安徽省201x年中考数学总复习第三章函数第四节二次函数的图象与性质练习

合集下载

中考数学总复习《二次函数图像与坐标轴的交点问题》练习题-附带答案

中考数学总复习《二次函数图像与坐标轴的交点问题》练习题-附带答案

中考数学总复习《二次函数图像与坐标轴的交点问题》练习题-附带答案一、单选题(共12题;共24分)1.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①抛物线与x轴的另一个交点是(5,0);②4a+c>2b;③4a+b=0;④当x>-1时y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个2.二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为()A.1B.-1C.2D.-2 3.已知二次函数y=x2−x+14m−1的图象与x轴有交点,则m的取值范围是()A.m≤5B.m≥2C.m<5D.m>2 4.二次函数y=x2-2x-2与坐标轴的交点个数是()A.0B.1C.2D.3 5.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤6.如图,抛物线y=ax2+bx+c交x轴于(-1,0),(3,0),则下列判断错误的是().A.图象的对称轴是直线x=1B.当x>1时y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根分别是-1和3D.当y<0时x<-17.若抛物线y=x2﹣2x+m与x轴有两个交点,则m的取值范围是()A.m<﹣1 B.m<1C.m>﹣1D.m>1 8.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X﹣1013y﹣1353①ac<0;②当x>1时y的值随x值的增大而减小.③3是方程ax2+(b﹣1)x+c=0的一个根;④当﹣1<x<3时ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个9.二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是()A.m≥﹣2B.m≥2C.m≥0D.m>4 10.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1B.2C.3D.4 11.已知抛物线y=ax2﹣2ax+a﹣c(a≠0)与y轴的正半轴相交,直线AB∥x轴,且与该抛物线相交于A(x1,y1)B(x2,y2)两点,当x=x1+x2时函数值为p;当x=x1+x2q.则p﹣q的值为()2时函数值为A.a B.c C.﹣a+c D.a﹣c 12.函数y=ax2+bx+c的图象如图所示,那么关于x的一元二次方程ax2+bx+c﹣4=0的根的情况是()A.有两个不相等的实数根B.有两个异号的实数根C.有两个相等的实数根D.没有实数根二、填空题(共6题;共6分)13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.14.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x+m)2+n的顶点在线段AB上,与x轴交于C,D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标的最大值为.15.若抛物线y=x2与直线y=x+2的交点坐标为(﹣1,1)和(2,4),则方程x2﹣x﹣2=0的解为.16.已知二次函数y=x2-2x-3与x轴交于A、B两点,在x轴上方的抛物线上有一点C,且∥ABC的面积等于10,则C点坐标为.17.抛物线y=(m﹣1)x2+2x+ 12m图象与坐标轴有且只有2个交点,则m=.18.若二次函数y=kx2−4x+3的函数值恒大于0,则k取值范围是.三、综合题(共6题;共56分)19.已知二次函数y=x2-(m+2)x+2m-1(1)求证:不论m取何值,该函数图象与x轴总有两个公共点;(2)若该函数的图象与y轴交于点(0,3).①求函数图象与x轴的交点坐标;②当0<x<5时求y的取值范围.20.(1)解方程:x2−x+13=3(x2+1)+5x;(2)求二次函数y=2x2−5x的图象与x轴的交点坐标.21.已知二次函数y=mx2﹣5mx+1(m为常数,m>0),设该函数的图象与y轴交于点A,该图象上的一点B与点A关于该函数图象的对称轴对称.(1)求点A,B的坐标;(2)点O为坐标原点,点M为该函数图象的对称轴上一动点,求当M运动到何处时∥MAO的周长最小.22.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5).(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标.23.已知函数y=mx2﹣6x+1(m是常数).(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;(2)若该函数的图象与x轴只有一个交点,求m的值.24.已知二次函数y=ax2﹣4ax+1(1)写出二次函数图象的对称轴:;(2)如图,设该函数图象交x轴于点A、B(B在A的右侧),交y轴于点C.直线y=kx+b经过点B、C.①如果k=﹣13,求a的值②设点P在抛物线对称轴上,PC+PB的最小值为√13,求点P的坐标.参考答案1.【答案】B2.【答案】A3.【答案】A4.【答案】D5.【答案】C6.【答案】D7.【答案】B8.【答案】B9.【答案】A10.【答案】C11.【答案】A12.【答案】C13.【答案】0或114.【答案】815.【答案】﹣1或216.【答案】(4,5)或(-2,5)17.【答案】﹣1或2或018.【答案】k>4 319.【答案】(1)解:令y=0,则x2−(m+2)x+2m−1=0,∴△=[−(m+2)2]−4(2m−1)=m2+4m+4−8m+4=m2−4m+8=(m−2)2+4≥4∴△>0,∴方程总有两个不相等的实数根,即抛物线与x轴总有两个交点;(2)解:①∵函数的图象与y轴交于点(0,3).∴2m−1=3,∴m=2,∴抛物线的解析式为:y=x2−4x+3,当x2−4x+3=0,∴(x−1)(x−3)=0,∴x1=1,x2=3,所以抛物线与x 轴的交点坐标为:(−1,0),(−3,0). ②∵y =x 2−4x +3=(x −2)2−1,∴ 抛物线的开口向上,当x =2时函数的最小值为−1, 当x =0时 当x =5时∴ 当0<x <5时y 的取值范围为:−1≤y <8.20.【答案】(1)解:将方程化为一般式,得x 2+3x −5=0.∵Δ=b 2−4ac =32−4×1×(−5)=29>0.∴x =−3±√292×1=−3±√292.解得x 1=−3+√292,x 2=−3+√292.(2)解:把y =0代入y =2x 2−5x 中得2x 2−5x =0. 解得x 1=0,x 2=52.∴二次函数y =2x 2−5x 的图象与x 轴的交点坐标是(0,0)和(52,0).21.【答案】(1)解:当x=0时y=1,则点A 的坐标为(0,1)∵抛物线对称轴为x= 5m 2m = 52∴B 点坐标为(5,1)(2)解:设直线OB 解析式为y=kx ,把B (5,1)代入可得5k=1,解得k= 15 ∴直线OB 解析式为y= 15 x由轴对称的性质可知当点M 运动到直线OB 与二次函数对称轴的交点时∥MAO 的周长最小.当x= 52时y= 12∴M 点的坐标为( 52, 12 )22.【答案】(1)解:由顶点A (﹣1,4),可设二次函数关系式为y=a (x+1)2+4(a≠0).∵二次函数的图象过点B (2,﹣5) ∴点B (2,﹣5)满足二次函数关系式 ∴﹣5=a (2+1)2+4 解得a=﹣1.∴二次函数的关系式是y=﹣(x+1)2+4(2)解:令x=0,则y=﹣(0+1)2+4=3∴图像与y轴的交点坐标为(0,3);令y=0,则0=﹣(x+1)2+4解得x1=﹣3,x2=1故图像与x轴的交点坐标是(﹣3,0)、(1,0)23.【答案】(1)解:当x=0时y=1.所以不论m为何值,函数y=mx2﹣6x+1的图象都经过y轴上一个定点(0,1);(2)解:①当m=0时函数y=mx2﹣6x+1的图象与x轴只有一个交点;②当m≠0时若函数y=mx2﹣6x+1的图象与x轴只有一个交点,则方程mx2﹣6x+1=0有两个相等的实数根所以∥=(﹣6)2﹣4m=0,m=9.综上,若函数y=mx2﹣6x+1的图象与x轴只有一个交点,则m的值为0或9 24.【答案】(1)直线x=2(2)解:①当x=0时y=1∴点C的坐标为(0,1).将(0,1)代入y=kx+b,得:b=1.∵k= −1 3∴y=−13x+1当y=0时有−13x+1=0解得:x=3∴点B的坐标为(3,0).将B(3,0)代入y=ax2﹣4ax+1,得:9a﹣12a+1=0解得:a=3;②当PC+PB取最小值时点P是直线BC与直线x=2的交点,且PC+PB的最小值=BC= √13.∵OC=1∴在Rt∥OBC中OB= 2√3∴此时点B的坐标为(2√3,0)将点B的坐标代入y=kx+1得:2√3k+1=0解得:k=−√36∴此时直线BC的解析式为:y=−√36x+1∵当x=2时.∴点P的坐标为(2,3−√33)。

2022年中考数学总复习考点培优 第三章函数第4节第1课时 二次函数的图象与性质

2022年中考数学总复习考点培优 第三章函数第4节第1课时 二次函数的图象与性质

基础过关
能力提升
特色题型
-7-
第1课时 二次函数的图象与性质
8.(2021·四川乐山)已知关于x的一元二次方程x2+x-m=0. (1)若方程有两个不相等的实数根,求m的取值范围; (2)二次函数y=x2+x-m的部分图象如图所示,求一元二次方 程x2+x-m=0的解.
基础过关
能力提升
特色题型
-8-
能能力力提提升升
特色题型
-18-
第1课时 二次函数的图象与性质
(2)设 AB 所在的直线的函数表达式为 y=kx+b.
第1课时 二次函数的图象与 性质
第1课时 二次函数的图象与性质
1.(2021·安庆模拟)二次函数y=-(x+2)2+1的顶点坐标是( B )
A.(-2,-1) B.(-2,1)
C.(2,-1)
D.(2,1)
2.下列对二次函数y=x2-x的图象的描述,正确的是( C )
A.开口向下
B.对称轴是y轴
C.经过原点
基础过关
能能力力提提升升
特色题型
-13-
第1课时 二次函数的图象与性质
【解析】∵某定弦抛物线的对称轴为直线x=1, ∴该定弦抛物线经过点(0,0),(2,0),可求得该抛物线的表达式为 y=x(x-2)=(x-1)2-1.将此抛物线向左平移2个单位长度, 再向下平移3个单位长度,得到新抛物线的表达式为 y=(x-1+2)2-1-3=(x+1)2-4. 当x=-3时,y=(x+1)2-4=0, ∴得到的新抛物线经过点(-3,0).
基础过关
能能力力提提升升
特色题型
-11-
第1课时 二次函数的图象与性质

中考数学 考点系统复习 第三章 函数 第四节 反比例函数 课时1 反比例函数的图象与性质

中考数学 考点系统复习 第三章 函数 第四节 反比例函数 课时1 反比例函数的图象与性质

7.(2021·无锡)一次函数 y=x+n 的图象与 x 轴交于点 B,与反比例函
数 y=mx(m>0)的图象交于点 A(1,m),且△AOB 的面积为 1,则 m 的值是
( B)
A.1
B.2
C.3
D.4
3 8.(2021·黔东南州)如图,若反比例函数 y= x 的图象经过等边三角形 POQ 的顶点 P,则△POQ 的边长为 2 .
致为
( D)
9.(2021·深圳)如图,已知反比例函数过 A,B 两 点,A 点坐标(2,3),直线 AB 经过原点,将线段 AB 绕点 B 顺时针旋转 90°得到线段 BC,则 C 点坐 标为 (4,-7.)
10.(2021·聊城)已知二次函数 y=ax2+bx+c 的图象如图所示,则一次
函数 y=bx+c 的图象和反比例函数 y=a+xb+c的图象在同一坐标系中大
c =ax+b 和 y=x在同一平面直角坐标系中的图象大致是
( B)
3 5.(2018·天水)若点 A(a,b)在反比例函数 y=x的图象上,则代数式 ab -1 的值为__2__. 6.(2021·北京)在平面直角坐标系 xOy 中,若反比例函数 y=kx(k≠0) 的图象经过点 A(1,2)和点 B(-1,m),则 m 的值为_-___2.
12 3.(2021·金华)已知点 A(x1,y1),B(x2,y2)在反比例函数 y=- x 的图
象上.若 x1<0<x2,则
( B)
A.y1<0<y2
B.y2<0<y1
C.y1<y2<0
D.y2< y1=ax2+bx+c(a≠0)的图象如图所示,则函数 y
第四节 反比例函数 课时1 反比例函数的图

初三数学复习 第三章 函数 第四节 二次函数的图象与性质(1)

初三数学复习 第三章 函数 第四节 二次函数的图象与性质(1)

第四节二次函数的图象与性质姓名:________ 班级:________ 限时:______分钟1.(2019·荆门)抛物线y=-x2+4x-4与坐标轴的交点个数为( )A.0 B.1 C.2 D.32.(2019·温州)已知二次函数y=x2-4x+2,关于该函数在-1≤x≤3的取值范围内,下列说法正确的是( )A.有最大值-1,有最小值-2 B.有最大值0,有最小值-1C.有最大值7,有最小值-1 D.有最大值7,有最小值-2 3.(2019·湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是( )4.(2019·河池)如图,抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中错误的是( )A .ac <0B .b 2-4ac >0C .2a -b =0D .a -b +c =05.(2019·梧州)已知m >0,关于x 的一元二次方程(x +1)(x -2)-m =0的解为x 1,x 2(x 1<x 2),则下列结论正确的是( ) A .x 1<-1<2<x 2 B .-1<x 1<2<x 2 C .-1<x 1<x 2<2 D .x 1<-1<x 2<26.(2019·贵阳)在平面直角坐标系内,已知点A(-1,0),点B(1,1)都在直线y =12x +12上.若抛物线y =ax 2-x +1(a≠0)与线段AB 有两个不同的交点,则a 的取值范围是( )A .a≤-2B .a<98C .1≤a<98或a≤-2D .-2≤a<987.(2019·玉林)已知抛物线C :y =12(x -1)2-1,顶点为D ,将C 沿水平方向向右(或向左)平移m 个单位,得到抛物线C 1,顶点为D 1,C 与C 1相交于点Q.若∠DQD 1=60°,则m等于( )A.±4 3 B.±2 3C.-2或2 3 D.-4或4 38.(2019·烟台)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x -1 0 2 3 4y 5 0 -4 -3 0下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2,其中正确的个数是( )A.2 B.3 C.4 D.59.(2019·哈尔滨)二次函数y=-(x-6)2+8的最大值是________.10.(2019·凉山州)将抛物线y=(x-3)2-2向左平移________个单位后经过点A(2,2).11.(2019·广元)如图,抛物线y=ax2+bx+c(a≠0)过点(-1,0),(0,2),且顶点在第一象限,设M=4a+2b+c,则M的取值范围是______.12.(2019·武汉)抛物线y=ax2+bx+c经过点A(-3,0),B(4,0)两点,则关于x的一元二次方程a(x-1)2+c=b-bx的解是________.13.(2019·贺州)已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①abc<0;②a-b+c<0;③3a+c=0;④当-1<x<3时,y>0,正确的是________(填写序号).14.(2019·长丰县二模)如图,菱形ABCD的三个顶点在二次函数y=ax2+2ax +2(a<0)的图象上,点A,B分别是该抛物线的顶点和抛物线与y轴的交点,则点D的坐标为________.15.(2019·宁波)如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.16.(2019·黑龙江)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(3,0)、点B(-1,0),与y轴交于点C.(1)求抛物线的解析式;(2)过点D(0,3)作直线MN∥x轴,点P在直线MN上且S△PAC=S△DBC,直接写出点P的坐标.1.(2019·济宁)如图,抛物线y=ax2+c与直线y=mx+n交于A(-1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集是________.2.(2019·芜湖二十九中一模)设二次函数y=ax2+bx+c,当x=3时取得最大值10,并且它的图象在x轴上所截得的线段长为4,求a、b、c的值.3.(2019·贺州)如图,在平面直角坐标系中,已知点B的坐标为(-1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)的图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.参考答案基础训练1.C 2.D 3.D 4.C 5.A 6.C 7.A 8.B9.8 10.3 11.-6<M<612.x1=-2,x2=5 13.①③④14.(-2,2)15.解:(1)∵把点P(-2,3)代入y=x2+ax+3中,解得a=2,∴y=x2+2x+3.∴顶点坐标为(-1,2).(2)①当m=2时,n=11;②∵点Q到y轴的距离小于2,∴|m|<2,∴-2<m<2,∴2≤n<11.16.解:(1)将点A(3,0)、点B(-1,0)分别代入y=x2+bx+c,可得b =-2,c =-3, 则y =x 2-2x -3. (2)∵C(0,-3), ∴S △DBC =12×6×1=3,∴S △PAC =3.∵设P(x ,3),直线CP 与x 轴交于点为Q , ∴S △PAC =12×6×AQ,∴AQ=1,∴Q(2,0)或Q(4,0).设直线CQ 的解析式为y =kx +b ,代入点Q 坐标, ∴直线CQ 为y =32x -3或y =34x -3.当y =3时,x =4或x =8, ∴P(4,3)或P(8,3). 拔高训练 1.x<-3或x>12.解:∵设抛物线与x 轴的交点的横坐标为x 1,x 2, ∴x 1+x 2=-ba ,x 1·x 2=ca,∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=b 2-4aca 2=4,① ∴x=3时取得最大值10,∴-b2a =3,②4ac -b 24a =10,③ 联立①②③解之得: a =-52,b =15,c =-252.3.解:(1)∵OA=OC =4OB =4,∴点A ,C 的坐标分别为(4,0),(0,-4).(2)抛物线的解析式为y =a(x +1)(x -4)=a(x 2-3x -4), 将点C(0,-4)的坐标代入得-4a =-4,解得a =1, 则抛物线的解析式为y =x 2-3x -4. (3)设直线AC 的解析式为y =kx +b ,将点A(4,0),C(0,-4)的坐标代入得⎩⎪⎨⎪⎧4k +b =0,b =-4,解得⎩⎪⎨⎪⎧k =1,b =-4,则直线AC 的解析式为y =x -4.如解图,过点P 作y 轴的平行线交AC 于点H. ∵OA=OC =4, ∴∠OAC=∠OCA=45°. ∵PH∥y 轴,∴∠PHD=∠OCA=45°.设点P(x,x2-3x-4),则点H(x,x-4),PD=HPsin∠PHD=22(x-4-x2+3x+4)=-22x2+22x.∵-22<0,∴PD有最大值,当x=2时,其最大值为22,此时点P的坐标为(2,-6).。

2023年安徽中考数学总复习专题:二次函数的性质综合题(PDF版,有答案)

2023年安徽中考数学总复习专题:二次函数的性质综合题(PDF版,有答案)

2023年安徽中考数学总复习专题:二次函数的性质综合题1.已知函数y=(k+2)x k2+3k―2是关于x的二次函数.(1)求k的值;(2)当k为何值时,抛物线有最低点?(3)当k为何值时,函数有最大值?2.在平面直角坐标系中,如果点P的横坐标和纵坐标互为相反数,则称点P为“慧泉”点.例如:点(1,﹣1),(―13,13),(5,―5),…都是“慧泉”点.(1)判断函数y=2x﹣3的图象上是否存在“慧泉”点,若存在,求出其“慧泉”点的坐标;(2)若二次函数y=ax2+3x+c(a≠0)的图象上有且只有一个“慧泉”点(2,﹣2).①求a,c的值;②若﹣1≤x≤n时,函数y=ax2+3x+c(a≠0)的最小值为﹣8,最大值为―74,求实数n的取值范围.3.已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.4.已知二次函数y=ax2﹣2ax﹣3a(a≠0).(1)求该二次函数的对称轴.(2)求证:无论a取何值,该函数的图象必过某个定点.(3)若该二次函数的图象开口向上,当﹣1≤x≤5时,函数图象的最高点为M,最低点为N,且最高点M的纵坐标为24,求点M和点N的坐标.5.已知二次函数y=ax2+4ax+3a(a为常数).(1)若a>0,当x<m+13时,此二次函数y随着x的增大而减小,求m的取值范围.(2)若二次函数在﹣3≤x≤1时有最大值3,求a的值.参考答案1.解:(1)∵函数y=(k+2)x k2+3k―2是关于x的二次函数,∴k满足k2+3k﹣2=2,且k+2≠0,解得:k1=1,k2=﹣4,∴k的值为1或﹣4;(2)∵抛物线有最低点,∴图象开口向上,即k+2>0,∴k=1;(3)∵函数有最大值,∴图象开口向下,即k+2<0,∴k=﹣4.2.解:(1)函数y=2x﹣3的图象上存在“慧泉”点,根据题意﹣x=2x﹣3,解得x=1,故其“慧泉”点的坐标为(1,﹣1);(2)①∵二次函数y=ax2+3x+c(a≠0)的图象上有“慧泉”点,∴﹣x=ax2+3x+c,即ax2+4x+c=0,∵二次函数y=ax2+3x+c(a≠0)的图象上有且只有一个“慧泉”点(2,﹣2).∴Δ=42―4ac=0 4a+6+c=―2,解得a=﹣1,c=﹣4;②∵a=﹣1,c=﹣4,∴二次函数为y=﹣x2+3x﹣4,∴x=﹣1时,y=﹣1﹣3﹣4=﹣8,∵y=﹣x2+3x﹣4=﹣(x―32)2―74,∴对称轴为直线x=3 2,∴当x=32时,函数有最大值为―74,∵若﹣1≤x≤n时,函数y=ax2+3x+c(a≠0)的最小值为﹣8,最大值为―7 4,∴实数n的取值范围是32≤n≤4.3.解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=―3―10或m=―3+10(舍去).综上所述,m=﹣2或―3―10.4.(1)解:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴函数的对称轴为直线x=1.(2)证明:∴y=ax2﹣2ax﹣3a=a(x2﹣2x﹣3)=a(x﹣3)(x+1),∴该函数的图象必过定点(3,0),(﹣1,0);(3)解:∵y=a(x﹣1)2﹣4a,∴抛物线顶点坐标为(1,﹣4a),∵抛物线开口向上,∴a>0,顶点(1,﹣4a)为图象最低点N,∵5﹣1>1﹣(﹣1),∴直线x=5与抛物线交点为最高点M,把x=5代入代入y=ax2﹣2ax﹣3a得y=12a,∴M(5,12a),∵12a=24,∴a=2,∴M(5,24),N(1,﹣8).5.解:(1)∵抛物线得对称轴为直线x=―4a2a=―2,a>0,∴抛物线开口向上,当x≤﹣2时,二次函数y随x的增大而减小,∵x<m+13时,此二次函数y随着x的增大而减小,∴m+13≤―2,即m≤﹣7;(2)由题意得:y=a(x+2)2﹣a,∵二次函数在﹣3≤x≤1时有最大值3①当a>0 时,开口向上,∴当x=1时,y有最大值8a,∴8a=3,∴a=3 8;②当a<0 时,开口向下,∴当x=﹣2时,y有最大值﹣a,∴﹣a=3,∴a=﹣3,综上,a=38或a=﹣3.。

2023年中考数学总复习第三章《函数》综合测试卷及答案

2023年中考数学总复习第三章《函数》综合测试卷及答案

2023年中考数学总复习第三章《函数》综合测试卷一、选择题(每小题3分,共48分)1.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b)B.(-a,b)C.(-a,-b)D.(a,-b)(第1题图)(第7题图)2.函数y=的自变量x的取值范围是()A.x≥2且x≠3B.x≥2C.x≠3D.x>2且x≠33.已知一个正比例函数的图象经过A(-2,m)和B (n,4)两点,则m,n间的关系一定是()A.mn=-8B.mn=8C.m=-2n D.m=-n4.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为()A.y=10x+30B.y=40xC.y=10+30x D.y=20x5.已知二次函数y=x2-x+m-1的图象与x轴有交点,则m的取值范围是()A.m≤5B.m≥2C.m<5D.m>2 6.在同一直角坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()7.如图,直线y=-x+m与y=nx+4n(n≠0)的交点横坐标为-2,则关于x的不等式-x+m>nx+4n>0的整数解为()A.-1B.-5C.-4D.-38.二次函数y=x2-(12-k)x+12,当x>1时,y随着x的增大而增大,当x<1时,y随着x的增大而减小,则k的值应取()A.12B.11C.10D.99.定义一个新的运算:a b=则运算x2的最小值为()A.-3B.-2C.2D.310.如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC上的中线BD反向延长线交y轴负半轴于E,双曲线y=(x>0)的图象经过点A,若△BCE的面积为6,则k等于()A.3B.6C.12D.24(第10题图)(第11题图)11.二次函数y=x2-2x-3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,-3)B.顶点坐标是(1,-3)C.函数图象与x轴的交点坐标是(3,0),(-1,0)D.当x<0时,y随x的增大而减小12.如图中的图①、②、③所示,阴影部分面积的大小关系正确的是()A.①>②>③B.③>②>①C.②>③>①D.①=②=③(第12题图)13.已知点A是直线y=2x与双曲线y=(m为常数)一支的交点,过点A作x轴的垂线垂足为B,且OB=2,则m的值为()A.-7B.-8C.8D.714.如图,在平面直角坐标系中,直线y=-x+2与反比例函数y=的图象有唯一公共点,若直线y=-x+b 与反比例函数y=的图象有2个公共点,则b的取值范围是()A.b>2B.-2<b<2C.b>2或b<-2D.b<-2。

中考数学总复习课时训练(专题(13)二次函数的图象与性质(一)附详细解析参考答案

中考数学总复习课时训练(专题(13)二次函数的图象与性质(一)附详细解析参考答案

课时训练(十三)二次函数的图象与性质(一)[限时:分钟]夯实基础1.抛物线y=3(x-2)2+5的顶点坐标是()A.(-2,5)B.(-2,-5)C.(2,5)D.(2,-5)2.下列二次函数中,图象以直线x=2为对称轴,且经过点(0,1)的是()A.y=(x-2)2+1B.y=(x+2)2+1C.y=(x-2)2-3D.y=(x+2)2-33.[2018·河西区结课考]已知函数y=(x-1)2,下列结论正确的是()A.当x>0时,y随x的增大而减小B.当x<0时,y随x的增大而增大C.当x<1时,y随x的增大而减小D.当x<-1时,y随x的增大而增大4.[2021·绍兴]关于二次函数y=2(x-4)2+6的最大值或最小值,下列说法正确的是()A.有最大值4B.有最小值4C.有最大值6D.有最小值65.[2021·上海]将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,以下说法错误的是()A.开口方向不变B.对称轴不变C.y随x的变化情况不变D.与y轴的交点不变6.[2021·泰安]将抛物线y=-x2-2x+3的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过点()A.(-2,2)B.(-1,1)C.(0,6)D.(1,-3)7.[2021·陕西]下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…-2 0 1 3 …y… 6 -4 -6 -4 …下列各选项中,正确的是()A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于-6D.当x>1时,y的值随x值的增大而增大8.对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为.9.已知A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,该抛物线的顶点坐标是.10.[2018·河西区一模]请写出一个二次函数的解析式,满足其图象过点(1,0),且与x轴有两个不同的交点:.11.[2021·广东]把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为.12.(1)已知二次函数y=ax2+bx+1的图象经过点(1,3)和(3,-5),求a,b的值.(2)已知二次函数y=-x2+bx+c的图象与x轴的两个交点的横坐标分别为1和2.求这个二次函数的表达式.13.[2021·宁波]如图K13-1,二次函数y=(x-1)(x-a )(a 为常数)的图象的对称轴为直线x=2. (1)求a 的值;(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.图K13-1能力提升14.[2019·河西区二模]已知抛物线y=x 2+2mx-3m (m 是常数),且无论m 取何值,该抛物线都经过某定点H ,则点H 的坐标为 ( ) A .-32,1B .-32,-1C .32,94D .-32,9415.[2021·福建]二次函数y=ax 2-2ax+c (a>0)的图象过A (-3,y 1),B (-1,y 2),C (2,y 3),D (4,y 4)四个点,下列说法一定正确的是( ) A .若y 1y 2>0,则y 3y 4>0 B .若y 1y 4>0,则y 2y 3>0 C .若y 2y 4<0,则y 1y 3<0D .若y 3y 4<0,则y 1y 2<016.如图K13-2,抛物线y=ax 2+bx+c 与x 轴相交于点A ,B (m+2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c ),则点A 的坐标是 .图K13-217.[2021·北京]在平面直角坐标系xOy 中,点(1,m )和点(3,n )在抛物线y=ax 2+bx (a>0)上. (1)若m=3,n=15,求该抛物线的对称轴.(2)已知点(-1,y 1),(2,y 2),(4,y 3)在该抛物线上.若mn<0,比较y 1,y 2,y 3的大小,并说明理由.【参考答案】1.C2.C3.C4.D5.D [解析] 将二次函数图象向下平移,不改变开口方向,故A 正确; 将二次函数图象向下平移,不改变对称轴,故B 正确; 将二次函数图象向下平移,不改变函数的增减性,故C 正确;抛物线y=ax 2+bx+c (a ≠0)与y 轴的交点坐标为(0,c ),将二次函数的图象向下平移两个单位,与y 轴的交点坐标为(0,c-2),改变,故D 错误.6.B [解析] y=-x 2-2x+3=-(x 2+2x )+3=-[(x+1)2-1]+3=-(x+1)2+4, ∵将抛物线y=-x 2-2x+3向右平移1个单位,再向下平移2个单位, ∴得到的抛物线的解析式为y=-x 2+2.将选项中的四个坐标代入可知,只有B 选项中的坐标符合题意.7.C [解析] 设二次函数的解析式为y=ax 2+bx+c ,由题知{6=a ×(-2)2+b ×(-2)+c ,-4=c ,-6=a +b +c ,解得{a =1,b =-3,c =-4,∴二次函数的解析式为y=x 2-3x-4=(x-4)(x+1)=x-322-254,∴函数图象开口向上,∴A 错误;∵图象与x 轴的交点为(4,0)和(-1,0),∴B 错误;∵当x=32时,函数有最小值为-254,∴C 正确;∵函数图象的对称轴为直线x=32,根据图象可知当x>32时,y 的值随x 值的增大而增大,∴D 错误. 8.直线x=2 9.(1,4)10.y=x 2-3x+2(答案不唯一) [解析] ∵抛物线过点(1,0),∴设抛物线的解析式为y=a (x-1)(x-m ). ∵抛物线与x 轴有两个不同的交点,∴m ≠1,取a=1,m=2,则抛物线的解析式为y=(x-1)(x-2)=x 2-3x+2. 11.y=2x 2+4x12.解:(1)将(1,3)和(3,-5)分别代入y=ax 2+bx+1, 得:{a +b +1=3,9a +3b +1=-5,解得:{a =-2,b =4.∴a 的值为-2,b 的值为4.(2)由题意得,二次函数的图象经过点(1,0)和(2,0), 将(1,0)和(2,0)分别代入y=-x 2+bx+c , 得{-1+b +c =0,-4+2b +c =0,解得{b =3,c =-2, ∴这个二次函数的表达式为y=-x 2+3x-2.13.解:(1)由二次函数y=(x-1)(x-a )(a 为常数)知,该抛物线与x 轴的交点坐标是(1,0)和(a ,0). ∵对称轴为直线x=2,∴1+a 2=2.解得a=3.(2)由(1)知a=3,则该抛物线解析式是:y=x 2-4x+3,由抛物线向下平移3个单位后经过原点,得平移后图象所对应的二次函数的表达式是y=x 2-4x. 14.C [解析] 由y=x 2+2mx-3m=x 2+m (2x-3)可知当x=32时,无论m 取何值y 都等于94,∴点H 的坐标为32,94.15.C [解析] ∵y=ax 2-2ax+c=a (x-1)2-a+c ,∴抛物线的对称轴为直线x=1,∴四点中距离对称轴远近关系从远到近排列为:A ,D ,B ,C ,当y 2y 4<0时,一定是y 2<0,y 4>0,根据对称性判断y 3<0,y 1>0,∴y 1y 3<0,因此本题选C .16.(-2,0) [解析] 由C (0,c ),D (m ,c ),得函数图象的对称轴是直线x=m2,设A 点坐标为(x ,0),由A ,B 关于对称轴x=m2对称可得x+m+22=m 2,解得x=-2,即A 点坐标为(-2,0).17.解:(1)∵m=3,n=15, ∴点(1,3),(3,15)在抛物线上,将(1,3),(3,15)的坐标代入y=ax 2+bx 得: {3=a +b ,15=9a +3b ,解得{a =1,b =2,∴y=x 2+2x=(x+1)2-1, ∴抛物线对称轴为直线x=-1.(2)由题意得:抛物线y=ax 2+bx (a>0)始终过定点(0,0),则由mn<0可得:①当m>0,n<0时,由抛物线y=ax 2+bx (a>0)始终过定点(0,0)可得此时的抛物线开口向下,即a<0,与a>0矛盾; ②当m<0,n>0时,∵抛物线y=ax 2+bx (a>0)始终过定点(0,0), ∴此时抛物线的对称轴的范围为12<-b2a <32, ∵点(-1,y 1),(2,y 2),(4,y 3)在该抛物线上,∴它们离抛物线对称轴的距离的范围分别为32<-b2a-(-1)<52,12<2--b2a<32,52<4--b2a<72,∵a>0,开口向上,∴由抛物线的性质可知离对称轴越近y 越小, ∴y 2<y 1<y 3.。

中考数学 考点系统复习 第三章 函数 第四节 二次函数的图象与性质

中考数学 考点系统复习 第三章 函数 第四节 二次函数的图象与性质

( C)
A.第一象限
B.第二象限
C.第三象限
D.第四象限
5.(2021·凉山州)二次函数 y=ax2+bx+c(a≠0)的图象如图所示,则
下列结论中不正确的是
( D)
A. abc>0
B.函数的最大值为 a-b+c
C.当-3≤x≤1 时,y≥0
D.4a-2b+c<0
6.(2021·贺州)如图,已知抛物线y=ax2+c与直线y=kx+m交于 A(-3,y1),B(1,y2)两点,则关于x的不等式ax2+c≥-kx+m的解集是

(2)当 x≥0 时,y 与 x 的几组对应值如下表:
x0

1 2
1
3 2
2
5 2
3…
y0
1 16
1 6
7 16
1
95 48
7 2

结合上表,进一步探究发现,当 x≥0 时,y 随 x 的增大而增大.在平面 直角坐标系 xOy 中,画出当 x≥0 时的函数 y 的图象.
(3)过点(0,m)(m>0)作平行于 x 轴的直线 l,结合(1)(2)的分析,解决 问题:若直线 l 与函数 y=16|x|(x2-x+1)(x≥-2)的图象有两个交点,
(3)证明:由题意,得 P=p2+p+1,Q=q2+q+1, ∴P+Q=p2+q2+4 =2(q-1)2+6≥6, 由题意,知 q≠1.∴P+Q>6.
10.(2020·北京)在平面直角坐标系 xOy 中,M(x1,y1),N(x2,y2)为抛 物线 y=ax2+bx+c(a>0)上任意两点,其中 x1<x2. (1)若抛物线的对称轴为 x=1,当 x1,x2 为何值时,y1=y2=c; (2)设抛物线的对称轴为 x=t,若对于 x1+x2>3,都有 y1<y2,求 t 的取 值范围.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四节 二次函数的图象与性质姓名:________ 班级:________ 限时:______分钟1.(xx·攀枝花)抛物线y =x 2-2x +2的顶点坐标为( ) A .(1,1) B .(-1,1)C .(1,3)D .(-1,3)2.(xx·山西)用配方法将二次函数y =x 2-8x -9化为y =a(x -h)2+k 的形式为( ) A .y =(x -4)2+7 B .y =(x -4)2-25 C .y =(x +4)2+7D .y =(x +4)2-253.(xx·哈尔滨)将抛物线y =-5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )A .y =-5(x +1)2-1B .y =-5(x -1)2-1C .y =-5(x +1)2+3D .y =-5(x -1)2+34.(xx·合肥45中一模)如图,平面直角坐标系中的二次函数图象所对应的函数解析式可能为( )A .y =-12x 2B .y =-12(x +1)2C .y =-12(x +1)2-1D .y =-12(x -1)2-15.(xx·宿州埇桥区二模)如图,一次函数y 1=-x 与二次函数y 2=ax 2+bx +c 的图象相交于点M ,N ,则关于x 的一元二次方程ax 2+(b +1)x +c =0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C.没有实数根D .以上结论都正确6.(xx·青岛)已知一次函数y =ba x +c 的图象如图,则二次函数y =ax 2+bx +c 在平面直角坐标系中的图象可能是( )7.(xx·庐阳区一模)在同一直角坐标系中,函数y =mx +m 和y =-mx 2+2x +2(m 是常数,且m≠0)的图象可能是( )8.(xx·广安)抛物线y =(x -2)2-1可以由y =x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度 B .先向左平移2个单位长度,然后向下平移1个单位长度 C .先向右平移2个单位长度,然后向上平移1个单位长度 D .先向右平移2个单位长度,然后向下平移1个单位长度9.(xx·泸州)已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x≥2时,y 随 x 的增大而增大,且-2≤x≤1时,y 的最大值为9,则a 的值为( ) A .1或-2 B .-2或2 C. 2D .110.(xx·包河区二模)如图,已知二次函数y =ax 2+bx +c 的图象分别与x 轴的正半轴和负半轴交于A 、B 两点,且OA<OB ,则一次函数y =ax +b 和反比例函数y =a +bx的图象可能是( )11.(xx·蜀山区一模)如图,一次函数y 1=-x 与二次函数y 2=ax 2+bx +c 的图象相交于P 、Q 两点,则函数y =ax 2+(b +1)x 的图象可能是( )12.(xx·包河区二模)已知二次函数y =ax 2+bx 的图象经过A(-1,1),则ab 的值有( ) A .最小值0 B .最小值-14C .最大值1D .最大值213.(xx·黄冈)当a≤x≤a+1时,函数y =x 2-2x +1的最小值为1,则a 的值为( ) A .-1B .2C .0或2D .-1或214.(xx·襄阳)已知二次函数y =x 2-x +14m -1的图象与x 轴有交点,则m 的取值范围是( )A .m≤5B .m≥2C .m <5D .m >215.(xx·绍兴)若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A.(-3,-6) B.(-3,0)C .(-3,-5)D .(-3,-1)16.(xx·永州)在同一平面直角坐标系中,反比例函数y =bx (b≠0)与二次函数y =ax 2+bx(a≠0)的图象大致是( )17.(xx·滨州)如图,若二次函数y =ax 2+bx +c(a≠0)图象的对称轴为x =1,与y 轴交于点C ,与x 轴交于点A 、点B(-1,0),则①二次函数的最大值为a +b +c ;②a-b +c <0;③b 2-4ac <0;④当y >0时,-1<x <3.其中正确的个数是( )A .1B .2C .3D .418.(xx·杭州)四位同学在研究函数y =ax 2+bx +c(b ,c 是常数)时,甲发现当x =1时,函数有最小值;乙发现-1是方程ax 2+bx +c =0的一个根;丙发现函数的最小值为3;丁发现当x =2时,y =4.已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲B .乙C .丙D .丁19.(xx·天津)已知抛物线y =ax 2+bx +c(a ,b ,c 为常数,a≠0)经过点(-1,0),(0,3),其对称轴在y 轴右侧.有下列结论: ①抛物线经过点(1,0);②方程ax 2+bx +c =2有两个不相等的实数根; ③-3<a +b <3,其中,正确结论的个数为( ) A .0B .1C .2D .320.(xx·上海)已知一个二次函数的图象开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是__________________________.(只需写一个)21.(xx·广州)已知二次函数y =x 2,当x >0时,y 随x 的增大而________(填“增大”或“减小”). 22.(xx·孝感)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax2=bx+c的解是________________________.23.(2019·原创)若A(-4,y1),B(-3,y2),C(1,y3)为二次函数y=x2+4x-5图象上的三点,则y1,y2,y3的大小关系是____________________.(用“<”号连接)24.(xx·自贡)若函数y=x2+2x-m的图象与x轴有且只有一个交点,则m的值为________.25.(xx·南京)已知二次函数y=2(x-1)(x-m-3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?26.(xx·杭州)设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0)(1)判断该二次函数图象与x轴交点的个数,并说明理由;(2)若该二次函数的图象经过A(-1,4),B(0,-1),C(1,1)三个点中的其中两个点,求该二次函数的表达式;(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.1.(xx·潍坊)已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为( )A.3或6 B.1或6 C.1或3 D.4或62.(xx·长沙)若对于任意非零实数,抛物线y=ax2+ax-2a总不经过点P(x0-3,x02-16),则符合条件的点P( )A.有且只有1个B.有且只有2个C.至少有3个D.有无穷多个3.(xx·甘肃省卷)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当-1<x<3时,y>0,其中正确的是( )A.①②④ B.①②⑤C.②③④ D.③④⑤4.(xx·温州)如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值;(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=Sm,求K关于m的函数表达式及K的范围.5.(xx·埇桥区二模)已知:如图,抛物线y=-x2+bx+c经过点B(0,3)和点A(3,0).(1)求该抛物线的函数表达式和直线AB的函数表达式;(2)若直线l⊥x轴,在第一象限内与抛物线交于点M,与直线AB交于点N,请在备用图上画出符合题意的图形,并求点M与点N之间的距离的最大值或最小值,以及此时点M,N的坐标.参考答案【基础训练】1.A 2.B 3.A 4.C 5.A 6.A 7.D 8.D 9.D 10.D11.D 12.B 13.D 14.A 15.B 16.D 17.B 18.B 19.C20.y=x2-1(答案不唯一) 21.增大22.x1=-2,x2=123.y2<y1<y324.-125.(1)证明:当y=0,根据方程2(x-1)(x-m-3)=0.解得x1=1,x2=m+3.当m+3=1,即m=-2时,方程有两个相等的实数根;当m+3≠1,即m≠-2时,方程有两个不相等的实数根.所以,不论m为何值,该函数的图象与x轴总有公共点.(2)解:当x=0时,y=2m+6,即该函数的图象与y轴交点的纵坐标是2m+6.当2m+6>0,即m>-3时,该函数的图象与y轴的交点在x轴的上方.26.(1)解:∵Δ=b 2+4a(a +b)=b 2+4ab +4a 2=(b +2a)2, ∴当b +2a =0时,Δ=0,图象与x 轴有一个交点; 当b +2a≠0时,Δ>0,图象与x 轴有两个交点;(2)解:∵当x =1时,y =a +b -(a +b)=0,∴图象不可能过点C(1,1).∴函数的图象经过A(-1,4),B(0,-1)两点.代入可得⎩⎨⎧a -b -(a +b )=4-(a +b )=-1,解得⎩⎨⎧a =3b =-2, ∴该二次函数的表达式为y =3x 2-2x -1.(3)证明: ∵点P(2,m)(m>0)在该二次函数图象上, ∴m=4a +2b -(a +b)=3a +b>0,又a +b<0,∴(3a+b)-(a +b)>0,整理得2a>0,因而a>0.【拔高训练】1.B 2.B 3.A4.解:(1)将x =2代入y =2x ,得y =4.∴M(2,4),由题意得⎩⎨⎧-b 2a =2,4a +2b =4,∴⎩⎨⎧a =-1,b =4. (2)如解图,过点P 作PH⊥x 轴于点H.∵点P 的横坐标为m ,抛物线的函数表达式为y =-x 2+4x , ∴PH=-m 2+4m.∵B(2,0),∴OB=2,∴S=12×2×(-m 2+4m)=-m 2+4m , ∴K=S m=-m +4. 由题意得A(4,0),∵M(2,4),∴2<m<4.∵K随着m的增大而减小,∴0<K<2.5.解:(1)∵抛物线y =-x 2+bx +c 经过点B(0,3)和点A(3,0), ∴⎩⎨⎧c =3,-9+3b +c =0,解得⎩⎨⎧b =2,c =3, ∴抛物线的函数表达式是y =-x 2+2x +3,设直线AB :y =kx +m ,根据题意得⎩⎨⎧m =33k +m =0,解得⎩⎨⎧k =-1m =3, ∴直线AB 的函数表达式是y =-x +3;(2)如解图,设点M 的横坐标为a ,则点M 的坐标为(a ,-a 2+2a +3),点N 的坐标是(a ,-a +3),又点M ,N 在第一象限,∴|MN|=-a 2+2a +3-(-a +3)=-a 2+3a ,又|MN|=-a 2+3a =-(a 2-3a +94)+94=-(a -32)2+94, ∴当a =32时,|MN|有最大值,最大值为94, 即点M 与点N 之间的距离有最大值94, 此时点M 的坐标为(32,154),点N 的坐标为(32,32). 如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档