中考数学二次函数的图象与性质知识点总结

合集下载

初中数学「二次函数」最全知识点汇总

初中数学「二次函数」最全知识点汇总

01
知识点总结
02
学习口诀
二次函数图像与性质口诀
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象限;
开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;
顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;
顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。

若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

03
易错分析
函数是初中数学知识的主线,而二次函数是这条主线上的高潮.我们通过探索二次函数与方程的关系,让我们领悟到事物之间相互联系的辨证关系.我们能够利用二次函数解决实际问题,培养数学建模的能力。

1、知识结构
2、知识梳理
3、性质
注意:二次函数的性质要结合图象,认真理解,灵活应用,不要死记硬背.
4、二次函数与一元二次方程的关系
【易错点剖析】
一、忽略二次项系数不等于0
二、忽略隐含条件
三、忽略数形结合思想方法的应用
四、求顶点坐标时混淆符号
五、忽视根的判别式的作用
04
巧选解析式
二次函数解析式的确定是中考的高频考点,在压轴题的第一问就难倒了不少小伙伴。

那么如何巧选表达式来确定二次函数的解析式呢?
【小试牛刀】
【几种特殊情况】
05
动态最值专题
06
解题技巧
学好函数还是有诀窍的,要结合图像说性质,结合性
质画图像,正所谓数形结合,函数无敌!。

中考数学复习通用版系列课件专题12二次函数的图象及性质

中考数学复习通用版系列课件专题12二次函数的图象及性质

bx-a的图象可能是
(C )
• 7.(202X·河南)已知抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,
则n的值为
(B )
• A.-2
B.-4
• C.2
D.4
• 8.(202X·凉山)二次函数y=ax2+bx+c的部分图象如图所示,有以下结
论:①3a-b=0;②b2-4ac>0;③5a-2b+c>0; ④4b+3c>0.其中
y= 1 x+ 1 上,若抛物线y=ax2-x+1(a≠0)与线段AB有两个不同的交点,则a的取值
22
范围是
(C )
A.a≤-2
B.a< 9 8
C.1≤a< 9 或a≤-2 8
D.-2≤a< 9 8
思路分析 根据题意,找到二次函数图象上的特殊点(横坐标为-1,1的点)对应
的函数值的取值范围是解决本题的关键.
中考真题汇编
1.[2019·衢州]二次函数 y=(x-1)2+3 图象的顶点坐标是( A)
A.(1,3)
B.(1,-3)
C.(-1,3)
D.(-1,-3)
2.对于二次函数 y=-(x-1)2+2 的图象与性质,下列说法正确的是( B )
A.对称轴是直线 x=1,最小值是 2
Байду номын сангаас
B.对称轴是直线 x=1,最大值是 2
二次函数图象的平移
1.平移步骤 (1)将抛物线解析式转化为顶点式y=a(x-h)2+k,确定其顶点坐标; (2)保持抛物线的形状和开口方向不变,平移顶点即可. 2.平移规律
考点
二次函数与一元二次方程、不等式的关系
考点1 考点2 考点3 考点4 考点5

二次函数必背知识点(精辟)

二次函数必背知识点(精辟)
同(3)一样可能有 0 个交点、1 个交点、2 个交点.当有 2 个交点时,两交点的纵坐
标相等,设纵坐标为 k ,则横坐标是 ax 2 bx c k 的两个实数根.
(5)一次函数 y kx nk 0的图像 l 与二次函数 y ax2 bx ca 0的图像
(2)函数 y ax 2 的图像与 a 的符号关系. ①当 a 0 时 抛物线开口向上 顶点为其最低点; ②当 a 0 时 抛物线开口向下 顶点为其最高点.
(3)顶点是坐标原点,对称轴是 y 轴的抛物线的解析式形式为 y ax 2(a 0).
3.二次函数 y ax2 bx c 的图像是对称轴平行于(包括重合) y 轴的抛物线.
y最小 ax22 bx2 c 。
考点四、二次函数的性质 (6~14 分) 1、二次函数的性质
二次函数
函数
y ax2 bx c(a,b,ห้องสมุดไป่ตู้c是常数,a 0)
a>0
a<0
y y
图像
0
x
0
x
(1)抛物线开口向上,并向上无限延伸;
(1)抛物线开口向下,并向下无限延伸;
(2)对称轴是 x= b ,顶点坐标是( b , (2)对称轴是 x= b ,顶点坐标是
性质
2a
2a
2a
4ac b2
);
4a

b
4ac b2

);
2a 4a
相信你会成功。加油!!
5
适合任何版本的数学教材,希望能帮到你。
(3)在对称轴的左侧,即当 x< b 时,y 随 2a
x 的增大而减小;在对称轴的右侧,即当 x>

考点11 二次函数的图象性质及相关考点【无答案】

考点11 二次函数的图象性质及相关考点【无答案】

考点11 二次函数的图象性质及其相关考点二次函数作为初中三大函数中考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点。

而对于二次函数图象和性质的考察,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。

出题形式虽然多是选择、填空题,但解答题中也时有出现,且题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。

一、二次函数的表达式二、二次函数的图象特征与最值三、二次函数图象与系数的关系四、二次函数与方程、不等式(组)五、二次函数图象上点的坐标特征考向一、二次函数的表达式2.二次函数平移的方法:①转化成顶点式(已经是顶点式的此步忽略),②“左加右减(x),上加下减(y)”;1.把y=(2﹣3x)(6+x)变成y=ax2+bx+c的形式,二次项,一次项系数为,常数项为.2.用配方法将二次函数y=x2﹣2x﹣4化为y=a(x﹣h)2+k的形式为()A.y=(x﹣2)2﹣4B.y=(x﹣1)2﹣3C .y =(x ﹣2)2﹣5D .y =(x ﹣2)2﹣63.在平面直角坐标系中,若将抛物线y =2x 2+1先向左平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的解析式是( ) A .y =2(x ﹣3)2+3 B .y =2(x +3)2+3 C .y =2(x ﹣3)2+1D .y =2(x +3)2+24.抛物线y =2x 2向下平移3个单位长度后所得新抛物线的顶点坐标为( ) A .(﹣3,0)B .(3,0)C .(0,﹣3)D .(0,3)5.如图,在平面直角坐标系中,点A 的坐标为(0,3),点B 的坐标为(6,3).若抛物线y =mx 2+2mx +m +3(m 为常数,m ≠0)向右平移a (a >0)个单位长度,平移后的抛物线的顶点在线段AB 上,则a 的取值范围为 .考向二、二次函数的图象特征与最值1. 对于二次函数y =ax 2+bx +c (a ≠0):对称轴:直线a bx 2-=;顶点坐标:)442(2a b ac a b --,; 开口向上 a > 二次函数有最小值ab ac 442-;开口向下 a < 二次函数有最大值ab ac 442-;2. 图象的增减性问题:抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须附加一定的自变量x 取值范围;1.已知二次函数的图象(0≤x ≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是平面直角坐标系内两图象的存在性问题,一般先假设简单函数图象成立,再验证复杂函数是否成立, 利用排除法,得到最后答案。

中考数学二次函数超全知识点记忆口诀

中考数学二次函数超全知识点记忆口诀

中考数学二次函数超全知识点记忆口诀二次函数是中考数学的重点内容之一,掌握二次函数的知识点对于解题非常重要。

下面是二次函数的超全知识点记忆口诀:一、二次函数的定义:二次函数ax^2 + bx + c (a≠0)二次项的系数a必定不为零。

二、二次函数的图像:对于二次函数抛物线开口向上会往上抛物线开口向下会往下。

三、二次函数的对称轴:对称轴方程形如x=k(k为常数)k代表横坐标的平移,可随意。

四、二次函数的顶点坐标:顶点坐标是(h,k)h=k值的相反数这一点是要记牢的。

五、二次函数的平移:纵坐标加减h,横坐标加减k这样可以让函数平移动。

六、二次函数的判别式:Δ=b^2-4acΔ大于零,则两根实数Δ等于零,有相同根Δ小于零,则无实根。

七、二次函数的根公式:x1,x2=(-b±√(b^2-4ac))/2a这个公式是非常重要的。

八、二次函数的零点:根就是函数与x轴的交点交点的个数和Δ有关。

九、二次函数的单调性:(a>0)函数开口朝上(a<0)函数开口朝下。

十、二次函数的最值:(a>0)最小值在顶点处(a<0)最大值就能看出。

十一、二次函数的增减性:判断增减很简单大于发散,小于集中。

十二、二次函数的平行与垂直关系:两二次函数平行斜率a相等;两二次函数垂直倒数互为相等。

十三、二次函数与轴交点:与x轴交点,就是求解方程ax^2+bx+c=0;与y轴交点,就是求函数的常数项c。

十四、二次函数的最后性质:函数图像至少有一个对称中心这个中心是顶点。

十五、二次函数的图象变换:求法很简单向下平移,顶点往下移;向上平移,顶点往上飞;向左平移,顶点往左飞;向右平移,顶点往右眯。

十六、二次函数图像的缩放:记住就好系数a的绝对值在接近0时会减小即图像变窄;系数a的绝对值大于1时会增大即图像变胖。

总结:以上是二次函数口诀掌握了这些基本没错。

记住平移和缩放的特点解题顺利不费力。

忘了记不住的可以偷懒做题时再仔细分析。

2020 最新中考数学复习 第12讲第1课时 二次函数的图象与性质

2020 最新中考数学复习 第12讲第1课时 二次函数的图象与性质

第12讲 二次函数第1课时 二次函数的图象与性质知识点1 二次函数的概念1.关于x 的函数y =(m +1)x 2+(m -1)x +m ,当m =0时,它是二次函数;当m =-1时,它是一次函数.知识点2 二次函数的图象与性质2.已知h 与t 的函数关系式为h =12gt 2(g 为常数,t 为时间),则函数图象为(A )3.抛物线y =12x 2,y =x 2,y =-x 2的共同性质是:①都是开口向上;②都以(0,0)为顶点;③都以y 轴为对称轴;④都关于x 轴对称.其中正确的个数有(B )A .1个B .2个C .3个D .4个4.如图,抛物线顶点坐标是P(1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是(C )A .x >3B .x <3C .x >1D .x <15.二次函数y =x 2-2x -3的最小值是-4.知识点3 二次函数图象的平移6.抛物线y =(x +2)2-3由抛物线y =x 2先向左平移2个单位长度,再向下平移3个单位长度得到.7.将抛物线y =2(x -1)2+2向左平移3个单位长度,再向下平移4个单位长度,那么得到的抛物线的表达式为y =2(x +2)2-2.知识点4 确定二次函数的解析式8.已知二次函数的图象如图,则其解析式为(B)A.y=x2-2x+3B.y=x2-2x-3C.y=x2+2x-3D.y=x2+2x+39.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为y=-x2+4x-3.知识点5二次函数与方程、不等式10.抛物线y=x2+2x+m-1与x轴有两个不同的交点,则m的取值范围是(A)A.m<2 B.m>2C.0<m≤2 D.m<-211.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x的取值范围是(A)A.-1<x<3B.x>3C.x<-1D.x>3或x<-1重难点1二次函数的图象和性质(2017·枣庄)已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是(D)A.当a=1时,函数图象经过点(-1,1)B.当a=-2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大【思路点拨】(1)将a=1代入原函数解析式,令x=-1求出y值,由此得出A选项不符合题意;(2)将a=2代入原函数解析式,令y=0,根据根的判别式Δ=8>0,可得出当a=-2时,函数图象与x轴有两个不同的交点,即B选项不符合题意;(3)利用配方法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出a的取值范围,由此可得出C选项不符合题意;(4)利用配方法找出二次函数图象的对称轴,结合二次函数的性质,即可得出D选项符合题意.【变式训练1】(2016·兰州)点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是(D)A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3【变式训练2】(2017·泰安)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x -1 0 1 3y -3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为x =1;③当x<1时,函数值y 随x 的增大而增大;④方程ax 2+bx +c =0有一个根大于4.其中正确的结论有(B )A .1个B .2个C .3个D .4个,方法指导解决二次函数图象和性质相关题,首先需明确二次函数图象的开口方向、对称轴、顶点坐标等与解析式中相关字母的关系,若确定解析式,也可通过将解析式配方,得出函数的对称轴,顶点坐标,函数图象与坐标轴的交点等,从而画出函数大致图象,再利用数形结合思想解题.方法指导比较抛物线上点的纵坐标大小的基本方法有以下三种:(1)利用抛物线上对称点的纵坐标相等,把各点转化到对称轴的同侧,再利用二次函数的增减性进行比较; (2)当已知抛物线的解析式及相应点的横坐标时,可先求出相应点的纵坐标,然后比较大小;(3)利用“开口向上,抛物线上的点距离对称轴越近,点的纵坐标越小,开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”比较大小.重难点2 同一坐标系中的函数图象共存问题(2016·毕节)一次函数y =ax +c(a ≠0)与二次函数y =ax 2+bx +c(a ≠0)在同一个坐标系中的图象可能是(D )【变式训练3】 函数y =kx与y =-kx 2+k(k ≠0)在同一直角坐标系中的图象可能是(B )方法指导解决函数图象共存问题主要有以下三种方法:(1)排除法:根据已知条件中得出的结论直接排除某选项,如:本例由已知条件可知两个函数的常数项都是c ,说明两个函数图象与y 轴交于同一个点,所以排除A 选项;(2)同一法:一般可以先假定其中一种函数的图象(如:一次函数,反比例函数),再根据函数图象得到该函数解析式中字母的范围,去判断另一个函数图象是否正确.如:本例B 选项,若一次函数图象正确,则a<0,c<0,这与抛物线开口向上相矛盾.故B 选项错误.重难点3 二次函数图象与字母系数的关系(2016·随州)二次函数y =ax 2+bx +c(a ≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)4a +b =0;(2)9a +c>3b ;(3)8a +7b +2c>0;(4)若点A(-3,y 1),点B(-12,y 2)、点C(72,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a(x +1)(x -5)=-3的两根为x 1和x 2,且x 1<x 2,则x 1<-1<5<x 2.其中正确的结论有(B )A.2个B.3个C.4个D.5个【思路点拨】(1)利用对称轴公式判别;(2)观察形式发现当x=-3时,y=9a-3b+c<0,可得9a+c<3b;(3)根据对称轴为x=2,得b=-4a,则8a+7b+2c=-20a+2c,由a<0,c>0,可得-20a+2c>0;(4)抛物线的开口向下,距离对称轴越远,纵坐标越小;(5)方程a(x+1)(x-5)=-3的两根x1和x2为直线y=-3与抛物线y=a(x +1)(x-5)的两个交点的横坐标,这两个交点在抛物线y=a(x+1)(x-5)与x轴两交点的两侧,因此x1<-1<5<x2.【变式训练4】(2017·荆门)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是(D)A.a<0,b<0,c>0B.-b2a=1C.a+b+c<0D.关于x的方程ax2+bx+c=-1有两个不相等的实数根变式训练4图变式训练5图【变式训练5】(2017·广安)如图所示,抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①b2-4ac=0;②a+b+c>0;③2a-b=0;④c-a=3,其中正确的有(B)A.1个B.2个C.3个D.4个方法指导解答二次函数的图象信息问题,通常先抓住抛物线的对称轴和顶点坐标,再依据图象与字母系数之间的关系求解.常考的一些式子的判断方法如下:(1)判断2a+b与0的关系,需比较对称轴与1的大小;判断2a-b与0的关系,需比较对称轴与-1的大小;(2)判断a+b+c与0的关系,需看x=1时的纵坐标,即比较x=1时函数值与0的大小;判断a-b+c与0的关系,需看x=-1时的纵坐标,即比较x=-1时函数值与0的大小;(3)判断4a+2b+c与0的关系,需看x=2时的纵坐标,即比较x=2时函数值与0的大小;判断4a-2b+c与0的关系,需看x=-2时的纵坐标,即比较x=-2时函数值与0的大小.1.(人教九上教材P37练习的变式题)(2017·长沙)抛物线y=2(x-3)2+4的顶点坐标是(A)A.(3,4) B.(-3,4)C.(3,-4) D.(2,4)。

中考数学复习-二次函数的图象和性质

中考数学复习-二次函数的图象和性质

二次函数的同象和性质【基础知识回顾】一、 二次函数的定义:一、 一般地如果y=(a 、b 、c 是常数a≠0)那么y 叫做x 的二次函数【名师提醒:二次函数y=kx 2+bx+c(a≠0)的结构特征是:1、等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是,按一次排列 2、强调二次项系数a0】二、二次函数的同象和性质:1、二次函数y=kx 2+bx+c(a≠0)的同象是一条,其定点坐标为对称轴式2、在抛物y=kx 2+bx+c(a≠0)中:1、当a>0时,y 口向,当x<-2ba时,y 随x 的增大而,当x 时,y 随x 的增大而增大,2、当a<0时,开口向当x<-2ba时,y 随x 增大而增大,当x 时,y 随x 增大而减小【名师提醒:注意几个特殊形式的抛物线的特点 1、y=ax 2 ,对称轴定点坐标2、y= ax 2 +k ,对称轴定点坐标3、y=a(x-h) 2对称轴定点坐标4、y=a(x-h) 2 +k 对称轴定点坐标】 三、二次函数同象的平移【名师提醒:二次函数的平移本质可看作是定点问题的平移,固然要掌握整抛物线的平移,只要关键的顶点平移即可】四、二次函数y= ax 2+bx+c 的同象与字母系数之间的关系: a:开口方向向上则a0,向下则a0 |a |越大,开口越 b:对称轴位置,与a 联系一起,用判断b=0时,对称轴是c:与y 轴的交点:交点在y 轴正半轴上,则c0负半轴上则c0,当c=0时,抛物点过点【名师提醒:在抛物线y = ax 2+bx+c 中,当x=1时,y=当x=-1时y= ,经常根据对应的函数值判考a+b+c 和a-b+c 的符号】 【重点考点例析】考点一:二次函数图象上点的坐标特点例1 (2012•常州)已知二次函数y=a (x-2)2+c (a >0),当自变量x 分别取2、3、0时,对应的函数值分别:y 1,y 2,y 3,,则y 1,y 2,y 3的大小关系正确的是( )A .y 3<y 2<y 1B .y 1<y 2<y 3C .y 2<y 1<y 3D .y 3<y 1<y 2 解:∵二次函数y=a (x-2)2+c (a >0), ∴该抛物线的开口向上,且对称轴是x=2.∴抛物线上的点离对称轴越远,对应的函数值就越大,∵x 取0时所对应的点离对称轴最远,x 取2时所对应的点离对称轴最近, ∴y 3>y 2>y 1. 故选B .对应训练1.(2012•衢州)已知二次函数y=12x 2-7x+152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y1,y2,y3的大小关系正确的是()A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y1 2.A2.解:∵二次函数y=12-x2-7x+152,∴此函数的对称轴为:x=2ba-=7712()2--=-⨯-,∵0<x1<x2<x3,三点都在对称轴右侧,a<0,∴对称轴右侧y随x的增大而减小,∴y1>y2>y3.故选:A.考点二:二次函数的图象和性质例2 (2012•咸宁)对于二次函数y=x2-2mx-3,有下列说法:①它的图象与x轴有两个公共点;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=-1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3.其中正确的说法是.(把你认为正确说法的序号都填上)考点:二次函数的性质;二次函数图象与几何变换;抛物线与x轴的交点.解:①∵△=4m2-4×(-3)=4m2+12>0,∴它的图象与x轴有两个公共点,故本选项正确;②∵当x≤1时y随x的增大而减小,∴函数的对称轴x=-22m--≥1在直线x=1的右侧(包括与直线x=1重合),则22m--≥1,即m≥1,故本选项错误;③将m=-1代入解析式,得y=x2+2x-3,当y=0时,得x2+2x-3=0,即(x-1)(x+3)=0,解得,x1=1,x2=-3,将图象向左平移3个单位后不过原点,故本选项错误;④∵当x=4时的函数值与x=2008时的函数值相等,∴对称轴为x=420082+=1006,则22m--=1006,m=1006,原函数可化为y=x2-2012x-3,当x=2012时,y=20122-2012×2012-3=-3,故本选项正确.故答案为①④(多填、少填或错填均不给分).对应训练2.(2012•河北)如图,抛物线y1=a(x+2)2-3与y2=12(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④1.解:①∵抛物线y2=12(x-3)2+1开口向上,顶点坐标在x轴的上方,∴无论x取何值,y2的值总是正数,故本小题正确;②把A(1,3)代入,抛物线y1=a(x+2)2-3得,3=a(1+2)2-3,解得a=23,故本小题错误;③由两函数图象可知,抛物线y1=a(x+2)2-3过原点,当x=0时,y2=12(0-3)2+1=112,故y2-y1=112,故本小题错误;④∵物线y 1=a (x+2)2-3与y 2=12(x-3)2+1交于点A (1,3), ∴y 1的对称轴为x=-2,y 2的对称轴为x=3,∴B (-5,3),C (5,3) ∴AB=6,AC=4,∴2AB=3AC ,故本小题正确.故选D .考点三:抛物线的特征与a 、b 、c 的关系例3 (2012•玉林)二次函数y=ax 2+bx+c (a≠0)的图象如图所示,其对称轴为x=1,有如下结论: ①c <1;②2a+b=0;③b 2<4ac ;④若方程ax 2+bx+c=0的两根为x 1,x 2,则x 1+x 2=2, 则正确的结论是( )A .①②B .①③C .②④D .③④解:由抛物线与y 轴的交点位置得到:c >1,选项①错误; ∵抛物线的对称轴为x=2ba-=1,∴2a+b=0,选项②正确; 由抛物线与x 轴有两个交点,得到b 2-4ac >0,即b2>4ac ,选项③错误; 令抛物线解析式中y=0,得到ax 2+bx+c=0,∵方程的两根为x 1,x 2,且2b a-=1,及ba -=2,∴x 1+x 2=ba-=2,选项④正确,综上,正确的结论有②④.故选C 对应训练3.(2012•重庆)已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示对称轴为x=12-.下列结论中,正确的是( )A .abc >0B .a+b=0C .2b+c >0D .4a+c <2b3.D3.解:A 、∵开口向上,∴a >0,∵与y 轴交与负半轴,∴c <0,∵对称轴在y 轴左侧,∴2ba -<0,∴b >0,∴abc <0,故本选项错误; B 、∵对称轴:x=2b a-=12-,∴a=b ,故本选项错误;C 、当x=1时,a+b+c=2b+c <0,故本选项错误;D、∵对称轴为x=12,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<-2,∴当x=-2时,4a-2b+c<0,即4a+c<2b,故本选项正确.故选D.考点四:抛物线的平移例4 (2012•桂林)如图,把抛物线y=x2沿直线y=x平移2个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是()A.y=(x+1)2-1 B.y=(x+1)2+1 C.y=(x-1)2+1 D.y=(x-1)2-1解:∵A在直线y=x上,∴设A(m,m),∵OA= 2,∴m2+m2=(2)2,解得:m=±1(m=-1舍去),m=1,∴A(1,1),∴抛物线解析式为:y=(x-1)2+1,故选:C.对应训练4.(2012•南京)已知下列函数①y=x2;②y=-x2;③y=(x-1)2+2.其中,图象通过平移可以得到函数y=x2+2x-3的图象的有(填写所有正确选项的序号).4.解:原式可化为:y=(x+1)2-4,由函数图象平移的法则可知,将函数y=x2的图象先向左平移1个单位,再向下平移4个单位即可得到函数y=(x+1)2-4,的图象,故①正确;函数y=(x+1)2-4的图象开口向上,函数y=-x2;的图象开口向下,故不能通过平移得到,故②错误;将y=(x-1)2+2的图象向左平移2个单位,再向下平移6个单位即可得到函数y=(x+1)2-4的图象,故③正确.故答案为:①③.【聚焦中考】1.(2012•泰安)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限1.解:∵抛物线的顶点在第四象限,∴-m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.2.(2012•济南)如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是()A.y的最大值小于0 B.当x=0时,y的值大于1C.当x=-1时,y的值大于1 D.当x=-3时,y的值小于0解:A 、由图象知,点(1,1)在图象的对称轴的左边,所以y 的最大值大于1,不小于0;故本选项错误; B 、由图象知,当x=0时,y 的值就是函数图象与y 轴的交点,而图象与y 轴的交点在(1,1)点的左边,故y <1;故本选项错误;C 、对称轴在(1,1)的右边,在对称轴的左边y 随x 的增大而增大,∵-1<1,∴x=-1时,y 的值小于x=-1时,y 的值1,即当x=-1时,y 的值小于1;故本选项错误;D 、当x=-3时,函数图象上的点在点(-2,-1)的左边,所以y 的值小于0;故本选项正确.故选D . 3.(2012•菏泽)已知二次函数y=ax 2+bx+c 的图象如图所示,那么一次函数y=bx+c 和反比例函数ay x=在同一平面直角坐标系中的图象大致是( )A .B .C .D .3.解:∵二次函数图象开口向下,∴a <0, ∵对称轴x=2ba-<0,∴b <0, ∵二次函数图象经过坐标原点,∴c=0,∴一次函数y=bx+c 过第二四象限且经过原点,反比例函数ay x=位于第二四象限, 纵观各选项,只有C 选项符合. 4.(2012•泰安)设A (-2,y 1),B (1,y 2),C (2,y 3)是抛物线y=-(x+1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 2 4.解:∵函数的解析式是y=-(x+1)2+a ,如右图, ∴对称轴是x=-1,∴点A 关于对称轴的点A′是(0,y 1),那么点A′、B 、C 都在对称轴的右边,而对称轴右边y 随x 的增大而减小, 于是y 1>y 2>y 3.故选A . 5.(2012•烟台)已知二次函数y=2(x-3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象顶点坐标为(3,-1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( ) A .1个B .2个 C .3个D .4个5.解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误; ③其图象顶点坐标为(3,1),故本小题错误;④当x <3时,y 随x 的增大而减小,正确;6.(2012•日照)二次函数y=ax 2+bx+c (a≠0)的图象如图所示,给出下列结论:①b 2-4ac >0;②2a+b <0;③4a-2b+c=0;④a :b :c=-1:2:3.其中正确的是( ) A .①②B .②③C .③④D .①④6.解:由二次函数图象与x 轴有两个交点,∴b 2-4ac >0,选项①正确; 又对称轴为直线x=1,即2ba-=1,可得2a+b=0(i ),选项②错误; ∵-2对应的函数值为负数,∴当x=-2时,y=4a-2b+c <0,选项③错误; ∵-1对应的函数值为0,∴当x=-1时,y=a-b+c=0(ii ), 联立(i )(ii )可得:b=-2a ,c=-3a ,∴a :b :c=a :(-2a ):(-3a )=-1:2:3,选项④正确, 则正确的选项有:①④. 7.(2012•泰安)将抛物线y=3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .y=3(x+2)2+3B .y=3(x-2)2+3C .y=3(x+2)2-3D .y=3(x-2)2-3 7.A 8.(2012•潍坊)许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋转位置从0度到90度(如图),燃气关闭时,燃气灶旋转的位置为0度,旋转角度越大,燃气流量越大,燃气开到最大时,旋转角度为90度.为测试燃气灶旋转在不同位置上的燃气用量,在相同条件下,选择燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度x 度的范围是18≤x≤90),记录相关数据得到下表:旋钮角度(度) 20 50 70 80 90 所用燃气量(升)73678397115(1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量y 升与旋钮角度x 度的变化规律?说明确定是这种函数而不是其它函数的理由,并求出它的解析式; (2)当旋钮角度为多少时,烧开一壶水所用燃气量最少?最少是多少?(3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋钮角度,每月平均能节约燃气10立方米,求该家庭以前每月的平均燃气量.8.解:(1)若设y=kx+b (k≠0),由7320 6750k b k b =+⎧⎨=+⎩,解得1577k b ⎧=-⎪⎨⎪=⎩,所以y=15-x+77,把x=70代入得y=65≠83,所以不符合;若设k y x =(k≠0),由73=20k,解得k=1460,所以y=1460x,把x=50代入得y=29.2≠67,所以不符合;若设y=ax 2+bx+c ,则由73400206725005083490070a b ca b ca b c=++⎧⎪=++⎨⎪=++⎩,解得1508597abc⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以y=150x2-85x+97(18≤x≤90),把x=80代入得y=97,把x=90代入得y=115,符合题意.所以二次函数能表示所用燃气量y升与旋钮角度x度的变化规律;(2)由(1)得:y=150x2-85x+97=150(x-40)2+65,所以当x=40时,y取得最小值65.即当旋钮角度为40°时,烧开一壶水所用燃气量最少,最少为65升;(3)由(2)及表格知,采用最节省燃气的旋钮角度40度比把燃气开到最大时烧开一壶水节约用气115-65=50 设该家庭以前每月平均用气量为a立方米,则由题意得:50115a=10,解得a=23(立方米),即该家庭以前每月平均用气量为23立方米.【备考真题过关】一、选择题1.(2012•白银)二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A.x<-1 B.x>3 C.-1<x<3 D.x <-1或x>3第1题图第2题图第3题图1.C2.(2012•兰州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是()A.k<-3 B.k>-3 C.k<3 D.k>3选D.3.(2012•德阳)设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A.c=3 B.c≥3 C.1≤c≤3 D.c≤33.解:∵当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,∴函数图象过(1,0)点,即1+b+c=0①,∵当1≤x≤3时,总有y≤0,∴当x=3时,y=9+3b+c≤0②,①②联立解得:c≥3,故选B.4.(2012•北海)已知二次函数y=x2-4x+5的顶点坐标为()A.(-2,-1)B.(2,1)C.(2,-1)D.(-2,1)4.B5.(2012•广元)若二次函数y=ax2+bx+a2-2(a、b为常数)的图象如图,则a的值为()A.1 B.2C.-2D.-25图 1图5.C1.(2012•西宁)如同,二次函数y=ax 2+bx+c 的图象过(﹣1,1)、(2,﹣1)两点,下列关于这个二次函数的叙述正确的是( ) A . 当x=0时,y 的值大于1 B . 当x=3时,y 的值小于0 C . 当x=1时,y 的值大于1 D . y 的最大值小于0 选B 6.(2012•巴中)对于二次函数y=2(x+1)(x-3),下列说法正确的是( ) A .图象的开口向下B .当x >1时,y 随x 的增大而减小C .当x <1时,y 随x 的增大而减小D .图象的对称轴是直线x=-1 6.C6.解:二次函数y=2(x+1)(x-3)可化为y=2(x-1)2-8的形式, A 、∵此二次函数中a=2>0,∴抛物线开口向上,故本选项错误;B 、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x >1时,y 随x 的增大而增大,故本选项错误;C 、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x <1时,y 随x 的增大而减小,故本选项正确;D 、由二次函数的解析式可知抛物线对称轴为x=1,故本选项错误. 故选C . 7.(2012•天门)已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc <0;③a-2b+4c <0;④8a+c >0.其中正确的有( ) A .3个 B .2个 C .1个 D .0个7.B7.解:根据图象可得:a >0,c <0,对称轴:2bx a=->0, ①∵它与x 轴的两个交点分别为(-1,0),(3,0),∴对称轴是x=1,∴2ba-=1,∴b+2a=0,故①错误; ②∵a >0,∴b <0,∵c <0,∴abc >0,故②错误;③∵a-b+c=0,∴c=b-a ,∴a-2b+4c=a-2b+4(b-a )=2b-3a ,又由①得b=-2a ,∴a-2b+4c=-7a <0,故正确; ④根据图示知,当x=4时,y >0,∴16a+4b+c >0,由①知,b=-2a ,∴8a+c >0;故④正确;故选:B . 8.(2012•乐山)二次函数y=ax 2+bx+1(a≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <18.解:∵二次函数y=ax2+bx+1的顶点在第一象限,且经过点(-1,0),∴易得:a-b+1=0,a<0,b>0,由a=b-1<0得到b<1,结合上面b>0,所以0<b<1①,由b=a+1>0得到a>-1,结合上面a<0,所以-1<a<0②,∴由①②得:-1<a+b<1,且c=1,得到0<a+b+1<2,∴0<t<2.故选:B.9.(2012•扬州)将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()A.y=(x+2)2+2 B.y=(x+2)2-2 C.y=(x-2)2+2 D.y=(x-2)2-29.B10.(2012•宿迁)在平面直角坐标系中,若将抛物线y=2x2-4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(-2,3)B.(-1,4)C.(1,4)D.(4,3)10.D11.(2012•陕西)在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为()A.1 B.2 C.3 D.611.解:当x=0时,y=-6,故函数与y轴交于C(0,-6),当y=0时,x2-x-6=0,即(x+2)(x-3)=0,解得x=-2或x=3,即A(-2,0),B(3,0);由图可知,函数图象至少向右平移2个单位恰好过原点,故|m|的最小值为2.故选B.二、填空题12.(2012•玉林)二次函数y=-(x-2)2+94的图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有个(提示:必要时可利用下面的备用图画出图象来分析).12.解:∵二次项系数为-1,∴函数图象开口向下,顶点坐标为(2,94),当y=0时,-(x-2)2+94=0,解得x1=12,得x2=72.可画出草图为:(右图)图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有7个,为(2,0),(2,1),(2,2),(1,0),(1,1),(3,0),(3,1).13.(2012•长春)在平面直角坐标系中,点A是抛物线y=a(x-3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为.13.解:∵抛物线y=a (x-3)2+k 的对称轴为x=3,且AB ∥x 轴,∴AB=2×3=6,∴等边△ABC 的周长=3×6=18. 14.(2012•孝感)二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc <0;②a-b+c <0;③3a+c <0;④当-1<x <3时,y >0. 其中正确的是(把正确的序号都填上).14.根据图象可得:a <0,c >0,对称轴:x=2b a=1,2b a=-1,b=-2a ,∵a <0,∴b >0,∴abc <0,把x=-1代入函数关系式y=ax 2+bx+c 中得:y=a-b+c ,由图象可以看出当x=-1时,y <0,∴a-b+c <0,∵b=-2a ,∴a-(-2a )+c <0,即:3a+c <0,故③正确;由图形可以直接看出④错误. 故答案为:①②③. 15.(2012•苏州)已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x-1)2+1的图象上,若x 1>x 2>1,则(填“>”、“<”或“=”).15.解:由二次函数y=(x-1)2+1可,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧, ∵此函数图象开口向上,∴在对称轴的右侧y 随x 的增大而增大, ∵x1>x2>1,∴y1>y2.故答案为:>. 16.(2012•成都)有七张正面分别标有数字-3,-2,-1,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程x 2-2(a-1)x+a (a-3)=0有两个不相等的实数根,且以x 为自变量的二次函数y=x 2-(a 2+1)x-a+2的图象不经过点(1,0)的概率是.16.解:∵x 2-2(a-1)x+a (a-3)=0有两个不相等的实数根,∴△>0, ∴[-2(a-1)]2-4a (a-3)>0,∴a >-1,将(1,0)代入y=x 2-(a 2+1)x-a+2得,a 2+a-2=0,解得(a-1)(a+2)=0,a 1=1,a 2=-2. 可见,符合要求的点为0,2,3.∴P=3 7 .故答案为37. 17.(2012•上海)将抛物线y=x 2+x 向下平移2个单位,所得抛物线的表达式是. 17.y=x 2+x-2 18.(2012•宁波)把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为. 18.解:二次函数y=(x-1)2+2顶点坐标为(1,2),绕原点旋转180°后得到的二次函数图象的顶点坐标为(-1,-2),所以,旋转后的新函数图象的解析式为y=-(x+1)2-2.故答案为:y=-(x+1)2-2.2.(2012•贵港)若直线y=m (m 为常数)与函数y=的图象恒有三个不同的交点,则常数m 的取值范围是0<m <2.考点: 二次函数的图象;反比例函数的图象。

二次函数(最全的中考数学二次函数知识点总结)

二次函数(最全的中考数学二次函数知识点总结)

二次函数知识点总结及相关典型题目第一部分 二次函数基础知识✧ 相关概念及定义➢ 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.➢ 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. ✧ 二次函数各种形式之间的变换➢ 二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.➢ 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.✧ 二次函数解析式的表示方法➢ 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);➢ 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);➢ 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).➢ 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. ➢ 二次函数2ax y =的性质✧ 二次函数2y ax c =+的性质✧ 二次函数y a x h =-的性质:✧ ✧ 二次函数()2y a x h k =-+的性质✧ 抛物线2y ax bx c =++的三要素:开口方向、对称轴、顶点.➢a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.➢ 对称轴:平行于y 轴(或重合)的直线记作2bx a=-.特别地,y 轴记作直线0=x . ➢ 顶点坐标坐标:),(ab ac a b 4422--➢ 顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. ✧ 抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系 ➢ 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大 小.➢ 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. 总结:➢ 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. ✧ 求抛物线的顶点、对称轴的方法➢ 公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.➢ 配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.➢ 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. ✧ 用待定系数法求二次函数的解析式➢ 一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. ➢ 顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.➢ 交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. ✧ 直线与抛物线的交点➢y 轴与抛物线c bx ax y ++=2得交点为(0, c ).➢ 与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).➢ 抛物线与x 轴的交点:二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.➢ 平行于x 轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.➢ 一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx ny ax bx c=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.➢ 抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故a cx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121✧ 二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达➢ 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;➢ 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;➢ 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;➢ 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.➢ 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-➢ 总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.✧ 二次函数图象的平移➢ 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: ➢【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.✧ 根据条件确定二次函数表达式的几种基本思路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数y=ax 2+bx+c(a ≠0)的图象与性质—知识讲解(基础)【学习目标】1.会用描点法画二次函数2(0)y ax bx c a =++≠的图象;会用配方法将二次函数2y ax bx c =++的解析式写成2()y a x h k =-+的形式;2.通过图象能熟练地掌握二次函数2y ax bx c =++的性质;3.经历探索2y ax bx c =++与2()y a x h k =-+的图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想. 【要点梳理】要点一、二次函数2(0)y ax bx c a =++≠与=-+≠2()(0)y a x h k a 之间的相互关系1.顶点式化成一般式从函数解析式2()y a x h k =-+我们可以直接得到抛物线的顶点(h ,k),所以我们称2()y a x h k =-+为顶点式,将顶点式2()y a x h k =-+去括号,合并同类项就可化成一般式2y ax bx c =++.2.一般式化成顶点式2222222b b b b y ax bx c a x x c a x x ca a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++⎪⎝⎭. 对照2()y a x h k =-+,可知2bh a=-,244ac b k a -=.∴ 抛物线2y ax bx c =++的对称轴是直线2bx a =-,顶点坐标是24,24b ac b aa ⎛⎫-- ⎪⎝⎭.要点诠释:1.抛物线2y ax bx c =++的对称轴是直线2bx a =-,顶点坐标是24,24b ac b aa ⎛⎫-- ⎪⎝⎭,可以当作公式加以记忆和运用.2.求抛物线2y ax bx c =++的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点二、二次函数2(0)y ax bx c a =++≠的图象的画法1.一般方法:列表、描点、连线;2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.(2)求抛物线2y ax bx c =++与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 要点诠释:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象, 要点三、二次函数2(0)y ax bx c a =++≠的图象与性质1.二次函数20()y ax bx c a =++≠图象与性质函数二次函数2y ax bx c =++(a 、b 、c 为常数,a ≠0)图象a >0a <开口方向 向上 向下对称轴直线2b x a=-直线2b x a=-顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭24,24b ac b a a ⎛⎫-- ⎪⎝⎭增减性在对称轴的左侧,即当2b x a <-时,y 随x 的增大而减小;在对称轴的右侧,即当2b x a>-时,y 随x 的增大而增大.简记:左减右增 在对称轴的左侧,即当2bx a<-时,y 随x 的增大而增大;在对称轴的右侧,即当2b x a>-时,y 随x 的增大而减小.简记:左增右减最大(小)值抛物线有最低点,当2b x a =-时,y 有最小值,244ac b y a -=最小值抛物线有最高点,当2bx a=-时,y 有最大值,244ac b y a-=最大值2.二次函数20()y ax bx c a =++≠图象的特征与a 、b 、c 及b 2-4ac 的符号之间的关系要点四、求二次函数2(0)y ax bx c a =++≠的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当2bx a=-时,244ac b y a-=最值.要点诠释:如果自变量的取值范围是x 1≤x ≤x 2,那么首先要看2ba-是否在自变量的取值范围x 1≤x ≤x 2内,若在此范围内,则当2bx a=-时,244ac b y a -=最值,若不在此范围内,则需要考虑函数在x 1≤x ≤x 2范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当x =x 2时,222y ax bx c =++最大值;当x =x 1时,211y ax bx c =++最小值,如果在此范围内,y 随x 的增大而减小,则当x =x 1时,211=ax +bx +y c 最大值;当x =x 2时,222=ax +bx +y c 最小值,如果在此范围内,y 值有增有减,则需考察x =x 1,x =x 2,2bx a=-时y 值的情况.【典型例题】类型一、二次函数2(0)y ax bx c a =++≠的图象与性质1.求抛物线2142y x x =-+-的对称轴和顶点坐标. 【答案与解析】解法1(配方法):2221114(2)4(211)4222y x x x x x x =-+-=---=--+-- 211(1)422x =--+- 217(1)22x =---.∴ 顶点坐标为71,2⎛⎫-⎪⎝⎭,对称轴为直线1x =. 解法2(公式法):∵ 12a =-,1b =,4c =-,∴ 11122()2b x a=-=-=⨯-,2214(4)147214242ac b a ⎛⎫⨯-⨯-- ⎪-⎝⎭==-⎛⎫⨯- ⎪⎝⎭.∴ 顶点坐标为71,2⎛⎫-⎪⎝⎭,对称轴为直线1x =. 解法3(代入法):∵ 12a =-,1b =,4c =-, ∴ 111222b x a=-=-=⎛⎫⨯- ⎪⎝⎭.将1x =代入解析式中得,21711422y =-⨯+-=-. ∴ 顶点坐标为71,2⎛⎫-⎪⎝⎭,对称轴为直线1x =. 【总结升华】所给二次函数关系是一般式,求此类抛物线的顶点有三种方法:(1)利用配方法将一般式化成顶点式;(2)用顶点公式24,24b ac b a a ⎛⎫-- ⎪⎝⎭直接代入求解;(3)利用公式先求顶点的横坐标,然后代入解析式求出纵坐标.这三种方法都有各自的优缺点,应根据实际灵活选择和运用.举一反三:【高清课程名称:二次函数2(0)y ax bx c a =++≠的图象与性质 高清ID 号: 392790 关联的位置名称(播放点名称):例题1】 【变式】把一般式2286y x x =-+-化为顶点式.(1)写出其开口方向、对称轴和顶点D 的坐标;(2)分别求出它与y 轴的交点C ,与x 轴的交点A 、B 的坐标. 【答案】(1)向下;x=2;D (2,2).(2)C (0,-6);A (1,0);B (3,0).2.(2015•聊城)二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b ;③抛物线与x 轴的另一个交点为(3,0);④abc>0.其中正确的结论是 (填写序号).【答案】①④.【解析】解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确; ∵x=﹣1时,y <0, ∴a﹣b+c <0,即a+c <b ,所以②错误;∵抛物线与x 轴的一个交点为(﹣2,0) 而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(4,0),所以③错误; ∵抛物线开口向上, ∴a>0,∴b=﹣2a <0,∵抛物线与y 轴的交点在x 轴下方, ∴c<0,∴abc>0,所以④正确. 故答案为①④.【总结升华】本题考查了二次函数图象与系数之间的对应关系,难度适中.类型二、二次函数2(0)y ax bx c a =++≠的最值3.求二次函数211322y x x =++的最小值. 【答案与解析】解法1(配方法):∵ 2221111(6)(639)2222y x x x x =++=++-+ 21(3)42x =+-,∴ 当x =-3时,4y =-最小.解法2(公式法):∵ 102a =>,b =3,12c =∴ 当331222b x a =-=-=-⨯时,22114341922414242ac b y a ⨯⨯---====-⨯最小.解法3(判别式法):∵ 211322y x x =++,∴ 26(12)0x x y ++-=.∵ x 是实数,∴ △=62-4(1-2y)≥0,∴ y ≥-4. ∴ y 有最小值-4,此时2690x x ++=,即x =-3.【总结升华】在求二次函数最值时,可以从配方法、公式法、判别式法三个角度考虑,根据个人熟练程度灵活去选择.举一反三:【高清课程名称:二次函数2(0)y ax bx c a =++≠的图象与性质 高清ID 号: 392790 关联的位置名称(播放点名称):例题2】【变式】用总长60m 的篱笆围成矩形场地.矩形面积S 随矩形一边长L 的变化而变化.当L 是多少时,矩形场地的面积S 最大? 【答案】(30)S L L =-2(30)L L =--2(15)225L =--+(0<L <30).15L ∴=(m )时,场地的面积S 最大,为225m 2.类型三、二次函数2(0)y ax bx c a =++≠性质的综合应用4.已知二次函数21y x bx c =+++的图象过点P(2,1). (1)求证:24c b =--; (2)求bc 的最大值.【答案与解析】(1)∵ 21y x bx c =+++的图象过点P(2,1),∴ 1=4+2b+c+1,∴ c=-2b-4.(2)22(24)2(2)2(1)2bc b b b b b =--=-+=-++.∴ 当1b =-时,bc 有最大值.最大值为2.【总结升华】(1)将点P(2,1)代入函数关系式,建立b 、c 的关系即可.(2)利用(1)中b 与c 的关系,用b 表示bc ,利用函数性质求解.举一反三:【变式】(2015•咸宁)如图是二次函数y=ax 2+bx+c 的图象,下列结论:①二次三项式ax 2+bx+c 的最大值为4;②4a+2b+c<0;③一元二次方程ax 2+bx+c=1的两根之和为﹣1;④使y≤3成立的x 的取值范围是x≥0.其中正确的个数有( )A.1个B.2个C.3个D.4个【答案】B.提示:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax 2+bx+c 的最大值为4,①正确;∵x=2时,y <0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax 2+bx+c=1的两根之和为﹣2,③错误; 使y≤3成立的x 的取值范围是x≥0或x≤﹣2,④错误, 故选:B .。

相关文档
最新文档