立 则f(x)叫做周期函数,T 叫做这个函数的一个周期六.反函数——知识点归纳1反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数;2定义域、值域:反函数的定义域、值域上分别是原函数的值域、定义域,若()y f x =与1()y f x -=互为反函数,函数()y f x =的定义域为A 、值域为B ,则1[()]()f f x x x B -=∈,1[()]()f f x x x A -=∈;3单调性、图象:互为反函数的两个函数具有相同的单调性,它们的图象关于y x =对称4求反函数的一般方法:(1)由()y f x =解出1()x fy -=,(2)将1()x f y -=中的,x y 互换位置,得1()y f x -=,(3)求()y f x =的值域得1()y f x -=的定义域七.二次函数——知识点归纳1二次函数的图象及性质:二次函数c bx ax y ++=2的图象的对称轴方程是abx 2-=,顶点坐标是⎪⎪⎭⎫⎝⎛--a b ac a b 4422,2二次函数的解析式的三种形式:用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx ax x f ++=2)(,(零点式))()()(21x x x x a x f -⋅-=和n m x a x f +-=2)()((顶点式)3 根分布问题: 一般地对于含有字母的一元二次方程ax 2+bx+c=0 的实根分布问题,用图象求解,有如下结论:令f(x)=ax 2+bx+c (a>0)(1)x 1<α,x 2<α ,则⎪⎩⎪⎨⎧><-≥∆0)()2/(0ααaf a b ; (2)x 1>α,x 2>α,则⎪⎩⎪⎨⎧>>-≥∆0)()2/(0ααaf a b(3)α<x 1<β,α<x 2<β,则⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆βαβα)2/(0)(0)(0a b f f (4)x 1<α,x 2>β (α<β),则⎪⎩⎪⎨⎧<<≥∆0)(0)(0βαf f(5)若f(x)=0在区间(α,β)内只有一个实根,则有0))(<(βαf f4 最值问题:二次函数f(x)=ax 2+bx+c 在区间[α,β]上的最值一般分为三种情况讨论,即:(1)对称轴-b/(2a)在区间左边,函数在此区间上具有单调性;;(2)对称轴-b/(2a)在区间之内;(3)对称轴在区间右边要注意系数a 的符号对抛物线开口的影响1讨论二次函数的区间最值问题:①注意对称轴与区间的相对位置;②2讨论二次函数的区间根的分布情况一般需从三方面考虑:①判别式;②区间端点的函数值的符号;③对称轴与区间的相对位置5二次函数、一元二次方程及一元二次不等式之间的关系:①0∆<⇔f(x)=ax 2+bx+c 的图像与x 轴无交点⇔ax 2+bx+c=0无实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;②0∆=⇔f(x)=ax 2+bx+c 的图像与x 轴相切⇔ax 2+bx+c=0有两个相等的实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;③0∆>⇔f(x)=ax 2+bx+c 的图像与x 轴有两个不同的交点⇔ax 2+bx+c=0有两个不等的实根一、关于二次函数 6.韦达定理:方程02=++c bx ax (0≠a )的二实根为1x 、2x ,则240b ac ∆=-≥且⎪⎩⎪⎨⎧=-=+a cx x a b x x 2121①两个正根,则需满足⎪⎩⎪⎨⎧>>+≥∆0002121x x x x ,②两个负根,则需满足1212000x x x x ∆≥⎧⎪+<⎨⎪>⎩,③一正根和一负根,则需满足⎩⎨⎧<>∆021x x ⇔ax 2+bx+c>0(<0)的解集为(,)αβ()αβ<或者是(,)(,)αβ-∞+∞U八.指数对数函数——知识点归纳1根式的运算性质:①当n 为任意正整数时,(n a )n =a②当n 为奇数时,nna =a ;当n 为偶数时,nna =|a|=⎩⎨⎧<-≥)0()0(a a a a⑶根式的基本性质:n m npmp a a =,(a ≥0) 2分数指数幂的运算性质:)()(),()(),(Q n b a ab Q n m a a Q n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+ 3 )10(≠>=a a a y x且的图象和性质a>1 0<a<1图象1oyx1oy x性质(1)定义域:R(2)值域:(0,+∞)(3)过点(0,1),即x=0时,y=1(4)在 R 上是增函数 (4)在R 上是减函数4指数式与对数式的互化:log ba a N Nb =⇔=5重要公式: 01log =a ,1log =a a 对数恒等式N aNa =log6对数的运算法则如果0,1,0,0a a N M >≠>>有log ()log log a a a MN M N =+log log log aa a MM N N=- log log n m a a mM M n =7对数换底公式:aNN m m a log log log =( a > 0 ,a ≠ 1 ,m > 0 ,m ≠ 1,N>0)8两个常用的推论:①1log log =⋅a b b a , 1log log log =⋅⋅a c b c b a② b mnb a na m log log =( a, b > 0且均不为1) 9对数函数的性质:a>1 0<a<1图 象1oyx1oyx性 质定义域:(0,+∞) 值域:R 过点(1,0),即当1=x 时,0=y)1,0(∈x 时 0<y),1(+∞∈x 时 0>y)1,0(∈x 时 0>y),1(+∞∈x 时0<y在(0,+∞)上是增函数在(0,+∞)上是减函数10同底的指数函数xy a =与对数函数log a y x =互为反函数11指数方程和对数方程主要有以下几种类型:(1) a f(x)=b ⇔f(x)=log a b, log a f(x)=b ⇔f(x)=a b ; (定义法)(2) a f(x)=a g(x)⇔f(x)=g(x), log a f(x)=log a g(x)⇔f(x)=g(x)>0(转化法)(3) a f(x)=b g(x)⇔f(x)log m a=g(x)log m b (取对数法)(4) l og a f(x)=log b g(x)⇔log a f(x)=log a g(x)/log a b(换底法)九.函数图象变换——知识点归纳1作图方法:描点法和利用基本函数图象变换作图;作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象2三种图象变换:平移变换、对称变换和伸缩变换等等;3识图:分布范围、变化趋势、对称性、周期性等等方面4平移变换:(1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;(2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到① y=f(x)h 左移→y=f(x+h); ② y=f(x) h右移→y=f(x -h); ③y=f(x) h 上移→y=f(x)+h; ④y=f(x) h下移→y=f(x)-h5对称变换:(1)函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可(2)函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; (3)函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; (4)函数1()y fx -=的图像可以将函数()y f x =的图像关于直线y x =对称得到①y=f(x) 轴x →y= -f(x); ②y=f(x) 轴y →y=f(-x);③y=f(x)ax =→直线y=f(2a -x); ④y=f(x)xy =→直线y=f -1(x); ⑤y=f(x) 原点→y= -f(-x)6翻折变换:(1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; (2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到y=f(x)cb aoyxy=|f(x)|cb aoyxy=f(|x|)cb aoyx7伸缩变换:(1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;(2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a倍得到 ①y=f(x)ω⨯→x y=f(ωx);② y=f(x)ω⨯→y y=ωf(x)十.导数知识点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值x x f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的.例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆x y ,故x y x ∆∆→∆0lim 不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫ ⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅=复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零.例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin x x -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos x x --= II. x x 1)(ln '= e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:x x 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式. ③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.。
高考文科导数考点汇总完整版

高考文科导数考点汇总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。
导数概念与运算知识清单1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim→∆x x y ∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳):(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
高考复习文科导数知识点总结

导数知识点一.考纲要求二.知识点1.导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-2.、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 3.导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v-=≠. 4. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.极值与最值区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较. 5.导数与单调性(1) 一般地,设函数 y = f ( x) 在某个区间可导,如果 f ′( x ) > 0 ,则 f ( x ) 为增函数;如果 f ′( x) < 0 ,则 f ( x) 为减函数;如果在某区间内恒有 f ′( x) = 0 ,则 f ( x) 为常数; (2)对于可导函数 y = f ( x) 来说, f ′( x ) > 0 是 f ( x ) 在某个区间上为增函数的充分非必要 条件, f ′( x ) < 0 是 f ( x ) 在某个区间上为减函数的充分非必要条件; (3)利用导数判断函数单调性的步骤:①求函数 f ( x ) 的导数 f ′( x ) ;②令 f ′( x ) > 0 解不等式,得 x 的范围,就是递增区间;③令 f ′( x) < 0 解不等式,得 x 的范围,就是递增区间。
高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0数指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。
高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) (0,,)r s r sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用..指数式与对数式的互化式: log b a N b a N =⇔=(0,1,0)a a N >≠>. .对数的换底公式 :log log log m a m NN a= (0a >,且1a ≠,0m >,且1m ≠, 0N >).对数恒等式:log a Na N =(0a >,且1a ≠, 0N >).推论 log log m n a a nb b m=(0a >,且1a ≠, 0N >). 常见的函数图象二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 9、正弦、余弦的诱导公式(奇变偶不变,符号看象限)απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。
函数与导数综合知识点总结

函数与导数综合知识点总结一、函数的概念与性质1. 函数的基本概念函数是一个从一个集合到另一个集合的映射规则。
通俗地说,函数就是一种输入与输出之间的对应关系。
函数通常用f(x)来表示,其中x是输入,f(x)是输出。
2. 函数的定义域与值域函数的定义域是指所有可能的输入值的集合,值域是指所有可能的输出值的集合。
在数学上,定义域和值域的概念非常重要,因为它们决定了函数的性质。
3. 函数的奇偶性如果对于函数f(x),有f(-x) = f(x),那么该函数是偶函数;如果对于函数f(x),有f(-x) = -f(x),那么该函数是奇函数。
奇偶函数具有一些特殊的对称性质,在积分和求导的时候非常有用。
4. 函数的周期性如果对于函数f(x),存在一个正数T,使得对所有的x,有f(x + T) = f(x),那么该函数是周期函数。
周期函数在数学建模和信号处理中有广泛的应用。
5. 函数的复合如果有两个函数f(x)和g(x),那么它们的复合函数就是f(g(x)),它是先对输入进行g(x)的处理,然后再对结果进行f(x)的处理。
复合函数在微积分中具有重要的地位。
6. 反函数如果一个函数f(x)的定义域和值域分别为A和B,那么如果存在另一个函数g(y),它的定义域和值域分别为B和A,并且对任意的x,有g(f(x)) = x,那么g(y)就是f(x)的反函数。
反函数在解方程和求逆矩阵等领域有重要应用。
二、导数的概念与性质1. 导数的定义给定函数f(x)和一点x,如果极限lim(h->0)[f(x + h) - f(x)]/h存在,那么这个极限就是函数f(x)在点x处的导数,用f'(x)或者dy/dx来表示。
导数衡量了函数在某个点处的变化率。
2. 导数的几何意义函数f(x)在点x处的导数f'(x)表示了函数曲线在点x处的切线斜率。
导数的几何意义可以帮助我们理解函数的变化规律。
3. 导数的计算有许多方法可以计算函数的导数,比如极限定义法、泰勒公式法、微分法等。
导数文科高三知识点汇总

导数文科高三知识点汇总导数是高中数学中的重要概念,对于文科高三学生来说,熟练掌握导数的相关知识点,不仅可以为数学考试打下坚实的基础,还能在其他学科中发挥重要作用。
本文将对导数的相关知识点进行汇总整理,帮助文科高三学生系统地学习和应用导数。
一、导数的定义及基本概念(字数增加,不要求出现小标题)导数是函数在某一点上的变化率,是对函数的局部变化进行描述的工具。
设函数y=f(x),如果函数在点x处的导数存在,那么该导数表示函数在x处的切线斜率,并用f'(x)表示。
导数的基本概念包括导数的定义、导数的几何意义、导数的物理意义和导数的代数运算法则。
导数的定义是通过极限的概念来给出的,即f'(x)=limΔx→0[f(x+Δx)-f(x)]/Δx。
导数的几何意义是函数在某一点的斜率,可以表示函数曲线在该点的切线的斜率。
导数的物理意义是变化率,例如,速度可以看作是位移对时间的导数。
导数的代数运算法则包括常数因子、和差、乘法、除法以及复合函数等运算法则。
二、导数的计算方法(字数增加,不要求出现小标题)导数的计算方法可以根据函数的具体形式来进行推导和应用。
常见的导数计算方法包括基本初等函数的导数、幂函数的导数、指数函数的导数、对数函数的导数、三角函数和反三角函数的导数、复合函数的导数等。
基本初等函数的导数是指常数函数、恒等函数、多项式函数、有理函数、开方函数等的导数,这些函数都有对应的导数表达式。
幂函数的导数可以通过对数函数求导得到,指数函数的导数是指a^x的导数一定是a^xlna,其中a为底数,lna为自然对数。
对数函数的导数可以通过指数函数求导得到,三角函数和反三角函数的导数可以通过基本关系式和导数的定义进行推导。
复合函数的导数可以通过链式法则进行计算。
三、导数的应用(字数增加,不要求出现小标题)导数作为数学中的一项重要工具,具有广泛的应用场景。
在文科高三学习中,导数的应用不仅仅局限于数学学科,在其他学科中也能够发挥重要作用。
文科高考数学导数知识点

文科高考数学导数知识点导数是高中数学中重要的知识点之一,它是微积分的基础。
掌握导数的概念和运算规则,对于理解数学的发展和应用具有重要意义。
本文将对文科高考中与导数相关的知识点进行探讨和总结。
一、导数的定义与计算导数是描述函数变化率的概念,它表示函数在某一点上的瞬时变化率。
对于一个函数f(x),其在点x处的导数可以用极限的概念表示为:f'(x) = lim(h→0)(f(x+h) - f(x))/h其中h为接近于0的一个无限小的实数。
在计算导数时,常用的求导法则包括常数法则、幂法则、和差法则、积法则和商法则等。
这些法则在导数的计算中提供了方便的方法,使我们能够快速准确地求得函数的导数。
二、导数的几何意义导数的几何意义体现在函数曲线上的切线斜率上。
函数曲线在某一点上的切线斜率等于该点的导数值。
这意味着导数可以告诉我们函数在某一点上是上升还是下降,以及上升或下降的速率。
利用导数的几何意义可以解决很多与函数变化率相关的问题,例如求极大值和极小值点、确定函数在某个区间上的单调性以及判定函数的凸凹性等。
三、导数的应用导数不仅仅是一种数学工具,它还在实际问题的建模和求解中具有广泛的应用。
例如,在经济学中,导数可以用来解决边际成本、边际效益和最优决策等问题;在物理学中,导数可以用来描述物体的运动状态、速度和加速度等;在生物学中,导数可以用来研究物种的增长和衰退规律等。
导数在各个领域的应用都展示了它的重要性和实用性。
四、导数与其他数学概念的联系导数与其他数学概念之间存在着紧密的联系,它们相互依存、相互推进,共同构成了数学学科的核心。
在微积分中,导数与积分是密切相关的。
导数可以通过积分来求解,而积分则可以通过导数来解释和解决问题。
导数与函数的极限、连续性以及泰勒级数展开等概念也有紧密的关联。
掌握导数的知识,有助于我们更好地理解和运用这些数学概念。
五、导数在解决实际问题中的应用举例最后,我们通过举例来说明导数在解决实际问题中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与导数知识点复习测试卷(文)一、映射与函数 1、映射 f :A →B 概念(1)A 中元素必须都有________且唯一;(2)B 中元素不一定都有原象,且原象不一定唯一。
2、函数 f :A →B 是特殊的映射(1)、特殊在定义域 A 和值域 B 都是非空数集。
函数 y=f(x)是“y 是x 的函数”这句话的数学表示,其中 x 是自变量,y 是自变量 x 的函数,f 是表示对应法则,它可以是一个解析式,也可以是表格或图象,也有只能用文字语言叙述.由此可知函数图像与垂直x 轴的直线________公共点,但与垂直y 轴的直线公共点可能没有,也可能是任意个。
(即一个x 只能对应一个y ,但一个y 可以对应多个x 。
)(2)、函数三要素是________,________和________,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.二、函数的单调性在函数f (x )的定义域内的一个________上,如果对于任意两数x 1,x 2∈A 。
当x 1<x 2时,都有________,那么,就称函数f (x )在区间A 上是增加的,当x 1<x 2时,都有________,那么,就称函数f (x )在区间A 上是减少的判断方法如下:1、作差(商)法(定义法)2、导数法3、复合函数单调性判别方法(同增异减)函数的最值函数y =f (x )的定义域为D ,(1)存在x 0∈D ,使得f (x 0)=M ;(2)对于任意x ∈D ,都有________. M 为最大值(3)存在x 0∈D ,使得f (x 0)=M ;(4)对于任意x ∈D ,都有________. M 为最小值求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.三.函数的奇偶性⑴偶函数:)()(x f x f =-设(b a ,)为偶函数上一点,则________也是图象上一点.偶函数的判定:两个条件同时满足 ①定义域一定要关于y 轴对称,例如:12+=x y 在)1,1[-上不是偶函数. ②满足________,或0)()(=--x f x f ,若0)(≠x f 时,1)()(=-x f x f . ⑵奇函数:)()(x f x f -=-设(b a ,)为奇函数上一点,则________也是图象上一点.奇函数的判定:两个条件同时满足 ①定义域一定要关于原点对称,例如:3x y =在)1,1[-上不是奇函数.②满足________,或0)()(=+-x f x f ,若0)(≠x f 时,1)()(-=-x f x f 周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有________, 那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中________的正数,那么这个最小正数就叫做f (x )的最小正周期.※(1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值. (2)函数周期性的三个常用结论:①若f (x +a )=-f (x ),则T =2a ,②若f (x +a )=1f ?x ?,则T =2a ,③若f (x +a )=-1f ?x ?,则T =2a (a >0). ※(1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.(2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数?f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.四.二次函数 幂函数1.二次函数(1)二次函数解析式的三种形式①一般式:f (x )=ax 2+bx +c (a ≠0).②顶点式:f (x )=________________③零点式:f (x )=________________ (2)二次函数的图像和性质2.(1)定义:形如_______(α∈R )的函数称为幂函数,其中x 是自变量,α是常数. (2)幂函数的性质①幂函数在_______上都有定义;②幂函数的图像过定点_______;③当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调_______; ④当α<0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调_______.※(1)二次函数最值问题解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成. (2)由不等式恒成立求参数取值范围的思路及关键①一般有两个解题思路:一是分离参数;二是不分离参数.②两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立?a ≥f (x )max ,a ≤f (x )恒成立?a ≤f (x )min .(3)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(4)在区间(0,1)上,幂函数中指数越大,函数图像越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x 轴.五.函数的变换①()()y f x y f x =⇒=-:将函数()y f x =的图象关于y 轴对称得到的新的图像就是()y f x =-的图像;②()()y f x y f x =⇒=-:将函数()y f x =的图象关于x 轴对称得到的新的图像就是()y f x =-的图像;③()|()|y f x y f x =⇒=:将函数()y f x =的图象在x 轴下方的部分对称到x 轴的上方,连同函数()y f x =的图象在x 轴上方的部分得到的新的图像就是|()|y f x =的图像;④()(||)y f x y f x =⇒=:将函数()y f x =的图象在y 轴左侧的部分去掉,函数()y f x =的图象在y 轴右侧的部分对称到y 轴的左侧,连同函数()y f x =的图象在y 轴右侧的部分得到的新的图像就是(||)y f x =的图像.注:(1)若对任意实数x,都有f(a+x)=f(a-x)成立,则x=a 是函数f(x)的对称轴; (2)若对任意实数x,都有f(a+x)=f(b-x)成立,则x=2ba +是f(x)的对称轴. ※(1)利用函数的图像研究函数的性质对于已知或易画出其在给定区间上图像的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图像研究,但一定要注意性质与图像特征的对应关系. (2)利用函数的图像可解决某些方程和不等式的求解问题,方程f (x )=g (x )的根就是函数f (x )与g (x )图像交点的横坐标;不等式f (x )<g (x )的解集是函数f (x )的图像位于g (x )图像下方的点的横坐标的集合,体现了数形结合思想.六、指数函数与对数函数的图像和性质一.指数函数(一) 指数与指数幂的运算1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.负数没有偶次方根;0的任何次方根都是0,记作00=n 。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1)r a ·s r r a a += ),,0(R s r a ∈>;(2)rs s r a a =)(),,0(R s r a ∈>;(二)指数函数及其性质1、指数函数的概念:一般地,函数______________________ 叫做指数函数,其中x 是自变量,函数的定义域为R . 注:指数函数的底数的取值范围______________________. 2、指数函数的图象和性质(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是___________或___________;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; ※指数函数的性质及应用问题解题策略(1)比较大小问题.常利用指数函数的单调性及中间值(0或1)法.(2)简单的指数方程或不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)解决指数函数的综合问题时,要把指数函数的概念和性质同函数的其他性质(如奇偶性、周期性)相结合,同时要特别注意底数不确定时,对底数的分类讨论.二、对数函数 (一)对数1.对数的概念:一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么数b 叫作以a 为底N 的对数,记作log a N =b ,其中___________叫作对数的底数,___________叫作真数.说明:○1 注意底数的限制0>a ,且1≠a ; ○2x N N a a x =⇔=log ;○3 注意对数的书写格式.N a log两个重要对数:○1 常用对数:以10为底的对数___________;○2 自然对数:以无理数Λ71828.2=e 为底的对数的对数___________.指数式与对数式的互化 幂值 真数b a = N ⇔log a N = b底数指数 对数 (二)对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么:○1 M a (log ·=)N ______________________; ○2 =NMa log ___________; ①a log a N =_____;②log a a N =_____(a >0且a ≠1).○3 n a M log =___________ )(R n ∈. 注意:换底公式a bb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ; 0>b ).利用换底公式推导下面的结论(1)b mnb a n a mlog log =;(2)a b b a log 1log =.(三)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注:○1 对数函数的定义与指数函数类似,都是形 式定义,注意辨别。