北京市海淀区教师进修学校附属实验中学12-13学年高一上学期期末考试数学试题
北京市海淀区教师进修学校附属实验中学2012-2013学年高一数学上学期期末考试新人教B版.docx

2012—2013 学年度第一学期期末练习高一数学考生须1、本试卷共 4 页,包括三道大题,21小题,满分为 100分。
考试时间知100 分钟。
2、答题前,考生应认真在密封线外填写班级、姓名和学号一、选择题1.函数f (x) sin x 1sin x (0x2)与函数 g( x) a (a是常数)有两个不同的交2点,则 a 的取值范围是()A.0,3B.(1,0)(0,3) 222C.(0,1)D.(1,3)2222.下面四个命题中,真命题的个数为()⑴如果两个平面有三个公共点,那么这两个平面重合⑵两条直线可以确定一个平面⑶若 M∈ α, M∈ β,α∩ β= l ,则 M∈ l⑷空间中,相交于同一点的三直线在同一平面内A.1B.2C.3D.43.已知点 A(-1,1)和圆 C:(x-5)2+(y-7)2=4 , 一束光线从点A 出发经 x 轴反射到圆周 C 的最短路程是()A.8B.10C.46D. 6 224.若f (x)和g (x)都是奇函数,且 F (x) f ( x)g( x) 2,在( 0,+∞)上有最大值8,则在(-∞,0)上F ( x)有()A. 最小值- 8B.最大值- 8C.最小值- 6D. 最小值- 45.下列说法中不正确的是()A.点斜式 y y1k x x1适用于不垂直于 x 轴的任何直线B.斜截式 y kx b 适用于不垂直于x 轴的任何直线C. 两点式yy1xx1 适用于不垂直于x 轴和 y 轴的任何直线y2y1x2x1D. 截距式xy1适用于不过原点的任何直线a b6.设 f( x)= lg(10x+1)+ ax 是偶函数, g(x)=4 x b是奇函数,那么 a+ b 的值为()2 xA. 1B.- 111 C.-D.227.设 f( x)= lg(10 x+1) + ax 是偶函数, g(x)=4xb是奇函数,那么 a+ b 的值为()2 xA. 1B.- 111 C.-D.228.设 S 是至少含有两个元素的集合,在S 上定义了一个二元运算“* ”(即对任意的a, bS ,对于有序元素对(a, b),在S中有唯一确定的元素 ab与之对应)。
最新版北京市海淀区高一上学期期末考试数学试题Word版含答案

海淀区高一年级第一学期期末练习数学一、选择题:本大题共8个小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,3,5A =,()(){}130B x x x =--=,则A B =I ( ) A .∅ B .{}1 C .{}3 D .{}1,3 2.2sin 3π⎛⎫-= ⎪⎝⎭( )A ..12- C .123.若幂函数()y f x =的图象经过点()2,4-,则()f x 在定义域内( ) A .为增函数 B .为减函数 C .有最小值 D .有最大值 4.下列函数为奇函数的是( )A .2x y =B .[]sin ,0,2y x x π=∈ C .3y x = D .lg y x = 5.如图,在平面内放置两个相同的直角三角板,其中30A ∠=︒,且,,B C D 三点共线,则下列结论不成立的是( )A .CD =uu u r u rB .0CA CE ⋅=u u r u u rC .AB uu u r 与DE 共线D .CA CB CE CD ⋅=⋅u u r u u r u u r u u u r6.函数()f x 的图象如图所示,为了得到函数2sin y x =的图象,可以把函数()f x 的图象( )A .每个点的横坐标缩短到原来的12(纵坐标不变),再向左平移3π个单位 B .每个点的横坐标缩短到原来的2倍(纵坐标不变),再向左平移6π个单位 C .先向左平移6π个单位,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变) D .先向左平移3π个单位,再把所得各点的横坐标伸长到原来的12(纵坐标不变)7.已知()21log 2xf x x ⎛⎫=- ⎪⎝⎭,若实数,,a b c 满足0a b c <<<,且()()()0f a f b f c <,实数0x 满足()00f x =,那么下列不等式中,一定成立的是( ) A .0x a < B .0x a > C .0x c < D .0x c >8.如图,以AB 为直径在正方形ABCD 内部作半圆O ,P 为半圆上与,A B 不重合的一动点,下面关于PA PB PC PD +++uu r uu r uu u r uu u r的说法正确的是( )A .无最大值,但有最小值B .既有最大值,又有最小值C .有最大值,但无最小值D .既无最大值,又无最小值二、填空题(每题4分,满分24分,将答案填在答题纸上)9.已知向量()1,2a =r,写出一个与a r 共线的非零向量的坐标 .10.已知角θ的终边过点()3,4-,则cos θ= .11.向量,a b r r 在边长为1的正方形网格中的位置如图所示,则a b ⋅=r r.12.函数()2,,,0.x x t f x x x t ⎧≥=⎨<<⎩()0t >是区间()0,+∞上的增函数,则t 的取值范围是 .13.有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%,有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从 年开始,快递业产生的包装垃圾超过4000万吨. (参考数据:lg 20.3010≈,lg30.4771≈) 14.已知函数()sin f x x ω=在区间0,6π⎛⎫⎪⎝⎭上是增函数,则下列结论正确的是 (将所有符合题意的序号填在横线上). ①函数()sin f x x ω=在区间,06π⎛⎫-⎪⎝⎭上是增函数; ②满足条件的正整数ω的最大值为3; ③412f f ππ⎛⎫⎛⎫≥⎪ ⎪⎝⎭⎝⎭. 三、解答题 (本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤.)15.已知向量()sin ,1a x =r ,()1,b k =r ,()f x a b =⋅r r .(Ⅰ)若关于x 的方程()1f x =有解,求实数k 的取值范围; (Ⅱ)若()13f k α=+且()0,απ∈,求tan α. 16.已知二次函数()2f x x bx c =++满足()()133f f ==-. (Ⅰ)求,b c 的值;(Ⅱ)若函数()g x 是奇函数,当0x ≥时,()()g x f x =, (ⅰ)直接写出()g x 的单调递减区间: ;(ⅱ)若()g a a >,求a 的取值范围.17.某同学用“五点法”画函数()sin y A x ωϕ=+0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭在某一周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,函数()f x 的解析式()f x = (直接写出结果即可)(Ⅱ)求函数()f x 的单调递增区间; (Ⅲ)求函数()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 18.定义:若函数()f x 的定义域为R ,且存在非零常数T ,对任意x ∈R ,()()f x T f x T +=+恒成立,则称()f x 为线周期函数,T 为()f x 的线周期.(Ⅰ)下列函数①2xy =,②2l o gy x =,③[]y x =(其中[]x 表示不超过x 的最大整数),是线周期函数的是 (直接填写序号);(Ⅱ)若()g x 为线周期函数,其线周期为T ,求证:函数()()G x g x x =-为周期函数; (Ⅲ)若()sin x x kx ϕ=+为线周期函数,求k 的值.海淀区高一年级第一学期期末练习参考答案数学一、选择题1-4:DACC 5-8:DCBA 二、填空题9.答案不唯一,纵坐标为横坐标2倍即可,例如()2,4等 10.3511.3 12.1t ≥ 13.2021 14.①②③ 三、解答题15.解:(Ⅰ)∵向量()sin ,1a x =r ,()1,b k =r ,()f x a b =⋅r r, ∴()sin f x a b x k =⋅=+r r.关于x 的方程()1f x =有解,即关于x 的方程sin 1x k =-有解. ∵[]sin 1,1x ∈-,∴当[]11,1k -∈-时,方程有解. 则实数k 的取值范围为[]0,2. (Ⅱ)因为()13f k α=+,所以1sin 3k k α+=+,即1sin 3α=.当0,2πα⎛⎤∈ ⎥⎝⎦时,cos 3α==,sin tan cos 4ααα==.当,2παπ⎛⎫∈⎪⎝⎭时,cos α==,tan α=. 16.解:(Ⅰ)4b =-;0c =.(Ⅱ)(ⅰ)[]2,2-.(ⅱ)由(Ⅰ)知()24f x x x =-,则当0x ≥时,()24g x x x =-;当0x <时,0x ->,则()()()2244g x x x x x -=---=+因为()g x 是奇函数,所以()()24g x g x x x =--=--.若()g a a >,则20,4,a a a a >⎧⎨->⎩或20,4,a a a a ≤⎧⎨-->⎩ 解得5a >或50a -<<.综上,a 的取值范围为5a >或50a -<<. 17.解:(Ⅰ)解析式为:()2sin 26f x x π⎛⎫=+⎪⎝⎭(Ⅱ)函数()f x 的单调递增区间为,36k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z .(Ⅲ)因为02x π-≤≤,所以52666x πππ-≤+≤. 得:11sin 262x π⎛⎫-≤+≤ ⎪⎝⎭. 所以,当262x ππ+=-即3x π=-时,()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最小值为-2. 当266x ππ+=即0x =时,()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值为1. 18.解:(Ⅰ)③(Ⅱ)证明:∵()g x 为线周期函数,其线周期为T ,∴存在非零常数T ,对任意x ∈R ,()()g x T g x T -=+恒成立. ∵()()G x g x x =-,∴()()()G x T g x T x T +=+-+=()()()()g x T x T g x x G x +-+=-=.∴()()G x g x x =-为周期函数.(Ⅲ)∵()sin x x kx ϕ=+为线周期函数,∴存在非零常数T ,对任意x ∈R ,()()sin sin x T k x T x kx T +++=++. ∴()sin sin x T kT x T ++=+.令0x =,得sin T kT T +=;…………① 令x π=,得sin T kT T -+=;…………② ①②两式相加,得22kT T =. ∵0T ≠, ∴1k =. 检验:当2k =时,()sin x x x ϕ=+. 存在非零常数2π,对任意x ∈R ,()()2sin 22x x x ϕπππ+=+++=()sin 22x x x πϕπ++=+,∴()sin x x x ϕ=+为线周期函数. 综上,1k =.。
北京市海淀高一上学期期末数学试卷

北京市海淀区高一(上)期末数学试卷.选择题(每小题4分,共32分,每小题给出的四个选项中,只有一个是符 合题目要求的)1 •已知集合U={1, 2, 3, 4, 5, 6} , M={1, 5} , P={2, 4},则下列结论正确的 是( )A. 1 € ?U ( MU P )B. 2€ ?U (MU P )C. 3 € ?U (MU P )D. 6??u (MU P )2•下列函数在区间(-x, 0)上是增函数的是( )A. f(x ) =x 2 - 4x B. g (x ) =3x+1 C. h (x ) =3- x D. t (x ) =tanx3. 已知向量-=(1, 3), = (3, t ),若J/ ;',则实数t 的值为()A.- 9 B . - 1 C . 1 D. 94. 下列函数中,对于任意的x € R,满足条件f (x ) +f (- x ) =0的函数是()1 2A. f (x ) =xB. f (x ) =sinxC. f (x ) =cosxD. f (x ) =log 2 (x +1) 7T 7T1T 1T5. 代数式sin (冷十才)+cos (冷■-卡)的值为( )A. - 1 B . 0 C. 1 D.甞26. 在边长为1的正方形ABC 冲,向量I •=「,丁 =二『:,贝U 向量「,厂的夹 角为()7. 如果函数f (x ) =3sin (2x+®的图象关于点(辛),那么函数f (x )图象的一条对称轴是()IT7TH7TA. x= -— B . x= 一 C. x= D. x=2s 5M8.已知函数f (x )其中MU P=R 则下列结论中一定正确的是( )A.函数f (x )一定存在最大值B •函数f (x ) —定存在最小值A. n ?B. 4 D. -,0)成中心对称(|创vC.函数f (x) 一定不存在最大值D.函数f (x) 一定不存在最小值二.填空题(本大题6小题,每小题4分,共24分)9. 函数y= _________ ' - 的定义域为 .10. _________________________________________________________ 已知a=40.5, b=0.54, c=log 0.54,则a, b, c 从小到大的排列为_______________ .11. ______________________________________________________ 已知角a终边上有一点P (x, 1),且cos a=-寺,贝U tan a= __________________ .12. 已知△ ABC中,点A (- 2, 0), B (2, 0), C (x, 1)(i )若/ ACB是直角,贝U x= __(ii )若厶ABC是锐角三角形,贝U x的取值范围是____ .13. 燕子每年秋天都要从北方到南方过冬,鸟类科学家发现,两岁燕子的飞行速度v与耗氧量x之间满足函数关系v=alog2 •.若两岁燕子耗氧量达到40个单10位时,其飞行速度为v=10m/s,则两岁燕子飞行速度为25m/s时,耗氧量达到单位.14. 已知函数f (x) =|ax - 1| -(a - 1) x(1)当a」时,满足不等式f (x)> 1的x的取值范围为—;(2)________________________________________________________ 若函数f (x)的图象与x轴没有交点,则实数a的取值范围为__________________ .三.解答题(本大题共4小题,共44分)15. 已知函数f (x) =x2+bx+c,其对称轴为y轴(其中b, c为常数)(I )求实数b的值;(U )记函数g (x) =f (x) - 2,若函数g (x)有两个不同的零点,求实数 c 的取值范围;(川)求证:不等式f (c2+1)>f (c)对任意c€ R成立.16. 已知如表为五点法”绘制函数f (x) =Asin(3X+®图象时的五个关键点的坐标(其中A>0, 3>0, |创v n)(I )请写出函数f (x)的最小正周期和解析式; (U)求函数f (x)的单调递减区间;TT(川)求函数f (x)在区间[0 ,]上的取值范围.17. 如图,在平面直角坐标系中,点A (-唇0), B(^, 0),锐角a的终边与单位圆O 交于点P.(I)用a的三角函数表示点P的坐标;(U )当?.二-.时,求a的值;(川)在X轴上是否存在定点M使得I '.1= 一I厂|恒成立?若存在,求出点M 的横坐标;若不存在,请说明理由.18. 已知函数f (x)的定义域为R,若存在常数T M0,使得f (x) =Tf (x+T) 对任意的x € R成立,则称函数f (x)是Q函数.(I )判断函数f (x) =x, g (x) =sin n(是否是Q函数;(只需写出结论)(U)说明:请在(i )、(ii )问中选择一问解答即可,两问都作答的按选择(i ) 计分(i )求证:若函数f (x)是Q函数,且f (x)是偶函数,贝U f (x)是周期函数;(ii )求证:若函数f (x)是Q函数,且f (x)是奇函数,贝U f (x)是周期函数;(川)求证:当a> 1时,函数f (x) =a x一定是Q函数.选做题(本题满分10分)19. 记所有非零向量构成的集合为V,对于',■€ V, > ;■,定义V( ', ■) =|x€ V|x? :=x? |(1)请你任意写出两个平面向量打一,并写出集合V(】,J中的三个元素;(2)请根据你在(1)中写出的三个元素,猜想集合V(:,')中元素的关系,并试着给出证明;(3)若V( ., ) =V(-,),其中工「,求证:一定存在实数入,“,且入+ ?2=1, 使得「a -.2016-2017学年北京市海淀区高一(上)期末数学试卷参考答案与试题解析一.选择题(每小题4分,共32分,每小题给出的四个选项中,只有一个是符合题目要求的)1 •已知集合U={1, 2, 3, 4, 5, 6} , M={1, 5} , P={2, 4},则下列结论正确的是( )A. 1 € ?U ( MU P)B. 2€ ?U (MU P)C. 3 € ?U (MU P)D. 6??u (MU P)【考点】元素与集合关系的判断.【分析】首先计算MU P,并求其补集,然后判断元素与集合的关系.【解答】解:由已知得到MU P={1, 5, 2, 4};所以?u (MU P) ={3 , 6};故A、B、D错误;故选:C.2. 下列函数在区间(-%, 0)上是增函数的是( )A. f (x) =x2- 4xB. g (x) =3x+1C. h (x) =3- xD. t (x) =tanx【考点】函数单调性的判断与证明.【分析】分别判断选项中的函数在区间(-%, 0) 上的单调性即可.【解答】解:对于A, f (x) =x2- 4x= (x - 2) 2- 4,在(-X, 0) 上是单调减函数,不满足题意;对于B, g (x) =3x+1在(-%, 0) 上是单调增函数,满足题意;对于C, h (x) =3-x=丄I是(-%, 0) 上的单调减函数,不满足题意;对于D, t (x) =tanx在区间(-%, 0)上是周期函数,不是单调函数,不满足题意.故选:B.3. 已知向量-(1, 3), = (3, t),若J/「,则实数t的值为( )A.- 9 B . - 1 C . 1 D. 9【考点】平面向量共线(平行)的坐标表示.【分析】利用向量共线列出方程求解即可.【解答】解:向量>(1, 3), I =( 3, t),若;可得t=9 .故选:D.4. 下列函数中,对于任意的x € R,满足条件f (x) +f (- x) =0的函数是( )1 2A. f (x) =x 'B. f (x) =sinxC. f (x) =cosxD. f (x) =log 2 (x +1)【考点】函数奇偶性的性质.【分析】对于任意的x€ R,满足条件f (x) +f (- x) =0的函数是奇函数,分析选项,即可得出结论.【解答】解:对于任意的x € R,满足条件f (x) +f (-x) =0的函数是奇函数. A,非奇非偶函数;B奇函数,C, D是偶函数,故选B.5 .代数式sin (=+ , ) +cos - )的值为( )Z J d 0A. - 1 B . 0 C. 1 D.于【考点】三角函数的化简求值.【分析】原式利用诱导公式化简,再利用特殊角的三角函数值计算即可得答案. 【解答】解:sin + . ) +cos ( ------------------ ) =•:・....】i;一_:故选:C.6.在边长为1的正方形ABC冲,向量I ■=,:「,「=「「,则向量的夹角为( )n A.bit ir 5 兀B. C D---【考点】平面向量数量积的运算.【分析】以A为坐标原点,以AB为x轴,以AD为x轴,建立直角坐标系,根据向量的夹角的公式计算即可【解答】解:设向量■.;:.'的夹角为9,以A 为坐标原点,以AB 为x 轴,以AD 为x 轴,建立直角坐标系, ••• A (0, 0), B (1.0 ), C (1,1), D( 0,1),(1,:), '■/= (1 , ■:),八1 '■ 1=,厂=「_ ,'■' ?「=:+• = ., § 6血7 •如果函数f (x ) =3sin (2x+©)的图象关于点JT=),那么函数f (x )图象的一条对称轴是( JT JTH 7TA. x= —— B . x=^C. x=D. x=—6 1263【考点】函数y=Asin (®x+©)的图象变换.【分析】由正弦函数的对称性可得 2X =+忻kn, k €乙 结合范围| V —,可 求氛令2x+^=k 廿一,k € Z ,可求函数的对称轴方程,对比选项即可得解.AE-AF二 cos 9=十|AE l-lAFl—0)成中心对称(|吗v )二 e =,【解答】解:•••函数f (x) =3sin (2x+©)的图象关于点(r, 0)成中心对称, TT 9 JTw+ 忙k n, k € Z,解得:©二k n—务,k€ Z,门⑷V :,•••忻.,可得:f (x) =3sin (2x+ ),人 c 兀i TT ― / 曰IT•••令2x+ .. =k n+ .. , k€ 乙可得:x= 一 , k€ 乙TT•••当k=0时,可得函数的对称轴为x=-.故选:B.X垃E H28. 已知函数f (x) = •其中MU P=R则下列结论中一定正确的是( ) 〔启疋PA.函数f (x)一定存在最大值B•函数f (x) —定存在最小值C. 函数f (x) 一定不存在最大值D.函数f (x) 一定不存在最小值【考点】函数的最值及其几何意义.【分析】分别根据指数函数和二次函数的图象和性质,结合条件M U P=R讨论M P,即可得到结论.【解答】解:由函数y=2x的值域为(0, +x),y=x2的值域为[0 , +x),且MU P=R若M=(0 , +x) , p=(-x, 0],则f (x)的最小值为0 ,故D错;若M=( — x , 2), P=[2 , +x),则f (x)无最小值为,故B错;由MU P=R可得图象无限上升, 则f (x)无最大值.故选:C.二.填空题(本大题6小题,每小题4分,共24分)9. 函数y= - .|的定义域为_[2 , +x)_.【考点】函数的定义域及其求法.【分析】由根式内部的代数式大于等于0,然后求解指数不等式.【解答】解:由2x- 4>0,得2x>4,则x>2.函数y= 」的定义域为[2 , +x).故答案为:[2 , +X).10. 已知a=40.5, b=0.54, c=log°.54,则a, b, c 从小到大的排列为_c v b v a_ 【考点】对数值大小的比较.【分析】利用指数函数、对数函数的单调性求解.【解答】解:••• a=40.5> 40=1,0v b=0.54v 0.5 0=1,c=log o.54v log 0.51=0,••• a, b, c从小到大的排列为c v b v a.故答案为:c v b v a.11. 已知角a终边上有一点P (x, 1),且cos o=-*,贝U tan a=-讥【考点】任意角的三角函数的定义.【分析】利用任意角的三角函数的定义,求得tan a的值.1 工価•••角a 终边上有一点P( X, 1),且cos a=-—= 「.,• x=- , 【解答】解:• tan a=—= - _,故答案为:-二12. 已知△ ABC中,点A (- 2, 0), B (2, 0), C (x , 1)(i )若/ ACB是直角,贝U x= -(ii )若厶ABC是锐角三角形,则x的取值范围是_(- 2,-二)U (2 , +^)精品文档【考点】平面向量的坐标运算.【分析】(i )求出視=(-2 - x, - 1),忑=(2 -x, - 1),由/ ACB是直角,则 :.・「=0,由此能求出x.CA*CB>0 (ii )分别求出石,&,反,爲,反,环,由厶ABC是锐角三角形,得,丘屁>0, 由此能求出x的取值范围.【解答】解:(i )•「△ ABC中,点 A (-2, 0), B (2 , 0), C (x , 1), •••.:= (- 2 -x, - 1), y (2 - x, - 1),•••/ ACB是直角,・ |= (- 2- x) (2-x) + (- 1) (- 1) =x - 3=0 , 解得x= • 二(")•••△ ABC中,点 A (- 2 , 0), B (2 , 0), C (x , 1),•••:=(-2 - x, - 1), y (2-x, - 1), ■-■ = (x+2 , 1), :;=( 4 , 0) , 「二 (x- 2 , 1), .*= ( - 4 , 0),•••△ ABC是锐角三角形,CA*CB = x2- 3>0••瓦•尿4仗+2)>0 ,解得-2vxv-占或x>2.• x的取值范围是(-2, - -)U( 2 , +x). 故答案为:.-,(-2, - =)U( 2 , +x).13. 燕子每年秋天都要从北方到南方过冬,鸟类科学家发现,两岁燕子的飞行速度v与耗氧量x之间满足函数关系v=alog2 •'.若两岁燕子耗氧量达到40个单10位时,其飞行速度为v=10m/s ,则两岁燕子飞行速度为25m/s时,耗氧量达到_320 单位.【考点】对数函数的图象与性质.【分析】由题意,令x=4 , y=10代入解析式得到a;求得解析式,然后将v=25 代入解析式求x【解答】解:由题意,令x=40 , v=1011欢迎下载。
海淀区学年高一第一学期期末数学试题及答案官方版

WOED格式海淀区高一年级第一学期期末调研数学学校班级姓名成绩考1.本试卷共6页,共三道大题,18道小题.总分值100分.另有一道附加题〔5分〕.考生试时间90分钟.须2.在卷面上准确填写学校名称、班级名称、姓名.知3.考试结束,请将本试卷和草稿纸一并交回.一、选择题:本大题共8小题,每题4分,共32分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕设集合A{x|1x2},B{0,1,2} ,那么AIB()A.{0}B.{0 ,1}C.{0,1,2}D.{1,01,,2}2〕不等式|x1|2的解集是()A.{x|x3}B.{ x|1x3}C.{ x|1x3}D.{ x|3x3}(0,.B.y2C.〔4〕某赛季甲、乙两名篮球运发动各参加了13场比赛,得分情况用茎叶图表示如下:甲乙988177996102256799532030237104根据上图对这两名运发动的成绩进行比拟,以下四个结论中,不正确...的是()A.甲运发动得分的极差大于乙运发动得分的极差(B.甲运发动得分的中位数大于乙运发动得分的中位数(C.甲运发动得分的平均值大于乙运发动得分的平均值(D.甲运发动的成绩比乙运发动的成绩稳定( a(5〕a,bR,那么“ab〞是“1〞的()bA.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件1专业资料整理WOED格式2,x2,〔6〕函数f(x)x假设关于x的函数yf(x)k有且只有三个不同的零点,那么实数k 的2x3,x2.取值范围是()A.(3,1)B.(0,1)C.3,0D.(0,)7〕“函数f(x)在区间[1,2]上不.是.增函数〞的一个充要条件是()A.存在a(1,2)满足f(a)f(1)B.存在a(1,2)满足f(a)f(2)C.存在a,b[1,2] 且ab满足f(a)f(b)D. 存在a,b[1,2] 且ab满足f(a)f(b)〔8〕区块链作为一种革新的技术,已经被应用于许多领域,包括金融、政务效劳、供给链、版权和专利、能源、物联网等.在区块链技术中,假设密码的长度设定为256比特,那么密码一共有256种可能,因此,2为了破解密码,最坏情况需要进行25611次哈希运算.现在有一台机器,每秒能进行10次哈希2运算,假设机器一直正常运转,那么在最坏情况下,这台机器破译密码所需时间大约为〔参考数据〕()73657二、填空题:本大题共6小题,每题4分,共24分,把答案填在题中横线上.x9〕函数f(x)a(a0且a1)的图象经过点(1,2),那么a的值为__________.10〕f(x)lgx,那么f(x)的定义域为__________,不等式f(x1)0的解集为.uuur uuur uuur uuur 〔11〕OA(1,0),AB(1,2),AC(1,1),那么点B的坐标为_________,CB的坐标为_________.〔12〕函数()22的零点个数为_______,不等式f(x)0的解集为_____________.fxx〔13〕某大学在其百年校庆上,对参加校庆的校友做了一项问卷调查,发现在20世纪最后5年间毕业的校友,他们2021年的平均年收入约为35万元.由此_____〔填“能够〞或“不能〞〕推断该大学20世纪最后5年间的毕业生,2021年的平均年收入约为35万元,理由是________________________________________________________________________________.〔14〕对于正整数k,设函数fk(x)[kx]k[x] ,其中[a] 表示不超过a的最大整数.①那么2f()_______; 23②设函数g(x)f 2(x)f 4(x) ,那么在函数g(x)的值域中所含元素的个数是____________.专业资料整理WOED格式2专业资料整理WOED格式三、解答题:本大题共4小题,共44分.解容许写出文字说明,证明过程或演算步骤.(15)〔本小题共11分〕某校2021级高一年级共有学生 195人,其中男生105人,女生90人.基于目前高考制度的改革,为了预估学生“分科选考制〞中的学科选择情况,该校对2021级高一年级全体学生进行了问卷调查.现采用按性别分层抽样的方法,从中抽取13份问卷.问卷中某个必答题的选项分别为“同意〞和“不同意〞,下面表格记录了抽取的这13份问卷中此题的答题情况.选“同意〞的人数选“不同意〞的人数男生4a女生b2〔Ⅰ〕写出a,b的值;〔Ⅱ〕根据上表的数据估计2021级高一年级学生该题选择“同意〞的人数;〔Ⅲ〕从被抽取的男生问卷中随机选取2份问卷,对相应的学生进行访谈,求至少有一人选择“同意〞的概率.函数f(x)ax2ax3.2〔Ⅰ〕假设a1,求不等式f(x)0的解集;〔Ⅱ〕a0,且f(x)0在[3,)上恒成立,求a的取值范围;〔Ⅲ〕假设关于x的方程f(x)0x1,x2,求22有两个不相等的正.实数根xx的取值范围.123专业资料整理WOED格式〔本小题共12分〕如图,在射线OA,OB,OC中,相邻两条射线所成的角都是120o,且线段OAOBOC.uuuruuuruuur设OPxOAyOB.〔Ⅰ〕当x2,y1时,在图1中作出点P的位置〔保存作图的痕迹〕;〔Ⅱ〕请用x,y 写出“点P在射线OC上〞的一个充要条件: _________________________________;〔Ⅲ〕设满足“x2y4且xy0〞的点P所构成的图形为G,①图形G是_________;A.线段B.射线C.直线D.圆②在图2中作出图形G.BBOOCACA图图21〔本小题共10分〕函数f(x) 的图象在定义域(0,) 上连续不断.假设存在常数T0,使得对于任意的x0,f(Tx)f(x)T 恒成立,称函数f(x) 满足性质P(T).(Ⅰ)假设f(x)满足性质P(2),且f(1)0,求1f(4)f()的值;(Ⅱ)假设f(x)logx4,试说明至少存在两个不等的正数T1,T2,同时使得函数f(x)满足性质P(T1) 4和P(T2).(参考数据:2.0736)(Ⅲ)假设函数f(x)满足性质P(T),求证:函数f(x) 存在零点.4专业资料整理附加题:〔此题总分值5分.所得分数可计入总分,但整份试卷得分不超过100分〕在工程实践和科学研究中经常需要对采样所得的数据点进行函数拟合.定义数据点集为平面点集SPxyiLN〔NN+〕,寻找函数yf(x)去拟合数据点集S,就是寻找适宜的函数,{i(i,i)|1,2,,}使其图象尽可能地反映数据点集中元素位置的分布趋势.〔Ⅰ〕以下说法正确的选项是_________.〔写出所有正确说法对应的序号〕A.对于任意的数据点集S,一定存在某个函数,其图象可以经过每一个数据点B.存在数据点集S,不存在函数使其图象经过每一个数据点C.对于任意的数据点集S,一定存在某个函数,使得这些数据点均位于其图象的一侧D.拟合函数的图象所经过的数据点集S中元素个数越多,拟合的效果越好〔Ⅱ〕衡量拟合函数是否恰当有很多判断指标,其中有一个指标叫做“偏置度〞,用以衡量数据点集在拟合函数图象周围的分布情况.如下图,对于数据点集PPP,在如下的两种“偏1,2,3置度〞的定义中,使得函数1(x)的偏置度大于函数f2(x)的偏置度的序号为________;yP3l31P221P1O13xl2n①=(x,yf(x))(x,yf(x))(x,yf(x))L(x,yf(x));iii111222nnn i1x))||,yf(iii111222nnni1〔其中|(x,y)|代表向量w(x,y)的模长〕〔Ⅲ〕对于数据点集S0,0,1,1,1,1,2,2,用形如f(x)axb的函数去拟合.当拟合函数f(x)axb满足〔Ⅱ〕中你所选择的“偏置度〞到达最小时,该拟合函数的图象必过点_______.〔填点的坐标〕5专业资料整理WOED格式草稿纸6专业资料整理WOED格式高一年数学级习参一.选择题:本大题共8小题,每题4分,共32分.考(1〕〔2〕〔3〕〔4〕〔5〕〔6〕〔7〕〔8〕答答案BCCDDBDB 案及准2021.01二.填空题:本大题共 6小题,每题4分,共24分.9〕〔10〕;11〕;〔12〕1;(,0)U(1,)13〕不能;参加校庆的校友年收入不能代表全体毕业生的年收入14〕1;4注:两空的题,每空2分;三.解答题:本大题共 4小题,共44分.解容许写出文字说明,证明过程或演算步骤.〔15〕(Ⅰ)由题意可得;..........2 分;..........4 分(Ⅱ)估计2021级高一年级学生该题选择“同意〞的人数为;..........7 分(Ⅲ)如果访谈学生中选择“同意〞那么记为1,如果选择“不同意〞那么记为0,列举如下:1111000 ..........9 分共有76=42种等可能的结果,其中至少有一人选择“同意〞的有42636种,中至少有一人选择‘同意’〞为事件,那么P(A)..........10 分记“访谈学生366427..........11 分〔16〕(Ⅰ)当a1时,由2f(x)x2x3≥0解得{x|x≥3或x≤-1}..........3分专业资料整理WOED格式7专业资料整理WOED格式(Ⅱ)当a0时,二次函数2f(x)ax2ax3开口向上,对称为轴x1,所以f(x)在[3,)上单调递,增...........5分要使f(x)≥0在[3,)上恒成立,只需f(3)9a6a3≥0,...........6分所以a的取值范围是{a|a≥1}...........7分(Ⅲ)因为f(x)0有两个不相等的正.实数根x1,x2,a024a12a0所以xx2,..........8分123xgx0a12解得a3,所以a的取值范围是{a|a3}...........9分因为2226 xx(xx)2xgx4,..........10分121212a22所以,xx的取值范围是(2,4)...........11分1217〕(Ⅰ)BPOCA图中点P即为所求............4 分(Ⅱ)xy且x0,y0;...........7分说(明Ⅲ)①A;,..........10分:②如果“xE,ByO〞CA,(D分图中线段DE即为所求............12 分专业资料整理WOED格式〔18〕(Ⅰ)因为满足性质,所以对于任意的,f(2x)f(x)2恒成立.又因为f(1)0,所以,f(2)f(1)22,...........1分f(4)f(2)2 4,...........2分由f(1)f()211可得f()f(1)22,22111 1由f()f()+2可得f()f()24,.........3分2414 2所以,f(4)f()0.............4分4(Ⅱ)假设正数T满足,等价于log TT〔或者TT〕,log(Tx)logxTx记g(x)xlog x,〔或者设,x(0,)〕.........5分显然g(1)0,,2,所以16,16log16,即g(16)0............6分因为g(x)的图像连续不断,所以存在T(1,2),T(2,16),使得g(T1)g(T 2)0,1 2因此,至少存在两个不等的正数1,使得函数同时满足性质1T,T P(T)和P(T).............7分2(Ⅲ)①假设f(1)0,那么1即为的零点;...........8分②假设f(1)M0,那么f(T)f(1)T,2f(T)f(T)Tf(1)2T,L,可得kk1f(T)f(T)Tf(1)kT,其中kN.取k[M]1M kTT即可使得f(T)MkT0.所以,存在零点............9分③假设f(1)M0,那么由1,可得1,f(1)f()T f()f(1)TT T1111,L,由f()f()T,可得f()f()Tf(1)2TTT2TT111 1k1k kk1TTTTMM即可使得1取[]1f(k)MkT0.所以,存在零点.kTTT综上,存在零点............10分专业资料整理WOED格式9专业资料整理WOED格式附加题:〔此题总分值5分.所得分数可计入总分,但整份试卷得分不超过100分〕【答案】(Ⅰ)B、C ...........2分(Ⅱ)①...........分(Ⅲ)(1,1)..........2.5分注:对于其它正确解法,相应给分.10专业资料整理。
北京海淀区教师进修学校附属实验中学12-13学年高一上期末考.

北京市海淀区教师进修学校附属实验中学12-13学年高一期末地理出题人:审核人:一、单项选择题(共50道小题,每小题1分,共50分)1.与银河系属于同一层次的天体系统是:A.总星系B.河外星系C.太阳系D.地月系2.地球是太阳系中有生命的特殊行星,从地球本身看,其主要条件之一是:A.宇宙时空无限大,天体运动互不干扰 B.地球体积、质量适宜,保证地球上水的存在C.地球获得的太阳辐射量稳定 D.日地距离适中,地球表面有适宜的温度3.维持地表温度,促进地球上大气、水、生物活动和变化的主要动力是A.重力势能B.生物能C.太阳辐射能D.风能4.太阳活动对地球造成的影响有A.诱发地震和潮汐现象 B.产生“磁暴”和“极光”C.诱发潮汐现象和降水量变化 D .干扰电离层和无线电长波通讯图1为“地球圈层结构示意图”。
读图完成5-7题。
5.关于图中各圈层的叙述正确的是A.地球外部圈层由A、B、C三部分组成,其中C 为生物圈B.地球内部圈层由E、F、G三部分组成,其中G为地核C.E、F合为岩石圈D.各圈层相互联系、相互制约,形成自然环境6.一般认为,岩浆的主要发源地是:A.软流层B.下地幔C.图中D层图1D.图中G层7.关于岩石圈物质循环过程的正确叙述是A.沉积岩重熔再生形成变质岩B.变质岩经过外力作用形成沉积岩C.岩浆岩冷却凝固形成变质岩D.岩浆岩经过变质作用形成岩浆图2为“大气热力作用示意简图”,完成8-9题。
8. 图2中箭头代表辐射,关于箭头表示的内容,叙述正确的是:A.①对地面具有保温作用B. ②是近地面大气的直接热源C. ③对地面有降温作用D. ④表示对大气的增温作用9.古人有“放火作熅(yun 燃烧不旺的火堆冒出的浓烟),少得烟气,则免于霜矣”的防御霜冻做法,该做法增强的作用是 A. ① B. ② C. ③ D. ④ 10.引起大气运动的根本原因是A.地转偏向力B.地表冷热不均C.水平气压差异D.人类活动读“北半球某日天气系统分布示意图”(图3),回答11-13题。
北京市海淀区高一上期末数学试卷((有答案))

北京市海淀区高一(上)期末数学试卷一.选择题(每小题4分,共32分,每小题给出的四个选项中,只有一个是符合题目要求的)1.(4分)已知集合U={1,2,3,4,5,6},M={1,5},P={2,4},则下列结论正确的是()A.1∈∁U(M∪P)B.2∈∁U(M∪P)C.3∈∁U(M∪P)D.6∉∁U(M∪P)2.(4分)下列函数在区间(﹣∞,0)上是增函数的是()A.f(x)=x2﹣4x B.g(x)=3x+1 C.h(x)=3﹣x D.t(x)=tanx3.(4分)已知向量=(1,3),=(3,t),若∥,则实数t的值为()A.﹣9 B.﹣1 C.1 D.94.(4分)下列函数中,对于任意的x∈R,满足条件f(x)+f(﹣x)=0的函数是()A.f(x)=x B.f(x)=sinx C.f(x)=cosx D.f(x)=log2(x2+1)5.(4分)代数式sin(+)+cos(﹣)的值为()A.﹣1 B.0 C.1 D.6.(4分)在边长为1的正方形ABCD中,向量=,=,则向量,的夹角为()A.B.C.D.7.(4分)如果函数f(x)=3sin(2x+φ)的图象关于点(,0)成中心对称(|φ|<),那么函数f(x)图象的一条对称轴是()A.x=﹣B.x=C.x=D.x=8.(4分)已知函数f(x)=其中M∪P=R,则下列结论中一定正确的是()A.函数f(x)一定存在最大值B.函数f(x)一定存在最小值C.函数f(x)一定不存在最大值D.函数f(x)一定不存在最小值二.填空题(本大题6小题,每小题4分,共24分)9.(4分)函数y=的定义域为.10.(4分)已知a=40.5,b=0.54,c=log0.54,则a,b,c从小到大的排列为.11.(4分)已知角α终边上有一点P(x,1),且cosα=﹣,则tanα=.12.(4分)已知△ABC中,点A(﹣2,0),B(2,0),C(x,1)(i)若∠ACB是直角,则x=(ii)若△ABC是锐角三角形,则x的取值范围是.13.(4分)燕子每年秋天都要从北方到南方过冬,鸟类科学家发现,两岁燕子的飞行速度v与耗氧量x之间满足函数关系v=alog 2.若两岁燕子耗氧量达到40个单位时,其飞行速度为v=10m/s,则两岁燕子飞行速度为25m/s时,耗氧量达到单位.14.(4分)已知函数f(x)=|ax﹣1|﹣(a﹣1)x(1)当a=时,满足不等式f(x)>1的x的取值范围为;(2)若函数f(x)的图象与x轴没有交点,则实数a的取值范围为.三.解答题(本大题共4小题,共44分)15.(12分)已知函数f(x)=x2+bx+c,其对称轴为y轴(其中b,c为常数)(Ⅰ)求实数b的值;(Ⅱ)记函数g(x)=f(x)﹣2,若函数g(x)有两个不同的零点,求实数c 的取值范围;(Ⅲ)求证:不等式f(c2+1)>f(c)对任意c∈R成立.16.(12分)已知如表为“五点法”绘制函数f(x)=Asin(ωx+φ)图象时的五个关键点的坐标(其中A>0,ω>0,|φ|<π)(Ⅰ)请写出函数f(x)的最小正周期和解析式;(Ⅱ)求函数f (x )的单调递减区间; (Ⅲ)求函数f (x )在区间[0,]上的取值范围.17.(10分)如图,在平面直角坐标系中,点A (﹣,0),B (,0),锐角α的终边与单位圆O 交于点P .(Ⅰ)用α的三角函数表示点P 的坐标; (Ⅱ)当•=﹣时,求α的值;(Ⅲ)在x 轴上是否存在定点M ,使得||=||恒成立?若存在,求出点M的横坐标;若不存在,请说明理由.18.(10分)已知函数f (x )的定义域为R ,若存在常数T ≠0,使得f (x )=Tf (x +T )对任意的x ∈R 成立,则称函数f (x )是Ω函数.(Ⅰ)判断函数f (x )=x ,g (x )=sinπx 是否是Ω函数;(只需写出结论) (Ⅱ)说明:请在(i )、(ii )问中选择一问解答即可,两问都作答的按选择(i )计分(i )求证:若函数f (x )是Ω函数,且f (x )是偶函数,则f (x )是周期函数; (ii )求证:若函数f (x )是Ω函数,且f (x )是奇函数,则f (x )是周期函数; (Ⅲ)求证:当a >1时,函数f (x )=a x 一定是Ω函数.选做题(本题满分10分)19.(10分)记所有非零向量构成的集合为V ,对于,∈V ,≠,定义V (,)=|x ∈V |x•=x•|(1)请你任意写出两个平面向量,,并写出集合V (,)中的三个元素; (2)请根据你在(1)中写出的三个元素,猜想集合V (,)中元素的关系,并试着给出证明;(3)若V(,)=V(,),其中≠,求证:一定存在实数λ1,λ2,且λ1+λ2=1,使得=λ1+λ2.2016-2017学年北京市海淀区高一(上)期末数学试卷参考答案与试题解析一.选择题(每小题4分,共32分,每小题给出的四个选项中,只有一个是符合题目要求的)1.(4分)已知集合U={1,2,3,4,5,6},M={1,5},P={2,4},则下列结论正确的是()A.1∈∁U(M∪P)B.2∈∁U(M∪P)C.3∈∁U(M∪P)D.6∉∁U(M∪P)【解答】解:由已知得到M∪P={1,5,2,4};所以∁U(M∪P)={3,6};故A、B、D错误;故选:C.2.(4分)下列函数在区间(﹣∞,0)上是增函数的是()A.f(x)=x2﹣4x B.g(x)=3x+1 C.h(x)=3﹣x D.t(x)=tanx【解答】解:对于A,f(x)=x2﹣4x=(x﹣2)2﹣4,在(﹣∞,0)上是单调减函数,不满足题意;对于B,g(x)=3x+1在(﹣∞,0)上是单调增函数,满足题意;对于C,h(x)=3﹣x=是(﹣∞,0)上的单调减函数,不满足题意;对于D,t(x)=tanx在区间(﹣∞,0)上是周期函数,不是单调函数,不满足题意.故选:B.3.(4分)已知向量=(1,3),=(3,t),若∥,则实数t的值为()A.﹣9 B.﹣1 C.1 D.9【解答】解:向量=(1,3),=(3,t),若∥,可得t=9.故选:D.4.(4分)下列函数中,对于任意的x∈R,满足条件f(x)+f(﹣x)=0的函数是()A.f(x)=x B.f(x)=sinx C.f(x)=cosx D.f(x)=log2(x2+1)【解答】解:对于任意的x∈R,满足条件f(x)+f(﹣x)=0的函数是奇函数.A,非奇非偶函数;B奇函数,C,D是偶函数,故选B.5.(4分)代数式sin(+)+cos(﹣)的值为()A.﹣1 B.0 C.1 D.【解答】解:sin(+)+cos(﹣)=.故选:C.6.(4分)在边长为1的正方形ABCD中,向量=,=,则向量,的夹角为()A.B.C.D.【解答】解:设向量,的夹角为θ,以A为坐标原点,以AB为x轴,以AD为x轴,建立直角坐标系,∴A(0,0),B(1.0),C(1,1),D(0,1),∵向量=,=,∴E(,1),F(1,),∴=(,1),=(1,),∴||=,=,•=+=,∴cosθ===,∴θ=,故选:B7.(4分)如果函数f(x)=3sin(2x+φ)的图象关于点(,0)成中心对称(|φ|<),那么函数f(x)图象的一条对称轴是()A.x=﹣B.x=C.x=D.x=【解答】解:∵函数f(x)=3sin(2x+φ)的图象关于点(,0)成中心对称,∴2×+φ=kπ,k∈Z,解得:φ=kπ﹣,k∈Z,∵|φ|<,∴φ=,可得:f(x)=3sin(2x+),∴令2x+=kπ+,k∈Z,可得:x=+,k∈Z,∴当k=0时,可得函数的对称轴为x=.故选:B.8.(4分)已知函数f(x)=其中M∪P=R,则下列结论中一定正确的是()A.函数f(x)一定存在最大值B.函数f(x)一定存在最小值C.函数f(x)一定不存在最大值D.函数f(x)一定不存在最小值【解答】解:由函数y=2x的值域为(0,+∞),y=x2的值域为[0,+∞),且M∪P=R,若M=(0,+∞),P=(﹣∞,0],则f(x)的最小值为0,故D错;若M=(﹣∞,2),P=[2,+∞),则f(x)无最小值为,故B错;由M∪P=R,可得图象无限上升,则f(x)无最大值.故选:C.二.填空题(本大题6小题,每小题4分,共24分)9.(4分)函数y=的定义域为[2,+∞).【解答】解:由2x﹣4≥0,得2x≥4,则x≥2.∴函数y=的定义域为[2,+∞).故答案为:[2,+∞).10.(4分)已知a=40.5,b=0.54,c=log0.54,则a,b,c从小到大的排列为c<b <a.【解答】解:∵a=40.5>40=1,0<b=0.54<0.50=1,c=log0.54<log0.51=0,∴a,b,c从小到大的排列为c<b<a.故答案为:c<b<a.11.(4分)已知角α终边上有一点P(x,1),且cosα=﹣,则tanα=﹣.【解答】解:∵角α终边上有一点P(x,1),且cosα=﹣=,∴x=﹣,∴tanα==﹣,故答案为:﹣.12.(4分)已知△ABC中,点A(﹣2,0),B(2,0),C(x,1)(i)若∠ACB是直角,则x=(ii)若△ABC是锐角三角形,则x的取值范围是(﹣2,﹣)∪(2,+∞).【解答】解:(i)∵△ABC中,点A(﹣2,0),B(2,0),C(x,1),∴=(﹣2﹣x,﹣1),=(2﹣x,﹣1),∵∠ACB是直角,∴=(﹣2﹣x)(2﹣x)+(﹣1)(﹣1)=x2﹣3=0,解得x=.(ii)∵△ABC中,点A(﹣2,0),B(2,0),C(x,1),∴=(﹣2﹣x,﹣1),=(2﹣x,﹣1),=(x+2,1),=(4,0),=(x﹣2,1),=(﹣4,0),∵△ABC是锐角三角形,∴,解得﹣2<x<﹣或x>2.∴x的取值范围是(﹣2,﹣)∪(2,+∞).故答案为:,(﹣2,﹣)∪(2,+∞).13.(4分)燕子每年秋天都要从北方到南方过冬,鸟类科学家发现,两岁燕子的飞行速度v与耗氧量x之间满足函数关系v=alog2.若两岁燕子耗氧量达到40个单位时,其飞行速度为v=10m/s,则两岁燕子飞行速度为25m/s时,耗氧量达到320单位.【解答】解:由题意,令x=40,v=1010=alog24;所以a=5;v=25 m/s,25=5 log,得到x=320单位.故答案为:320.14.(4分)已知函数f(x)=|ax﹣1|﹣(a﹣1)x(1)当a=时,满足不等式f(x)>1的x的取值范围为(2,+∞);(2)若函数f(x)的图象与x轴没有交点,则实数a的取值范围为[,1).【解答】解:(1)a=时,f(x)=|x﹣1|+x=,∵f(x)>1,∴,解得x>2,故x的取值范围为(2,+∞),(2)函数f(x)的图象与x轴没有交点,①当a≥1时,f(x)=|ax﹣1|与g(x)=(a﹣1)x的图象:两函数的图象恒有交点,②当0<a<1时,f(x)=|ax﹣1|与g(x)=(a﹣1)x的图象:要使两个图象无交点,斜率满足:a﹣1≥﹣a,∴a≥,故≤≤a<1③当a≤0时,f(x)=|ax﹣1|与g(x)=(a﹣1)x的图象:两函数的图象恒有交点,综上①②③知:≤a<1故答案为:(2,+∞),[,1)三.解答题(本大题共4小题,共44分)15.(12分)已知函数f(x)=x2+bx+c,其对称轴为y轴(其中b,c为常数)(Ⅰ)求实数b的值;(Ⅱ)记函数g(x)=f(x)﹣2,若函数g(x)有两个不同的零点,求实数c 的取值范围;(Ⅲ)求证:不等式f(c2+1)>f(c)对任意c∈R成立.【解答】解:(Ⅰ)∵函数f(x)=x2+bx+c,其对称轴为y轴,∴=0,解得:b=0;(Ⅱ)由(I)得:f(x)=x2+c,则g (x )=f (x )﹣2=x 2+c ﹣2, 若函数g (x )有两个不同的零点, 则△=﹣4(c ﹣2)>0, 解得:c <2;(Ⅲ)证明:函数f (x )=x 2+c 的开口朝上, ∵|c 2+1|2﹣|c |2=c 4+c 2+1=(c 2+)2+>0恒成立, 故|c 2+1|>|c |,故不等式f (c 2+1)>f (c )对任意c ∈R 成立.16.(12分)已知如表为“五点法”绘制函数f (x )=Asin (ωx +φ)图象时的五个关键点的坐标(其中A >0,ω>0,|φ|<π)(Ⅰ)请写出函数f (x )的最小正周期和解析式; (Ⅱ)求函数f (x)的单调递减区间; (Ⅲ)求函数f(x )在区间[0,]上的取值范围.【解答】解:(Ⅰ)由表格可得A=2,=+,∴ω=2,结合五点法作图可得2•+φ=,∴φ=,∴f (x )=2sin (2x +),它的最小正周期为=π.(Ⅱ)令2kπ+≤2x +≤2kπ+,求得kπ+≤x ≤kπ+,可得函数f (x )的单调递减区间为[kπ+,kπ+],k ∈Z .(Ⅲ)在区间[0,]上,2x +∈[,],sin (2x +)∈[﹣,1],f (x )∈[﹣,2],即函数f (x )的值域为[﹣,2].17.(10分)如图,在平面直角坐标系中,点A(﹣,0),B(,0),锐角α的终边与单位圆O交于点P.(Ⅰ)用α的三角函数表示点P的坐标;(Ⅱ)当•=﹣时,求α的值;(Ⅲ)在x轴上是否存在定点M,使得||=||恒成立?若存在,求出点M 的横坐标;若不存在,请说明理由.【解答】解:锐角α的终边与单位圆O交于点P.(Ⅰ)用α的三角函数表示点P的坐标为(cosα,sinα);(Ⅱ),,•=﹣时,即(cos)(cos)+sin2α=,整理得到cos,所以锐角α=60°;(Ⅲ)在x轴上假设存在定点M,设M(x,0),,则由||=||恒成立,得到=,整理得2cosα(2+x)=x2﹣4,所以存在x=﹣2时等式恒成立,所以存在M(﹣2,0).18.(10分)已知函数f(x)的定义域为R,若存在常数T≠0,使得f(x)=Tf (x+T)对任意的x∈R成立,则称函数f(x)是Ω函数.(Ⅰ)判断函数f(x)=x,g(x)=sinπx是否是Ω函数;(只需写出结论)(Ⅱ)说明:请在(i)、(ii)问中选择一问解答即可,两问都作答的按选择(i)计分(i)求证:若函数f(x)是Ω函数,且f(x)是偶函数,则f(x)是周期函数;(ii)求证:若函数f(x)是Ω函数,且f(x)是奇函数,则f(x)是周期函数;(Ⅲ)求证:当a>1时,函数f(x)=a x一定是Ω函数.【解答】解:(I)①对于函数f(x)=x是Ω函数,假设存在非零常数T,Tf(x+T)=f(x),则T(x+T)=x,取x=0时,则T=0,与T≠0矛盾,因此假设不成立,即函数f(x)=x不是Ω函数.②对于g(x)=sinπx是Ω函数,令T=﹣1,则sin(πx﹣π)=﹣sin(π﹣πx)=﹣sinπx.即﹣sin(π(x﹣1))=sinπx.∴Tsin(πx+πT)=sinπx成立,即函数f(x)=sinπx对任意x∈R,有Tf(x+T)=f (x)成立.(II)(i)证明:∵函数f(x)是Ω函数,∴存在非零常数T,Tf(x+T)=f(x),Tf(﹣x+T)=f(﹣x).又f(x)是偶函数,∴f(﹣x)=f(x),∴Tf(﹣x+T)=Tf(x+T),T≠0,化为:f(x+T)=f(﹣x+T),令x﹣T=t,则x=T+t,∴f(2T+t)=f(﹣t)=f(t),可得:f(2T+t)=f(t),因此函数f(x)是周期为2T的周期函数.(ii)证明:∵函数f(x)是Ω函数,∴存在非零常数T,Tf(x+T)=f(x),Tf (﹣x+T)=f(﹣x).又f(x)是奇函数,∴f(﹣x)=﹣f(x),∴﹣Tf(x+T)=Tf(﹣x+T),T≠0,化为:﹣f(x+T)=f(﹣x+T),令x﹣T=t,则x=T+t,∴﹣f(2T+t)=f(﹣t)=﹣f(t),可得:f(2T+t)=f(t),因此函数f(x)是周期为2T的周期函数.(III)证明:当a>1时,假设函数f(x)=a x是Ω函数,则存在非零常数T,Tf (x+T)=f(x),∴Ta x+T=a x,化为:Ta T a x=a x,∵a x>0,∴Ta T=1,即a T=,此方程有非0 的实数根,因此T≠0且存在,∴当a>1时,函数f(x)=a x一定是Ω函数.选做题(本题满分10分)19.(10分)记所有非零向量构成的集合为V,对于,∈V,≠,定义V(,)=|x∈V|x•=x•|(1)请你任意写出两个平面向量,,并写出集合V(,)中的三个元素;(2)请根据你在(1)中写出的三个元素,猜想集合V(,)中元素的关系,并试着给出证明;(3)若V(,)=V(,),其中≠,求证:一定存在实数λ1,λ2,且λ1+λ2=1,使得=λ1+λ2.【解答】解:(1)比如=(1,2),=(3,4),设=(x,y),由•=•,可得x+2y=3x+4y,即为x+y=0,则集合V(,)中的三个元素为(1,﹣1),(2,﹣2),(3,﹣3);(2)由(1)可得这些向量共线.理由:设=(s,t),=(a,b),=(c,d),由•=•,可得as+bt=cs+dt,即有s=t,即=(t,t),故集合V(,)中元素的关系为共线;(3)证明:设=(s,t),=(a,b),=(c,d),=(u,v),=(e,f),若V(,)=V(,),即有as+bt=cs+dt,au+bv=ue+fv,解得a=•c+•e+,可令d=f,可得λ1=,λ2=,则一定存在实数λ1,λ2,且λ1+λ2=1,使得=λ1+λ2.。
【数学】北京市海淀区教师进修学校附属实验中学2012-2013学年高一上学期期末考试

北京市海淀区教师进修学校附属实验中学2012-2013学年高一上学期期末考试2. 下面四个命题中,真命题的个数为⑴如果两个平面有三个公共点,那么这两个平面重合⑵两条直线可以确定一个平面 ⑶若M €a, M aA3= l ,贝U M € l⑷空间中,相交于同一点的三直线在同一平面内 A.1B.2C.3D.43. 已知点A(-1,1)和圆C : (x-5)2+(y-7)2=4,—束光线从点 A 出发经x 轴反射到圆周 C 的最 短路程是 ( )4.若f (x)和g(x)都是奇函数,且F (x)二f (x) • g(x) = 2,在(0, +m)上有最大值 8, 则在(―汽 0) 上 F(x)有( )A. 最小值—8B.最大值—85.下列说法中不正确的是 ( )A.点斜式y -^n k X-N 适用于不垂直于 x 轴的任何直线B. 斜截式y 二kx * b 适用于不垂直于 x 轴的任何直线C. 两点式y —y1 -X-X !适用于不垂直于x 轴和y 轴的任何直线申2 一屮 x 2 —X 11 •函数 f(x)=sin x +-sinx 与函数g(x)=a ( a 是常数)有两个不同的交占 八则a 的取值范围是 o,3C .1 (0,2)(2,2)A.8B.10D.6 2 - 2C.最小值—6D.最小值一 4D. 截距式X ■ y =1适用于不过原点的任何直线&设S 是至少含有两个元素的集合, 在S 上定义了一个二元运算 “*”(即对任意的a,b 对于有序元素对(a,b ),在S 中有唯一确定的元素 a”b 与之对应)。
若对于任意的a,b有a (b a^b,则对任意的a,b • S ,下列等式中不恒成立的是(是( )为正奇数另一个为正偶数时, m®n=mn,则集合M =<(a,b ) |a ® b = 36, N :b 壬N *}中的元素个数是11.下列命题中正确的是 ( )6.设 f (x ) = lg(10+ 1) + ax 是偶函数, g( x )2X是奇函数,那么 a + b 的值为(A. 1B.— 1C.D.7.设 f (x ) = lg(10+ 1) + ax 是偶函数, g( x )4X -b 2X是奇函数,那么 a + b 的值为(A. 1B.— 1C.D.A (a b) a = aB [a (b a)] (a b)二 ac b*(b*b) =bD (a* b)*[b* (a*b)] = b9 .设集合 M二{1,2,3,4,5,6}S1, I $2,,S k都是M 的含两个元素的子集,且满足:对任意的S二{ai,b },S j= {a j , b j }("ji 、j {1,, , k}),都丄a . b I I a , b i min \一,一 W min 《一,一 \l b a i J a . b ib j a j(min{ X, y}表示两个数 X, y 中的较小者),则k 的最大值A.10B.11C.12D.1310 •现定义一种运算 :;当m 、n 都是正偶数或都是正奇数时,n 二m n;当 m n 中一个A . 21B . 26C . 31D . 41A.经过点P o (X 。
北京市海淀区高一数学上学期期末考试试题(含解析)

第Ⅰ卷(共32分)一、选择题:本大题共8个小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知全集{1,2,3,4},{1,2},{2,3},U A B ===则 ( )U A B = ( )A.{2,3}B.{1,2,3}C.{2,3,4}D.{1,2,3,4}3.已知向量2(1,1),(,2),x x ==+a b 若,a b 共线,则实数x 的值为 ( ) A.1- B.2 C.1或2- D.1-或2 【答案】D. 【解析】试题分析:∵2(1,1),(,2)x x ==+a b ,,a b 共线,∴根据向量共线的充要条件知1×x 2-1×(x+2)=0,∴x=-1或2,选D.考点:平面向量共线(平行)的坐标表示.4.函数1 ()lg1 fxx=-的定义域为()A.(0,)+∞ B.(0,1)(1,)+∞ C.(1,)+∞ D.(0,10)(10,)+∞【答案】D.【解析】试题分析:由函数1()lg1f xx=-的解析式可得,Lgx-1≠0, x>0,即 0<x<10或10<x,故函数定义域为(0,10)(10,)+∞ ,故选D.考点:函数定义域.5.如图所示,矩形ABCD中,4,AB=点E为AB中点, 若DE AC⊥,则||DE=()A.52B. 23C.3D.22ED CBA6.函数41()log4xf x x=-的零点所在的区间是()A.(10,2) B.(1,12) C.(1,2) D.(2,4)8.已知函数||()||x af x x a -=-,则下列说法中正确的是 ( )A.若0a ≤,则()1f x ≤恒成立B.若()1f x ≥恒成立,则0a ≥C.若0a <,则关于x 的方程()f x a =有解D.若关于x 的方程()f x a =有解,则01a <≤ 【答案】D. 【解析】10.比较大小:sin1cos1(用“>”,“<”或“=”连接).【答案】>.【解析】试题分析:在单位圆中,做出锐角1的正切线、正弦线、余弦线,观察他们的长度,发现正切线最长,余弦线最短,故有 tan1>sin1>cos1>0.考点:三角函数线.11.已知函数()13,(,1)x f x x =-∈-∞,则()f x 的值域为 .14.已知函数π()sin 2f x x =,任取t ∈R ,记函数()f x 在区间[,1]t t +上的最大值为,t M 最小值为 t m 记()t t h t M m =-. 则关于函数()h t 有如下结论:①函数()h t 为偶函数;②函数()h t 的值域为2[1; ③函数()h t 的周期为2;④函数()h t 的单调增区间为13[2,2],22k k k ++∈Z .其中正确的结论有____________.(填上所有正确的结论序号)三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分10分)已知函数2()f x x bx c =++,其中,b c 为常数. (Ⅰ)若函数()f x 在区间[1,)+∞上单调,求b 的取值范围;(Ⅱ)若对任意x ∈R ,都有(1)(1)f x f x -+=--成立,且函数()f x 的图象经过点(,)c b -, 求,b c 的值.【答案】(I) 2b ≥-;(Ⅱ)c=-1或c=-2. 【解析】16.(本小题满分12分)已知函数()sin(2)3f x x π=-.(Ⅰ)请用“五点法”画出函数()f x 在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图);(Ⅱ)求函数()f x 的单调递增区间;(Ⅲ)当[0,]2x π∈时,求函数()f x 的最大值和最小值及相应的x 的值.y11 xO(Ⅱ)令222()232k x k k ππππ-≤-≤π+∈Z , 解得()1212k x k k π5ππ-≤≤π+∈Z ,∴函数sin(2)3y x π=-的单调增区间为5[,]()1212k k k πππ-π+∈Z .(Ⅲ)∵[0,]2x π∈, ∴2[0,]x ∈π,(2)[,]333x ππ2π-∈- ∴当233x ππ-=-,即0x =时,in(2)3y s x π=-取得最小值3 当232x ππ-=,即12x 5π=时,sin(2)3y x π=-取得最大值1.考点:1.五点法作函数y=Asin (ωx+φ)的图象;2.三角函数的单调区间;3.三角函数的最值.17.(本小题满分12分)(Ⅱ)∵四边形ABPQ 为菱形,∴||||AB BP =222(2)x x +- 化简得到2210x x -+=, ∴1x =, ∴(1,0)P ,设(,)Q a b ,∵PQ BA =, ∴(1,)(1,1)a b -=--,∴01a b =⎧⎨=-⎩,∴(0,2)(1,1)2BQ AQ ⋅=-⋅-=.考点:1.用向量的内积求角;2.菱形.18.(本小题满分10分)已知函数()f x 的定义域为[0,1],且()f x 的图象连续不间断. 若函数()f x 满足:对于给定的m (m ∈R 且01m <<),存在0[0,1]x m ∈-,使得00()()f x f x m =+,则称()f x 具有性质()P m . (Ⅰ)已知函数21()()2f x x =-,[0,1]x ∈,判断()f x 是否具有性质1()3P ,并说明理由; (Ⅱ)已知函数141, 0,413()41, ,44345, 1.4x x f x x x x x ⎧-+≤≤⎪⎪⎪=-<<⎨⎪⎪-+≤≤⎪⎩若()f x 具有性质()P m ,求m 的最大值; (Ⅲ)若函数()f x 的定义域为[0,1],且()f x 的图象连续不间断,又满足(0)(1)f f =,求证:对任意*k ∈N 且2k ≥,函数()f x 具有性质1()P k. 【答案】(Ⅰ)具有该性质,证明见解析;(Ⅱ)12;(Ⅲ)证明见解析. 【解析】试题分析:(Ⅰ)创新定义问题,首先要读懂具有性质P(m)的意思, 对于给定的m (m ∈R 且01m <<), 存在0[0,1]x m ∈-,使得00()()f x f x m =+,按照此定义进行判断,假设具有该性质, 设01[0,1]3x ∈-,令 001()()3f x f x =+,解得013x =2[0,]3∈,满足定义,故具有性质P(3);(Ⅱ)m 在0到1之间,取一半,看是 否具有性质P(12),如果有,再判断是否有大于12的m,没有的话,最大值就是12;(Ⅲ)构造函数()g x = 1()()f x f x k +-,则1(0)()(0)g f f k =-,121()()()g f f k k k =-…1()()()t t t g f f k k k k =+-…1()k g k-= ()1f -1k f k -⎛⎫ ⎪⎝⎭,相加,有11(0)()...()...()(1)(0)0t k g g g g f f k k k -+++++=-=,分里面有零和没零进行讨论,得到结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012—2013学年度第一学期期末练习
高一数学
一、选择题
1.函数1
()sin sin 2
f x x x =+
(02x π≤≤)与函数()g x a =(a 是常数)有两个不同的交点,则a 的取值范围是
( )
A .30,2⎛⎫ ⎪⎝⎭
B .13(,0)(0,)22
-
C .1
(0,)
2
D .13(,)22
2.下面四个命题中,真命题的个数为 ( ) ⑴如果两个平面有三个公共点,那么这两个平面重合
⑵两条直线可以确定一个平面 ⑶若M ∈α,M ∈β,α∩β=l ,则M ∈l ⑷空间中,相交于同一点的三直线在同一平面内 A.1 B.2 C.3 D.4
3.已知点A(-1,1)和圆C :2
2
(x-5)+(y-7)=4,一束光线从点A 出发经x 轴反射到圆周C 的最短路程是 ( )
A.8
B.10
C.64
D.226-
4.若)(x f 和)(x g 都是奇函数,且2)()()(=+=x g x f x F ,在(0,+∞)上有最大值8,则在(-∞,0)上)(x F 有( )
A.最小值-8
B.最大值-8
C.最小值-6
D.最小值-4
5.下列说法中不正确的是 ( )
A.点斜式()11y y k x x -=-适用于不垂直于x 轴的任何直线
B.斜截式y kx b =+适用于不垂直于x 轴的任何直线
C.两点式112121y y x x y y x x --=--适用于不垂直于x 轴和y 轴的任何直线
D.截距式
1x y
a b
+=适用于不过原点的任何直线 6.设f (x )=lg(10x
+1)+ax 是偶函数,g (x )=x
x b
2
4-是奇函数,那么a +b 的值为( ) A . 1
B .-1
C .-
2
1 D .
2
1 7.设f (x )=lg(10x
+1)+ax 是偶函数,g (x )=x
x b
2
4-是奇函数,那么a +b 的值为( ) A . 1 B .-1 C .-
2
1 D .
2
1 8.设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的S b a ∈,,对于有序元素对),(b a ,在S 中有唯一确定的元素b a *与之对应)。
若对于任意的S b a ∈,,有
b a b a =**)(,则对任意的S b a ∈,,下列等式中不恒成立的是( )
A.a a b a =**)(
B.a b a a b a =****)()]([
C.b b b b =**)(
D.b b a b b a =****)]([)(
9.设集合{123456}M =,
,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j ≠,{123}i j k ∈ 、,,,,),都有
min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪
≠⎨⎬⎨⎬
⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( ) A.10 B.11 C.12 D.13
10.现定义一种运算;⊗当m 、n 都是正偶数或都是正奇数时,;m n m n ⊗=+当m n 、中一个为正奇
数另一个为正偶数时,,m n mn ⊗=则集合{
}(,)|36,,M a b a b a N b N **
=⊗=∈∈中的元素
个数是 ( )
A .21
B .26
C .31
D .41
11.下列命题中正确的是( )
A.经过点0,0()o P x y 的直线都可以用方程y -0y =k(x -0x )表示
B.经过定点A(0,b)的直线都可以用方程y=kx +b 表示.
C.经过任意两个不同点11,1()P x y ,22,2()P x y 的直线都可用方程(2x -1x )(y -1y )=(2y -1y )(x -1x )表示.
D.不经过原点的直线都可以用方程a x +b
y
=1表示. 12.下列命题中正确的是( )
A.平行于同一个平面的两条直线平行
B.垂直于同一条直线的两条直线平行
C.若直线a 与平面α内的无数条直线平行,则//a α
D.若一条直线平行于两个平面的交线,则这条直线至少平行于两个平面中的一个 二、填空题 13.给出下列函数:
①函数x
y 2=与函数x 2log 的定义域相同; ②函数3x y =与函数x
y 3=值域相同;
③函数()2
1-=x y 与函数12-=x y 在()+∞,0上都是增函数;
④函数x x y --=312log 2
的定义域是⎪⎭
⎫
⎝⎛3,21。
其中错误的序号是 。
14.已知直线m ,n ,平面βα,,给出下列命题: ①若βαβα⊥⊥⊥则,,m m ;②若βαβα//,//,//则m m ;
③若βαβα⊥⊥则,//,m m ;④若异面直线m ,n 互相垂直,则存在过m 的平面与n 垂直. 其中正确的命题的题号为 .
15.已知定义在R 上的奇函数f(x),当x>0时,1||)(2
-+=x x x f ,那么x<0时,f(x)= . 16.函数()1
x f x x =-的反函数()1
f x -=
三、解答题
17.
()()
()()()()[]()()22111,212f x ax x a a a f x f x g x g x =-+-=已知函数为实数若作出函数的图象;
设在区间,
上的最小值为,求的表达式; ()()()()[]的取值范围。
上是增函数,求实数,在区间若函数设a x h x
x f x h 21,3= 18.
()()()()()()
()
223
*
223
3
012112m m m
m f x x
m N y m a a a ----=∈+∞+<-已知幂函数的图象关于轴对称,
且在,上是减函数,
求的值;求满足的的取值范围。
19.现有某种细胞100个,其中有占总数
1
2
的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:
lg 30.477,lg 20.301==).
20.已知:在空间四边形ABCD 中,AC=AD,BC=BD,求证:AB ⊥CD
21.已知函数
kx x f x
++=)14(log )(4)(R k ∈是偶函数. (1) 求k 的值;
(2) 设)
34
2(log )(4a a x g x -
⋅=,若函数)(x f 与)(x g 的图象有且只有一个公共点,求实数a 的取
值范围.
高一数学参考答案
一、选择题
1.D 2.A 3.A 4.D 5.D 6.D 7.D 8.A
解析:.
9.B
解析:含2个元素的子集有15个,但{1,2}、{2,4}、{3,6}只能取一个;{1,3}、{2,6}只能取一个;{2,3}、{4,6}只能取一个,
故满足条件的两个元素的集合有11个。
10.D 11.C 12.D
二、填空题
13.①②③
14.③④
15.
16.
三、解答题
17.
18.
19.现有细胞100个,先考虑经过1、2、3、4个小时后的细胞总数,1小时后,细胞总数为;
2小时后,细胞总数为;
3小时后,细胞总数为;
4小时后,细胞总数为;
可见,细胞总数与时间(小时)之间的函数关系为:,
由,得,两边取以10为底的对数,得,
∴,∵,
∴.
答:经过46小时,细胞总数超过个.
20.证明:如图,设CD中点为E,连接AE、BE,
因为ΔACD为等腰三角形,
所以AE⊥CD;
同理BE⊥CD.
所以CD⊥平面ABE,
所以CD⊥AB.
21. 解(1)由,得
函数为上单调函数. 若函数为上单调增函数,则在上恒成立,即不等式在上恒成立. 也即在上恒成立.
令,上述问题等价于,而为在上的减函数,则
,于是为所求.
(2)证明:由得
而①
又, ∴②∵∴,
∵∴③
由①、②、③得
即,从而由凹函数的定义可知函数为凹函数。