《新新练案系列》2014-2015学年高中数学(北师大版必修五)模块检测(含答案解析)
北师大版高中数学必修5综合测试试题及答案

北师大版高中数学必修5综合测试试题及答案必修模块5试题.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共3页.满分为150分。
考试时间120分钟.第Ⅰ卷选择题共50分一.选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一项是符合题目要求的)1.已知等差数列{an}中,a7a916,a41,则a12的值是A.15B.30C.31D.6422.若全集U=R,集合M=某某4,S=某3某0,则MðUS=某1A.{某某2}B.{某某2或某3}C.{某某3}D.{某2某3}3.若1+2+22+……+2n>128,nN某,则n的最小值为A.6B.7C.8D.94.在ABC中,B60,bac,则ABC一定是2A、等腰三角形B、等边三角形C、锐角三角形D、钝角三角形115.若不等式a某2b某20的解集为某|某,则a-b值是23A.-10B.-14C.10D.146.在等比数列{an}中,S4=1,S8=3,则a17a18a19a20的值是A.14B.16C.18D.207.已知某2y1,则2某4y的最小值为A.8B.6C.22D.28.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n个图案中有白色地面砖的块数是A.4n2B.4n2C.2n4D.3n3第1个第2个第3个某4y309.已知变量某,y满足3某5y25,目标函数是z2某y,则有某1A.zma某12,zmin3C.zmin3,z无最大值B.zma某12,z无最小值D.z既无最大值,也无最小值10.在R上定义运算:某y某(1y),若不等式(某a)(某a)1对任意实数某成立,则实数a的取值范围是A.1a1B.0a2C.1331aD.a2222第Ⅱ卷非选择题共100分二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在答题卡的横线上)11.已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为.12.b克糖水中有a克糖(b>a>0),若再加入m克糖(m>0),则糖水更甜了,将这个事实用一个不等式表示为.13.在数列an中,a11,且对于任意正整数n,都有an1ann,则a100=________________.14.把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设ai,j(i、j∈N某)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,23456如a4,2=8.若ai,j=2006,则i、j的值分别为________,__________78910…………………………三、解答题:(本大题共6小题,共80分。
2014-2015学习报数学高中北师大必修5第10-13期答案

伊4垣(
1 源
)圆伊源圆垣…垣(
1 源
)灶原员·源灶原员垣葬灶·源灶=灶垣葬灶·源灶,
所以得5栽灶原源灶葬灶=灶援 三、解答题
1远.解:由题意知(枣 曾)越葬(曾原曾员)(曾原曾圆)越葬(曾原员)(曾原猿), 且葬约园,故二次函数在区间[圆,垣肄)上是减函数.
又因为愿垣渣贼渣跃愿,圆垣贼圆逸圆,
故由二次函数的单调性知不等式(枣 渣贼渣垣愿)约(枣 圆垣贼圆),
.故选B.
7.依题意,得栽愿越a员·a圆·…·a愿越(a源·a缘)源越圆源越员远.故选C援 8.因为葬糟燥泽悦,遭糟燥泽月,糟 糟燥泽粤成等差数列,所以葬糟燥泽悦垣糟 糟燥泽粤 越圆遭 糟燥泽月.根据正弦定理可得泽蚤灶粤 糟燥泽悦垣泽蚤灶悦糟燥泽粤 越圆泽蚤灶月糟燥泽月,
即泽蚤灶(粤 垣悦)越圆泽蚤灶月糟燥泽月,即泽蚤灶月越圆泽蚤灶月糟燥泽月.因为泽蚤灶月屹园,
8援
源 猿
援
设
墒设 设赠跃园,赠沂晕垣;
提示:
远.依题意满足条件的可行域是一个吟粤 月悦,粤(圆,园), 月(员,员),悦(猿,猿),则目标函数扎越圆曾垣赠经过点月(员,员)时,取 得最小值扎皂蚤灶越圆伊员垣员越猿援
7.依题意曾跃园,赠跃园,且曾,赠沂晕垣,又由工人工资预算为 圆园园园元,知缘园曾垣源园赠臆圆园园园援
怨.猿,公差为原园.猿的等差数列, 所以赠越缘伊怨.猿垣 缘伊(缘2原员)伊(原园.猿)越源猿.缘(万吨)援 所以按计 划“十二 五”期间该城 市共 排放 SO 2 约43援5
万吨援 (2)由已知得,2012年的SO2年排放量怨.猿原园.猿越怨(万吨), 所以2012年至2020年SO2的年排 放量构成首项 为9,
仔 猿
,即a2+b
北师大版高中数学必修五模块综合测试(a).docx

模块综合测试(A)(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项和S 10=( ) A .100 B .210 C .380 D .400答案: B1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( ) A .45 B .75 C .180D .300 解析: ∵a 2+a 8=a 3+a 7=a 4+a 6=2a 5, ∴由已知得5a 5=450,∴a 5=90 ∴a 2+a 8=2a 5=180. 答案: C2.在△ABC 中,若b =2a sin B ,则角A 为( ) A .30°或60° B .45°或60° C .120°或60°D .30°或150°解析: 根据正弦定理sin B =2sin A sin B , 所以sin A =12,所以A =30°或150°.答案: D3.a ∈R ,且a 2+a <0,那么-a ,-a 3,a 2的大小关系是( ) A .a 2>-a 3>-a B .-a >a 2>-a 3 C .-a 3>a 2>-aD .a 2>-a >-a 3解析: 由a 2+a <0得-1<a <0,∴-a >a 2>-a 3. 答案: B4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9解析: a 4+a 6=2a 5=-6, ∴a 5=-3, ∴d =a 5-a 15-1=2,∴S n =-11n +n (n -1)2·2=n 2-12n .故n =6时S n 取最小值. 答案: A5.△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,如果a ,b ,c 成等差数列,B =30°,△ABC 的面积为32,那么b =( )A.1+32B .1+ 3 C.2+32D .2+ 3 解析: 2b =a +c ,S =12ac sin B =32,∴ac =6.又∵b 2=a 2+c 2-2ac cos B , ∴b 2=(a +c )2-2ac -2ac cos 30°. ∴b 2=4+23,即b =1+3,故选B. 答案: B6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B =( )A .-12B.12 C .-1D .1 解析: 根据正弦定理,由a cos A =b sin B ,得sin A cos A =sin 2B , ∴sin A cos A +cos 2B =sin 2B +cos 2B =1,故选D. 答案: D7.若数列{x n }满足lg x n +1=1+lg x n (n ∈N +),且x 1+x 2+x 3+…+x 100=100,则lg(x 101+x 102+…+x 200)的值为( )A .102B .101C .100D .99解析: 由lg x n +1=1+lg x n 得x n +1x n=10,∴数列{x n }是公比为10的等比数列,又x 101=x 1·q 100, x 102=x 2·q 100,…,x 200=x 100·q 100,∴x 101+x 102+…+x 200=q 100(x 1+x 2+…+x 100) =10100·100=10102.∴lg(x 101+x 102+…+x 200)=102. 答案: A8.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≥0x -y +4≥0x ≤1表示的平面区域面积是( )A .3B .6 C.92D .9解析: 如图所示,不等式组表示的平面区域为△ABC 边界及其内部的部分,由⎩⎪⎨⎪⎧x =1x -y +4=0可得A (1,5),同理可得B (-2,2),C (1,-1),故AC =6,△ABC 的高h =3,所以S △ABC =12·AC ·h =9.答案: D9.已知数列{a n }的前n 项和为S n ,且S n =a n -2(a 为常数且a ≠0),则数列{a n }( ) A .是等比数列B .当a ≠1时是等比数列C .从第二项起成等比数列D .从第二项起成等比数列或等差数列解析: a n =⎩⎪⎨⎪⎧a -2 n =1,a n -1(a -1) n ≥2,当a ≠0,n ≥2,a n =a n -1(a -1),a ≠1是等比数列,当a =1,是等差数列. 答案: D10.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 均成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12解析: ∵(x -a )⊗(x +a )=(x -a )(1-x -a ), ∴不等式(x -a )⊗(x +a )<1对任意实数x 成立, 即(x -a )(1-x -a )<1对任意实数x 成立, 即使x 2-x -a 2+a +1>0对任意实数x 成立,所以Δ=1-4(-a 2+a +1)<0,解得-12<a <32,故选C.答案: C11.已知数列{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .35B .33C .31D .29解析: 设公比为q ,由题意知⎩⎪⎨⎪⎧a 2·a 3=a 21q 3=2a 1a 4+2a 7=a 1q 3+2a 1q 6=52 即⎩⎪⎨⎪⎧ a 1q 3=2a 1q 3+2a 1·q 3·q 3=52,解得⎩⎪⎨⎪⎧q =12a 1=16, 故S 5=16×⎝⎛⎭⎫1-1251-12=31.答案: C12.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是( ) A .0<a <3 B.32≤a <3 C .2<a ≤3D .1≤a <52解析: ∵三角形为钝角三角形,∴⎩⎪⎨⎪⎧a +a +1>a +2-12≤a 2+(a +1)2-(a +2)22a (a +1)<0,解得32≤a <3.答案: B二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析: 因为cos C =13,得sin C =223.因为S △ABC =12ab sin C =12×32×b ×223=43,所以b =2 3. 答案: 2 314.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *.若a 3=16,S 20=20,则S 10的值为________.解析: 设{a n }的首项,公差分别是a 1,d ,则 ⎩⎪⎨⎪⎧a 1+2d =1620a 1+20×(20-1)2×d =20,解得a 1=20,d =-2, ∴S 10=10×20+10×92×(-2)=110.答案: 11015.设点P (x ,y )在函数y =4-2x 的图像上运动,则9x +3y 的最小值为________. 解析: ∵y =4-2x , ∴9x +3y =9x +34-2x=9x +819x ≥281=18.答案: 1816.若不等式组⎩⎪⎨⎪⎧x ≥0y ≥02x +y -6≤0x -y +m ≤0表示的平面区域是一个三角形,则实数m 的取值范围是________.解析: 先画部分可行域⎩⎪⎨⎪⎧x ≥0y ≥02x +y -6≤0,设直线x -y +m =0与x 轴的交点为(-m,0),另外A (3,0),B (0,6),由图形可知:当m ∈(-∞,-3]∪[0,6)时,可行域为三角形.故实数m 的取值范围是(-∞,-3]∪[0,6). 答案: (-∞,-3]∪[0,6)三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解析: (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d . 由a 1=1,a 3=-3可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n , 所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.18.(本小题满分12分)在△ABC 中,a ,b ,c 分别是∠A 、∠B 、∠C 的对边长,已知a ,b ,c 成等比数列,且a 2-c 2=ac -bc .求∠A 的大小及b sin Bc的值. 解析: ∵a 、b 、c 成等比数列,∴b 2=ac . 又∵a 2-c 2=ac -bc , ∴b 2+c 2-a 2=bc .在△ABC 中,由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12,∴∠A =60°.在△ABC 中,由正弦定理得sin B =b sin Aa ,∵b 2=ac ,∠A =60°,∴b sin B c =b 2sin 60°ca =sin 60°=32.19.(本小题满分12分)解关于x 的不等式ax 2-(a +1)x +1<0.解析: 若a =0,原不等式可化为-x +1<0,解得x >1; 若a <0,原不等式可化为⎝⎛⎭⎫x -1a (x -1)>0 解得x <1a或x >1;若a >0,原不等式可化为⎝⎛⎭⎫x -1a (x -1)<0, 其解的情况应由1a 与1的大小关系确定,当a =1时,解得x ∈∅; 当a >1时,解得1a <x <1;当0<a <1时,解得1<x <1a.综上所述,当a <0时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 或x >1; 当a =0时,解集为{x |x >1};当0<a <1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,解集为∅;当a >1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1 20.(本小题满分12分)已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.求:(1)4x -3y 的最大值和最小值; (2)x 2+y 2的最大值和最小值. 解析: (1)不等式组⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,表示的平面区域如下图所示,其中A (4,1),B (-1,-6),C (-3,2).设z =4x -3y ,直线4x -3y =0经过原点(0,0),作一组与4x -3y =0平行的直线l :4x -3y =z ,当l 过C 点时,z 值最小;当l 过B 点时,z 值最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.(2)设u =x 2+y 2,则u 为点(x ,y )到原点(0,0)的距离.结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.∴(x 2+y 2)max =(-1)2+(-6)2=37; (x 2+y 2)min =0.21.(本小题满分12分)已知不等式x 2-3x +t <0的解集为{x |1<x <m ,x ∈R }. (1)求t ,m 的值;(2)若函数f (x )=-x 2+ax +4在区间(-∞,1]上递增,求关于x 的不等式log a (-mx 2+3x +2-t )<0的解集.解析: (1)∵不等式x 2-3x +t <0的解集为{x |1<x <m ,x ∈R },∴⎩⎪⎨⎪⎧ 1+m =3m =t 得⎩⎪⎨⎪⎧m =2t =2. (2)∵f (x )=-⎝⎛⎭⎫x -a 22+4+a24在(-∞,1]上递增, ∴a2≥1,a ≥2. 又log a (-mx 2+3x +2-t )=log a (-2x 2+3x )<0, 由a ≥2,可知0<-2x 2+3x <1, 由2x 2-3x <0,得0<x <32,由2x 2-3x +1>0得x <12或x >1.所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12或1<x <32.22.(本小题满分14分)如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里,问:(1)乙船每小时航行多少海里?(2)甲、乙两船是否会在某一点相遇,若能,求出甲从A 1处到相遇点共航行了多少海里?解析: (1)如图,连接A 1B 2,A 2B 2=102, A 1A 2=2060×302=102,∴△A 1A 2B 2是等边三角形,∠B 1A 1B 2=105°-60°=45°, 在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2cos 45° =202+(102)2-2×20×102×22=200 B 1B 2=10 2.因此乙船的速度的大小为10220×60=302海里/小时.(2)若能在C 点相遇,则显然A 1C <B 1C .因为甲、乙两船的航速恰好相等,因此不可能相遇.。
北师大版高中数学必修5模块测试试题及答案

数学必修5第一部分(选择题 共50分)一、 选择题(每小题5分,10小题,共50分)1、在ABC ∆中,︒===452232B b a ,,,则A 为( )A .︒︒︒︒︒︒30.15030.60.12060D CB 或或2、在ABC ∆中,bc c b a ++=222,则A 等于( )A ︒︒︒︒30.45.60.120.D C B3、在ABC ∆中,1660=︒=b A ,,面积3220=S ,则a 等于( ) A. 610.B. 75C . 49D. 514、等比数列{}n a 中293a a =,则313239310log log log log a a a a ++++ 等于( ) A .9 B .27 C .81 D .2435、三个数a ,b ,c 既是等差数列,又是等比数列,则a ,b ,c 间的关系为 ( ) A .b-a =c-b B .b 2=a c C .a =b=c D .a =b=c ≠06、等比数列{}n a 的首项1a =1,公比为q ,前n 项和是n S ,则数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和是( )A .1-n SB .n n q S -C .n n q S -1D .11--n n q S7、在等差数列{}n a 中,前四项之和为40,最后四项之和为80,所有项之和是210,则项数n 为( )A .12B .14C .15D .16 8、已知,,a b c R ∈,则下列选项正确的是 ( )A.22a b am bm >⇒>B.a ba b c c>⇒> C .11,0a b ab a b >>⇒< D.2211,0a b ab a b>>⇒<9、已知x y xy +=,则y x +的取值范围是( )A .]1,0(B .),2[+∞C .]4,0(D .),4[+∞10、⎪⎪⎩⎪⎪⎨⎧≥≥-<-<+0011234x y y x y x 表示的平面区域内的整点的个数是( )A .8个B .5个C .4个D .2个第二部分(非选择题 共100分)二、填空题(每小题5分,4小题,共20分)11、已知0,0>>y x ,且191=+yx ,求y x +的最小值 _____________ 12、当x 取值范围是_____________ 时,函数122-+=x x y 的值大于零 13、在等比数列}{n a 中,08,204321=+=+a a a a ,则=10S14、不等式组6003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩表示的平面区域的面积是三、解答题(共六个题,前两题每题10分,后面每题15分,共80分)15、在△ABC 中,BC =a ,AC =b ,a ,b 是方程02322=+-x x 的两个根,且()1cos 2=+B A 。
北师大版高中数学必修五模块测试卷.docx

高中数学学习材料鼎尚图文*整理制作必修五模块测试卷(150分,120分钟)一、选择题(每题5分,共60分)1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos 22A =ccb 2+,则△ABC 是( )A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰直角三角形2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8等于( ) A.135 B.100 C.95 D.803.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(3b -c )cos A =a cos C ,则cos A 的值等于( ) A.23 B. 33 C. 43 D. 63 4.〈日照模拟〉已知等比数列{a n }的前n 项和S n =t 25-⋅n -51,则实数t 的值为( ) A.4 B.5 C. 54 D. 515.某人向正东方向走x km 后,向右转150°,然后朝新方向走3 km ,结果他离出发点恰好是3 km ,那么x 的值为( )A.3B.23C.3或23D.3 6.设{a n }为各项均是正数的等比数列,S n 为{a n }的前n 项和,则( ) A.44S a =66S a B. 44S a >66S a C. 44S a <66S a D. 44S a≤66S a 7.已知数列{a n }的首项为1,并且对任意n ∈N +都有a n >0.设其前n 项和为S n ,若以(a n ,S n )(n ∈N +)为坐标的点在曲线y =21x (x +1)上运动,则数列{a n }的通项公式为( ) A.a n =n 2+1 B.a n =n 2 C.a n =n +1 D.a n =n8.设函数f (x )=⎪⎪⎩⎪⎪⎨⎧≥-.0,1,0,132<x xx x 若f (a )<a ,则实数a 的取值范围为( )A.(-1,+∞)B.(-∞,-1)C.(3,+∞)D.(0,1) 9.已知a >0,b >0,则a 1+b1+2ab 的最小值是( ) A.2 B.22 C.4 D.510.已知目标函数z =2x +y 中变量x ,y 满足条件⎪⎩⎪⎨⎧≥+-≤-,1,2553,34x y x y x <则( )A.z max =12,z min =3B.z max =12,无最小值C.z min =3,无最大值D.z 无最大值,也无最小值 11.如果函数f (x )对任意a ,b 满足f (a +b )=f (a )·f (b ),且f (1)=2,则)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =( )A.4 018B.1 006C.2 010D.2 014 12.已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且log c (ab )>1,则c 的取值范围是( ) A.0<c <1 B.1<c <8 C.c >8 D.0<c<1或c >8 二、填空题(每题4分,共16分)13.〈泉州质检〉△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且a cos C ,b cos B ,c cos A 成等差数列,则角B = .14.已知两正数x ,y 满足x +y =1,则z =⎪⎪⎭⎫⎝⎛+⋅⎪⎭⎫ ⎝⎛+y y x x 11的最小值为 . 15.两个等差数列的前n 项和之比为12105-+n n ,则它们的第7项之比为 .16.在数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=31S n (n ≥1),则a n = .三、解答题(解答应写出文字说明,证明过程或演算步骤)(17~20题每题12分,21~22题每题13分,共74分)17.已知向量m =⎪⎭⎫ ⎝⎛21,sin A 与n =(3,sin A +3cos A )共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC =2,求△ABC 的面积S 的最大值,并判断S 取得最大值时△ABC 的形状.18.已知数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N *) (1)求数列{a n }的通项公式; (2)若数列{b n }满足11144421---n b b b =n b n a )1(+ (n ∈N*),证明:{b n }是等差数列;19.如图1,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船 发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间? 图120.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).21.已知等差数列{a n }的首项a 1=4,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前四项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前三项,记{b n }的前n 项和为T n ,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立,求实数λ的最小值.22.某食品厂定期购买面粉,已知该厂每天需用面粉6 t ,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,每次购买面粉需支付运费900元. (1)该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少? (2)若提供面粉的公司规定:当一次性购买面粉不少于210 t 时,其价格可享受9折优惠(即原价的90%),该厂是否应考虑接受此优惠条件?请说明理由.参考答案及点拨一、1.A 点拨:因为cos 22A =c c b 2+及2cos 22A -1=cos A ,所以cos A =c b .而cos A=bca cb 2222-+,∴b 2+a 2=c 2,则△ABC 是直角三角形.故选A.2.A 点拨:由等比数列的性质知a 1+a 2,a 3+a 4,…,a 7+a 8仍然成等比数列,公比q =2143a a a a ++=4060=23,∴a 7+a 8=(a 1+a 2)14-q =40×323⎪⎭⎫ ⎝⎛=135. 3.B 点拨:(3b -c )cos A =a cos C ,由正弦定理得3sin B cos A =sin C cos A +cos C sin A⇒3sin B cos A =sin(C +A )=sin B ,又sin B ≠0,所以cos A =33.故选B. 4.B 点拨:∵a 1=S 1=51t -51,a 2=S 2-S 1=54t ,a 3=S 3-S 2=4t ,∴由{a n }是等比数列.知254⎪⎭⎫ ⎝⎛t =⎪⎭⎫⎝⎛-5151t ×4t ,显然t ≠0,∴t =5. 5.C 点拨:根据题意,由余弦定理得(3)2=x 2+32-2x ·3·cos 30°,整理得x 2-33x +6=0,解得x =3或23.6.B 点拨:由题意得公比q >0,当q =1时,有44S a -66S a =41-61>0,即44S a >66S a ; 当q ≠1时,有44S a -66S a =()41311)1(q a q q a ---()61511)1(qa q q a --=q 3(1-q )()()642111q q q ---⋅=231q q +611q q --⋅>0,所以44S a >66S a .综上所述,应选B. 7.D 点拨:由题意,得S n =21a n (a n +1),∴S n -1=21a n -1(a n -1+1)(n ≥2). 作差,得a n =21()1212---+-n n n n a a a a , 即(a n +a n -1)(a n -a n -1-1)=0.∵a n >0(n ∈N +),∴a n -a n -1-1=0, 即a n -a n -1=1(n ≥2).∴数列{a n }为首项a 1=1,公差为1的等差数列. ∴a n =n (n ∈N +).8.A 点拨:不等式f (a )<a 等价于⎪⎩⎪⎨⎧≥-0,132a a a <或⎪⎩⎪⎨⎧,1,0a aa <<解得a ≥0或-1<a <0,即不等式f (a )<a 的解集为(-1,+∞). 9.C 点拨:依题意得a 1+b 1+2ab ≥2ab 1+2ab ≥4ab ab ⋅1=4,当且仅当a1=b1,且ab 1=ab 时,取等号,故应选C.10.C11.D 点拨:由f (a +b )=f (a )·f (b ),可得f (n +1)=f (n )·f (1),)()1(n f n f +=f (1)=2,所以)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =2×1 007=2 014. 12.B 点拨:因为a ,b ,a +b 成等差数列,所以2b =a +(a +b ),即b =2a .又因为a ,b ,ab 成等比数列,所以b 2=a ×ab ,即b =a 2.所以a =2,b =4,因此log c (ab )=log c 8>1=log c c ,有1<c <8,故选B. 二、13.60° 点拨:依题意得a cos C +c cos A =2b cos B ,根据正弦定理得sin A cos C +sin C cos A =2sin B cos B ,则sin(A +C )=2sin B cos B ,即sin B =2sin B cos B ,所以cos B =21,又0°<B <180°,所以B =60°,14. 425 点拨:z =⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x 11=xy +xy 1+x y +y x =xy +xy 1+xy xy y x 2)(2-+=xy 2+xy -2,令t =xy ,则0<t =xy ≤22⎪⎭⎫ ⎝⎛+y x =41.设f (t )=t +t 2,t ∈⎥⎦⎤ ⎝⎛41,0,设41≥t 2>t 1>0,则f (t 1)-f (t 2)=⎪⎪⎭⎫ ⎝⎛+112t t -⎪⎪⎭⎫ ⎝⎛+222t t =212121)2)((t t t t t t --. 因为41≥t 2>t 1>0, 所以t 2-t 1>0,t 1·t 2<161.则t 1·t 2-2<0. 所以f (t 1)-f (t 2)>0.即f (t 1)>f (t 2).∴f (t )=t +t 2在⎥⎦⎤ ⎝⎛41,0上单调递减,故当t =41时f (t )=t +t2有最小值433,所以当x =y =21时,z 有最小值425. 15.3∶1 点拨:设两个等差数列{a n },{b n }的前n 项和为S n ,T n ,则n n T S =12105-+n n ,而77b a=131131b b a a ++=1313T S =113210135-⨯+⨯=3. 16.21,114,233n n n -=⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩点拨:∵3a n +1=S n (n ≥1),∴3a n =S n -1(n ≥2). 两式相减,得3(a n +1-a n )=S n -S n -1=a n (n ≥2)⇒n n a a 1+=34(n ≥2) ⇒n ≥2时,数列{a n }是以34为公比,以a 2为首项的等比数列, ∴n ≥2时,a n =a 2234-⎪⎭⎫ ⎝⎛⋅n .令n =1,由3a n +1=S n ,得3a 2=a 1,又a 1=1⇒a 2=31,∴a n =31234-⎪⎭⎫ ⎝⎛⋅n (n ≥2).故⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛⋅=-.2,3431,112n n n , 三、17.解:(1)因为m ∥n , 所以sin A ·(sin A +3cos A )-23=0. 所以22cos 1A -+23sin2A -23=0.即23sin2A -21cos2A =1,即sin ⎪⎭⎫ ⎝⎛-62πA =1. 因为A ∈(0,π),所以2A -6π∈⎪⎭⎫ ⎝⎛-611,6ππ, 故2A -6π=2π,即A =3π. (2)由余弦定理,得4=b 2+c 2-bc , 又S △ABC =21bc sin A =43bc ,而b 2+c 2≥2bc ,bc +4≥2bc ,bc ≤4(当且仅当b =c 时等号成立), 所以S △ABC =21bc sin A =43bc ≤43×4=3.当△ABC 的面积最大时,b =c ,又A =3π,故此时△ABC 为等边三角形. 18.(1)解:∵a n +1=2a n +1(n ∈N *),∴a n +1+1=2(a n +1).∴{a n +1}是以a 1+1=2为首项,2为公比的等比数列.∴a n +1=2n . 即a n =2n -1(n ∈N *). (2)证明:∵114-b 124-b …14-n b =()n bn a 1+.∴nb b b n -+++)(214=nnb 2.∴2[(b 1+b 2+…+b n )-n ]=nb n ,①2[(b 1+b 2+…+b n +b n +1)-(n +1)]=(n +1)b n +1.②②-①,得2(b n +1-1)=(n +1)b n +1-nb n ,即(n -1)b n +1-nb n +2=0,③ ∴nb n +2-(n +1)b n +1+2=0.④ ④-③,得nb n +2-2nb n +1+nb n =0,即b n +2-2b n +1+b n =0,∴b n +2-b n +1=b n +1-b n (n ∈N *).∴{b n }是等差数列.19.解:由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理得,DAB DB ∠sin =ADBAB∠sin .∴DB =ADBDAB AB ∠∠⋅sin sin =︒︒⋅+105sin 45sin )33(5=︒⋅︒+︒⋅︒︒⋅+45cos 60sin 60sin 45sin 45sin )33(5=213)13(35++=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =203海里,在△DBC 中,由余弦定理得CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC =300+1 200-2×103×203×21=900, ∴CD =30海里.则需要的时间t =3030=1(小时). 答:救援船到达D 点需要1小时.20.解:原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. (1)当a =0时,原不等式化为x +1≤0⇒x ≤-1. (2)当a >0时, 原不等式化为⎪⎭⎫ ⎝⎛-a x 2 (x +1)≥0⇒x ≥a2或x ≤-1; (3)当a <0时,原不等式化为⎪⎭⎫⎝⎛-a x 2 (x +1)≤0. ①当a 2>-1,即a <-2时,原不等式的解集为-1≤x ≤a 2; ②当a 2=-1,即a =-2时,原不等式的解集为x =-1;③当a 2<-1,即-2<a <0时,原不等式的解集为a2≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎥⎦⎤⎢⎣⎡-a2,1;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎥⎦⎤⎢⎣⎡-1,2a ; 当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎪⎭⎫⎢⎣⎡+∞,2a . 21.解:(1)由a 2+a 7+a 12=-6得a 7=-2, 又a 1=4,所以公差d =-1,所以a n =5-n , 从而S n =2)9(n n -. (2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列的公比为q ,则q =12b b =21,所以T n =2112114-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n =8⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n 211.令f (n )=n⎪⎭⎫ ⎝⎛21.因为f (n )=n⎪⎭⎫⎝⎛21是关于自然数n 的减函数,所以{T n }是递增数列,得4≤T n <8.又S m =2)9(m m -=-22921⎪⎭⎫⎝⎛-m +881,当m =4或m =5时,S m 取得最大值,即(S m )max =S 4=S 5=10,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立, 则8≤10+λ,得λ≥-2, 所以λ的最小值为-2.22.解:(1)设该厂应每x 天购买一次面粉,则其购买量为6x t.由题意知,面粉的保管等其他费用为3[6x +6(x -1)+…+6×2+6×1]=9x (x +1)元. 设每天所支付的总费用为y 1元,则 y 1=x 1[9x (x +1)+900]+6×1 800=x900+9x +10 809≥2x x 9900⋅+10 809=10 989, 当且仅当9x =x900,即x =10时取等号. 所以该厂每10天购买一次面粉,才能使平均每天所支付的总费用最少.(2)若该厂接受此优惠条件,则至少每35天购买一次面粉.设该厂接受此优惠条件后,每x (x ≥35)天购买一次面粉,平均每天支付的总费用为y 2元,则y 2=x 1[9x (x +1)+900]+6×1 800×0.90=x900+9x +9 729(x ≥35). 令f (x )=x +x100(x ≥35),x 2>x 1≥35,则f (x 1)-f (x 2)=⎪⎪⎭⎫ ⎝⎛+11100x x -⎪⎪⎭⎫ ⎝⎛+22100x x =212121)100)((x x x x x x --. 因为x 2>x 1≥35,所以x 1-x 2<0,x 1·x 2>100.所以x 1x 2-100>0. 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 所以f (x )=x +x100在[35,+∞)内为增函数. 所以当x =35时,y 2有最小值,约为10 069.7. 此时y 2<10 989,所以该厂应该接受此优惠条件.。
高一数学北师大版必修五创新演练阶段质量检测模块综合检测

模块综合检测(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列不等式中,解集为R 的是( ) A .x 2+4x +4>0 B .|x |>0 C .x 2>-xD .x 2-x +14≥0解析:A 的解集为(-∞,-2)∪(-2,+∞),B 的解集是(-∞,0)∪(0,+∞),C 的解集是(-∞,-1)∪(0,+∞),D 等价于(x -12)2≥0,故解集为R.答案:D2.(2012·洋浦高二检测)在△ABC 中,若a =2,b =23,∠A =30°,则∠B 为( ) A .60° B .60°或120° C .30°D .30°或150°解析:根据正弦定理得sin B =b sin A a =23×sin 30°2=32,∴B =60°或120°,∵b >a ,故两解都符合题意. 答案:B3.(2011·江西高考)已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1.那么a 10=( ) A .1 B .9 C .10D .55解析:由S n +S m =S n +m ,得S 1+S 9=S 10⇒a 10=S 10-S 9=S 1=a 1=1. 答案:A4.在数列{a n }中,已知前n 项和S n =7n 2-8n ,则a 100的值为( ) A .69 200 B .1 400 C .1 415D .1 385解析:法一:S n =7n 2-8n ,所以S 1=7-8=-1, a n =S n -S n -1=7n 2-8n -7(n -1)2+8(n -1)=14n -15(n ≥2). 因为n =1时,a 1=-1, 所以a n =14n -15(n ∈N +).所以a 100=14×100-15=1 385.法二:a 100=S 100-S 99=7×1002-8×100-7×992+8×99 =7(100+99)(100-99)-8(100-99)=1 385. 答案:D5.(2012·宿州高二检测)数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1是首项为1,公比为2的等比数列,那么a n =( ) A .2n -1 B .2n -1-1 C .2n +1D .4n -1解析:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=1×(1-2n )1-2=2n -1.答案:A6.在△ABC 中,已知a 比b 长2,b 比c 长2,且最大角的正弦值是32,则△ABC 的面积是( ) A.154 3 B.154 C.2143D.3543 解析:依条件a =b +2,b =c +2, ∴a =c +4.∴sin A =32,∴A =120°. cos 120°=b 2+c 2-a 22bc =(c +2)2+c 2-(c +4)22c (c +2)=c 2-4c -122c (c +2)=-12,∴c =3,从而b =5. ∴S △ABC =12bc sin A =154 3.答案:A7.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +2≥0,8x -y -4≤0,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为8,则a +b 的最小值为( ) A .1 B .2 C .3D .4解析:不等式组表示的区域是一个四边形,4个顶点分别是(0,0),(0,2),(12,0),(1,4),易求出目标函数在(1,4)点取得最大值8,所以8=ab +4⇒ab =4.所以a +b ≥2ab =4,当且仅当a =b =2时等号成立.所以a +b 的最小值为4. 答案:D8.已知在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,且a =4,b +c =5,A =60°,则△ABC 的面积为( ) A.34B .3 3 C.334D.34解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,∴16=(b +c )2-2bc -2bc cos 60°,∴bc =3.∴S △ABC =12bc sin A =12×3×sin 60°=334.答案:C9.如图,某汽车运输公司刚买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N)为二次函数关系,若使营运的年平均利润最大,则每辆客车应营运( ) A .3年 B .4年 C .5年D .6年解析:由图像知,函数过点(6,11),可设y =a (x -6)2+11,把点(4,7)代入得7=a (4-6)2+11,解得a =-1,∴y =-(x -6)2+11=-x 2+12x -25.∴平均利润y x =-x 2+12x -25x =-(x +25x )+12≤-2x ×25x +12=2.这时x =25x即x =5.答案:C10.(2012·佛山高二检测)已知点P (x ,y )的坐标x ,y 满足⎩⎨⎧3x -y ≤0x -3y +2≥0y ≥0,则x 2+y 2-4x 的取值范围是( ) A .[0,12] B .[-1,12] C .[3,16]D .[-1,16]解析:作出不等式组表示的平面区域如图,x 2+y 2-4x =(x -2)2+y 2-4.令d =(x -2)2+y 2表示可行域内的点到(2,0)的距离,由图可知,∴d min 是点(2,0)到直线3x -y =0的距离,∴d min =233+1=3,又d max 是AB 的长度,∴d max =4.∴x 2+y 2-4x 的范围是[-1,12]. 答案:B 二、填空题11.不等式2x 2+2x -4≤12的解集为________.解析:∵2x 2+2x -4≤12,∴2x 2+2x -4≤2-1.∴x 2+2x -4≤-1. 即x 2+2x -3≤0,∴(x -1)(x +3)≤0. 解得-3≤x ≤1,故所求解集为[-3,1]. 答案:[-3,1]12.(2012·石家庄高二检测)已知等差数列{a n },{b n }的前n 项和分别为A n 、B n ,且满足A nB n =2nn +3,则a 1+a 2+a 12b 2+b 4+b 9=________. 解析:设{a n },{b n }的公差分别为d 1,d 2,则a 1+a 2+a 12b 2+b 4+b 9=3a 1+12d 13b 1+12d 2=a 1+4d 1b 1+4d 2=a 5b 5.∵A n B n =2n n +3,∴a 5b 5=9a 59b 5=9(a 1+a 9)29(b 1+b 9)2=A 9B 9=2×99+3=32.13.a >0,b >0,c >0,则(a +b +c )(1a +b +1c )的最小值为________.解析:(a +b +c )(1a +b +1c )=a +bc +c a +b+2≥2 a +b c ·ca +b+2=4.当且仅当a +b =c 时等式成立. 答案:414.(2011·安徽高考)已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为________.解析:不妨设角A =120°,c <b ,则a =b +4,c =b -4,于是cos120°=b 2+(b -4)2-(b +4)22b (b -4)=-12,解得b =10,所以S =12bc sin 120°=15 3.答案:15 3三、解答题(本大题共4小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)已知数列{a n }满足a 1=1,a n +1=2a n +1,n ∈N +. (1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n .解:(1)a n +1+1=2a n +1+1=2(a n +1),且a 1+1=2, ∴数列{a n +1}是以2为首项,2为公比的等比数列, 即a n +1=2·2n -1=2n ,∴a n =2n -1. (2)S n =a 1+a 2+a 3+…+a n=2-1+22-1+23-1+…+2n -1 =(2+22+23+…+2n )-n =2(1-2n )1-2-n=2n +1-2-n ..16.(本小题满分12分)(2012·福州高二检测)已知不等式mx 2+nx -1m <0的解集为{x |x <-12,或x >2}. (1)求m ,n 的值;(2)解关于x 的不等式:(2a -1-x )(x +m )>0,其中a 是实数.解:(1)依题意⎩⎪⎨⎪⎧m <0,-12+2=-nm -12×2=-1m2得m =-1,n =32.(2)原不等式为(2a -1-x )(x -1)>0即[x -(2a -1)](x -1)<0. ①当2a -1<1,即a <1时,原不等式的解集为{x |2a -1<x <1}. ②当2a -1=1即a =1时,原不等式的解集为∅.③当2a -1>1即a >1时,原不等式的解集为{x |1<x <2a -1}.17.(本小题满分12分)(2012·黄冈高二检测)已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ; (2)令b n =1a 2n-1(n ∈N +),求数列{b n }的前n 项和T n .解:(1)设等差数列{a n }的公差为d ,因为a 3=7,a 5+a 7=26,所以有⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26解得a 1=3,d =2,所以a n =3+2(n -1)=2n +1; S n =3n +n (n -1)2×2=n 2+2n .(2)由(1)知a n =2n +1, 所以b n =1a 2n -1=1(2n +1)2-1=14·1n (n +1)=14·(1n-1n +1), 所以T n =14·(1-12+12-13+…+1n -1n +1)=14·(1-1n +1)=n 4(n +1),即数列{b n }的前n 项和T n =n4(n +1).18.(本小题满分14分)(2011·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A +sin C =p sin B (p ∈R),且ac =14b 2.(1)当p =54,b =1时,求a ,c 的值;(2)若角B 为锐角,求p 的取值范围.解:(1)当p =54,b =1时,sin A +sin C =54sin B 且ac =14.由正弦定理得a +c =54b =54.解⎩⎨⎧a +c =54ac =14得⎩⎪⎨⎪⎧ a =1c =14或⎩⎪⎨⎪⎧a =14,c =1.(2)由条件可知a +c =pb ,ac =14b 2.∵角B 为锐角. ∴0<cos B <1.当cos B >0时,a 2+c 2-b 2>0即(a +c )2>b 2+2ac . ∴p 2b 2>b 2+12b 2,也就是p 2>32.又由a +c =pb 知p >0, ∴p >62. 当cos B <1时,a 2+c 2-b 2<2ac . 即(a +c )2<b 2+4ac∴p 2b 2<b 2+b 2,也就是p 2<2.∴0<p< 2.综上可知p的取值范围是(62,2).。
北师大版高中数学必修五模块综合测评 .doc

高中数学学习材料鼎尚图文*整理制作模块综合测评 必修5(北师大版)(时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1D. 3解析:据题意有3sin60°=1sin B 得sin B =12,由于a >b ⇒A >B ,故B =π6,所以C =π-π6-π3=π2,c =2b =2.答案:B2.在△ABC 中,a =2b cos C ,则该三角形一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形解析:∵a =2b cos C ,∴a =2b a 2+b 2-c 22ab ,∴b 2=c 2,即b =c . 答案:A3.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d =( )A .-23B .-13 C.13D.23解析:设数列的首项为a 1,公差为d ,则S 10=10a 1+10×92×d =70,即2a 1+9d =14.①又a 10=a 1+9d =10.② 由①②解之可得a 1=4,d =23. 答案:D4.已知等差数列的前n 项和为18,若S 3=1,a n +a n -1+a n -2=3,则n 的值为( )A .9B .21C .27D .36解析:∵S 3=a 1+a 2+a 3=1, 又∵a 1+a n =a 2+a n -1=a 3+a n -2, ∴3(a 1+a n )=1+3,∴a 1+a n =43.又∵S n =n (a 1+a n )2=23n =18,∴n =27,故选C. 答案:C5.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-∞,-1)∪(3,+∞)B .(-1,3)C .(1,3)D .(-∞,1)∪(3,+∞)解析:(ax +b )(x -3)>0等价于⎩⎪⎨⎪⎧ax +b >0,x -3>0,或⎩⎪⎨⎪⎧ax +b <0,x -3<0.∴⎩⎪⎨⎪⎧ x >-1,x >3,或⎩⎪⎨⎪⎧x <-1,x <3.∴x ∈(-∞,-1)∪(3,+∞). 答案:A6.若a >0,b >0且a 2+14b 2=1,则a 1+b 2的最大值是( )A.32B.62C.54D.258解析:a 1+b 2=24a 2(1+b 2)4≤4a 2+(1+b 2)4=54,等号当且仅当⎩⎪⎨⎪⎧4a 2=1+b 2,4a 2+b 2=4时成立,即a =104,b =62时成立. 答案:C7.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A .a =b <cB .a =b >cC .a <b <cD .a >b >c解析:a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=32log 23>1,c =log 32<log 33=1,故答案为B.答案:B8.对于每个自然数n ,抛物线y =(n 2+n )x 2-(2n +1)x +1与x 轴交于A n ,B n 两点,以|A n B n |表示该两点间的距离,则|A 1B 1|+|A 2B 2|+…+|A 2 011B 2 011|的值是( )A.2 0102 011 B.2 0122 011 C.2 0112 010D.2 0112 012解析:|A n B n |=|x 1-x 2|= ⎝ ⎛⎭⎪⎫2n +1n 2+n 2-4n 2+n =1n 2+n =1n (n +1)=1n -1n +1, ∴|A 1B 1|+|A 2B 2|+…+|A 2011B 2011|=⎝⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 011-12 012=2 0112 012. 答案:D9.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m .如果目标函数z =x -y 的最小值为-1,那么实数m 等于( )A .7B .5C .4D .3解析:由题设可知⎩⎪⎨⎪⎧2x -y -1=0,x +y -m =0⇒⎩⎨⎧x =m +13,y =2m -13⇒m +13-2m -13=-1⇒m =5.答案:B10.设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .X +Z =2YB .Y (Y -X )=Z (Z -X )C .Y 2=XZD .Y (Y -X )=X (Z -X )解析:由题意知S n =X ,S 2n =Y ,S 3n =Z . 又∵{a n }是等比数列.∴S n ,S 2n -S n ,S 3n -S 2n 为等比数列,即X ,Y -X ,Z -Y 为等比数列, ∴(Y -X )2=X ·(Z -Y ),即Y 2-2XY +X 2=ZX -XY . ∴Y 2-XY =ZX -X 2,即Y (Y -X )=X (Z -X ). 答案:D第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.已知等差数列{a n }的公差d ≠0,它的第1、5、17项顺次成等比数列,则这个等比数列的公比是__________.解析:已知等差数列{a n }的公差d ≠0,它的第1、5、17项顺次成等比数列,则a 25=a 1·a 16,则(a 1+4d )2=a 1·(a 1+16d ),整理得a 1=2d ,故这个等比数列的公比是q =a 5a 1=a 1+4d a 1=2d +4d 2d =3.答案:312.△ABC 中,A ,B ,C 分别为a ,b ,c 三条边的对角,如果b =2a ,B =A +60°,那么A =__________.解析:∵b =2a ,∴sin B =2sin A . 又∵B =A +60°,∴sin(A +60°)=2sin A , 即3cos A =3sin A .∴cos 2A =3sin 2A .∴4sin 2A =1.∴sin A =12,∴A =30°. 答案:30°13.若a ,b 是正常数,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =b y 时上式取等号.利用以上结论,可以得到函数f (x )=2x +91-2x (x ∈⎝ ⎛⎭⎪⎫0,12)的最小值为__________,取最小值时x 的值为__________.解析:由已知中的信息,可得f (x )=222x +321-2x ≥(2+3)22x +(1-2x )=25,当且仅当22x =31-2x,即x =15时上式取最小值,即[f (x )]min =25.答案:25 1514.已知实数x ,y 满足2x +y ≥1,则u =x 2+y 2+4x -2y 的最小值为__________.解析:由u =x 2+y 2+4x -2y =(x +2)2+(y -1)2-5知,u 表示点P (x ,y )与定点A (-2,1)的距离的平方与5的差.又由约束条件2x +y ≥1知:点P (x ,y )在直线l :2x +y =1上及其右上方.问题转化为求定点A (-2,1)到由2x +y ≥1所确定的平面区域的最近距离.故A 到直线l 的距离为A 到区域G 上点的距离的最小值.d =|2×(-2)+1-1|22+12=45, ∴d 2=165,∴u min =d 2-5=-95. 答案:-95三、解答题:本大题共4小题,满分50分. 15.(12分)解关于x 的不等式x 2-2ax +2≤0(a ∈R ).解:因为Δ=4a 2-8,所以当Δ<0即-2<a <2时,原不等式的解集为∅;(2分)当Δ=0即a =±2,对应的方程有两个相等实根. (4分)当a =2时,原不等式的解集是{x |x =2}; (6分)当a =-2时,原不等式的解集是{x |x =-2}; (8分)当Δ>0时,对应的方程有两个不等实根,分别为x 1=a -a 2-2,x 2=a +a 2-2,且x 1<x 2,所以不等式的解集是{x |a -a 2-2≤x ≤a +a 2-2}.(12分)16.(12分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,cos B =35,且AB →·BC →=-21.(1)求△ABC 的面积; (2)若a =7,求角C .解:(1)∵AB →·BC →=|AB →||BC →|cos(π-B )=-ac cos B =-35ac =-21,∴ac =35.(2分)又∵cos B =35,且B ∈(0,π), ∴sin B =1-cos 2B =45.∴S △ABC =12ac ·sin B =12×35×45=14. (6分)(2)由(1)知ac =35,又a =7,∴c =5. ∴b 2=49+25-2×7×5×35=32. ∴b =4 2.(8分)由正弦定理得b sin B =c sin C .即4245=5sin C ,∴sin C =22,又∵a >c ,∴C ∈⎝⎛⎭⎪⎫0,π2,∴C =π4.(12分)17.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )cos B =b cos C .(1)求内角B 的大小;(2)设m =(sin A ,cos2A ),n =(4k,1)(k >1),m·n 的最大值为5,求k 的值.解:(1)由正弦定理及(2a -c )cos B =b cos C , 得(2sin A -sin C )cos B =sin B cos C ,整理得:2sin A cos B =sin B cos C +sin C cos B =sin(B +C )=sin A ,(4分)∵A ∈(0,π),∴sin A ≠0,故cos B =12,∴B =π3.(6分) (2)m·n =4k sin A +cos2A =-2sin 2A +4k sin A +1, 其中A ∈⎝ ⎛⎭⎪⎫0,2π3,设sin A =t ,t ∈(0,1],则m·n =-2t 2+4kt +1=-2(t -k )2+1+2k 2. (8分)又k >1,故当t =1时,m·n 取得最大值. 由题意得-2+4k +1=5,解得k =32.(12分)18.(14分)已知数列{a n }的前n 项和为S n ,且-1,S n ,a n +1成等差数列,n ∈N *,a 1=1,函数f (x )=log 3x .(1)求数列{a n }的通项公式;(2)设数列{b n }满足b n =1(n +3)[f (a n )+2],记数列{b n }的前n 项和为T n ,试比较T n 与512-2n +5312的大小.解:(1)∵-1,S n ,a n +1成等差数列. ∴2S n =a n +1-1,①当n ≥2时,2S n -1=a n -1,② ①-②,得2(S n -S n -1)=a n +1-a n , ∴3a n =a n +1. ∴a n +1a n=3.(4分)当n =1时,由①得2S 1=2a 1=a 2-1,a 1=1,∴a 2=3.∴a 2a 1=3.∴{a n }是以1为首项,3为公比的等比数列.∴a n =3n -1.(6分) (2)∵f (x )=log 3x , ∴f (a n )=log 33n -1=n -1.∴b n =1(n +3)[f (a n )+2]=1(n +1)(n +3)=12⎝ ⎛⎭⎪⎫1n +1-1n +3.(8分) ∴T n =12⎝⎛12-14+13-15+14-16+15-⎭⎪⎫17+…+1n -1n +2+1n +1-1n +3 =12⎝ ⎛⎭⎪⎫12+13-1n +2-1n +3 =512-2n +52(n +2)(n +3).(10分)比较T n 与512-2n +5312的大小,只需比较2(n +2)(n +3)与312的大小即可. 2(n +2)(n +3)-312=2(n 2+5n +6-156) =2(n 2+5n -150) =2(n +15)(n -10). ∵n ∈N *,∴当1≤n ≤9且n ∈N *时,2(n +2)(n +3)<312,即T n <512-2n +5312; 当n =10时,2(n +2)(n +3)=312,即T n =512-2n +5312; 当n >10且n ∈N *时,2(n +2)(n +3)>312, 即T n >512-2n +5312.(14分)。
最新北师大版高中数学必修五模块测试卷(附答案)

2.设 a,b,c,d∈R,且 a>b,c>d,则下列结论正确的是( A. a+c>b+d B. a-c>b-d C. ac>bd a b D. d>c
3.已知 a,b,c 分别是△ABC 的三个内角 A,B,C 所对的边,若 A=45°,B=60°,a =6,则 b 等于( A. 3 B. 3 ) C. 3 D. 2 )
第 3 页 共 7 页
a b c 18. 同学们对正弦定理的探索与研究中, 得到sinA=sinB=sinC=2R(R 为△ABC 外接圆 的半径).请利用该结论,解决下列问题:
(1)现有一个破损的圆块如图 1,只给出一把带有刻度的直尺和一个量角器,请你设计 一种方案,求出这个圆块的直径的长度. (2)如图 2,已知△ ABC 三个角满足(sin∠ CBA) +(sin∠ ACB) -(sin∠ CAB) =sin∠
8.已知 0<x<1,则 x(3-3x)取最大值时 x 的值为( 1 A.3 1 B.2 3 C.4 2 D.3
9.在△ABC 中,已知 a4+b4+c4=2c2(a2+b2),则 C 等于( A.30° B.60° C.45°或 135° D.120°
)
10.设{an}是任意等比数列,它的前 n 项和,前 2n 项和与前 3n 项和分别为 X,Y,Z, 则下列等式中恒成立的是( )
2 2 2
CBA·sin∠ACB,AD 是△ABC 外接圆直径,CD=2,BD=3,求∠CAB 和直径的长.
参考答案
一、选择题 a5 1 1 3 3 1.D ∵a5=a2q ,∴q =a2=8,∴q=2. 2.A 3.A
第 4 页 共 7 页
4.B 画出可行域如图,分析图可知当直线 u=x+2y 经过点 A、C 时分别对应 u 的最大 值和最小值. 2 2 5.A 因数列{an}是等比数列,a2a4=a3,a4a6=a5,代入条件 a2a4+2a3a5+a4a6=25,得 2 2 a3+2a3a5+a5=25,(a3+a5)2=25,又 an>0,所以 a3+a5=5. 6.C 设 a+b=t,则 a=t-b;代入 a +2b =6 中得,(t-b) +2b =6,整理得 3b2-2tb+t2-6=0,∵b∈R,∴Δ=4t2-12(t2-6)≥0, ∴-3≤t≤3.即(a+b)min=-3. 7.C ∵运算满足 xy=x(1-y),∴不等式(x-a) (x+a)<1 化为(x-a)(1-x-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块练测(北京师大版必修5)一、选择题(本大题共10小题,每小题5分,共50分)1.等差数列{}中,首项=1,公差d=5,如果= 2 006,则序号n等于A.400B.401C.402D.4032.已知{}是等比数列,=2,=,则++…+=A.16(1-)B.16(1-)C.(1-)D.(1-)3.已知数列{}的通项公式为=(n∈),设其前n项和为,则使<-5成立的自然数nA.有最大值63B.有最小值63C.有最大值32D.有最小值324.在△ABC中,角A,B,C的对边分别为a,b,c,若+=+ab,则C=( )A.60°B.120°C.45°D.30°5.在△ABC中,A=60°,AB=2,且△ABC的面积为,则边BC的长为( )A. B.3C. D.76.某海上缉私小分队驾驶缉私艇以40 km/h的速度由A处出发,沿北偏东60°方向航行,进行海面巡逻,当行驶半小时到达B处时,发现北偏西45°方向有一艘船C,若船C位于A处北偏东30°方向上,则缉私艇B 与船C的距离是( )A.5(+) kmB.5(-) kmC.10(+) kmD.10(-) km7.不等式>0的解集是A.(2,+∞)B.(-2,1)∪(2,+∞)C.(-2,1)D.(-∞,-2)∪(1,+∞)8.设实数a,b,x,y满足+=1,+=3,则ax+by的最大值是( )A.2B.C.D.9.若x,y均为整数,且满足约束条件则z=2x+y的最大值为A.-4B.4C.-3D.310.一批救灾物资随26辆汽车从某市以v km/h的速度匀速直达400 km外的灾区,为了安全起见,两辆汽车的间距不得小于km,问这批物资全部运送到灾区最少需A.5 hB.10 hC.15 hD.20 h二、填空题(本大题共6小题,每小题5分,共30分)11.已知数列{}满足=(n∈),且=1,则= .12.已知函数f(x)=a·的图象过点A(2,),B(3,1),若记=(n∈),是数列{}的前n项和,则的最小值是.13.在△ABC中,A,B,C是三个内角,C=30°,则si A+si B-2sin A sin B cos C的值是.14.在△ABC中,若=(+-),那么角C=.15.关于x的不等式+(a+1)x+ab>0的解集是{x|x<-1或x>4},则实数a+b的值为.16.用两种材料做一个矩形框,按要求其长和宽分别选用价格为每米3元和5元的两种材料,且长和宽必须为整数米,现预算花费不超过100元,则做成的矩形框所围成的最大面积是.三、解答题(本大题共6小题,共70分)17.(10分)等差数列{}的前n项和记为,已知=30,=50.(1)求通项;18.(10分)已知数列{}是一个递增的等比数列,数列的前n项和为,且=4,=14.(1)求{}的通项公式;(2)若=,求数列{}的前n项和.19.(10分)在△ABC中,已知sin C=,试判断三角形的形状.20.(13分) 在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且a=2c sin A.(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.21.(13分)研究问题:“已知关于x的不等式a-bx+c>0的解集为(1,2),解关于x的不等式c-bx+a>0”,有如下解法:解:由a-bx+c>0得a-b()+>0,令y=,则<y<1,所以不等式c-bx+a>0的解集为(,1).参考上述解法,已知关于x的不等式+<0的解集为(-2,-1)∪(2,3),求关于x的不等式+<0的解集.22.(14分)某家具厂有方木料90,五合板600,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1,五合板2,生产每个书橱需要方木料0.2,五合板1,出售一张书桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所获利润最大?模块练测(北京师大版必修5)参考答案1.C解析:由=+(n-1)d得2 006=1+(n-1)×5,∴n=402.2.C解析:==2=q==4,=1,当n=2时,所求和为+=10,分别检验A,B,C,D四个选项,只有C符合,所以选C.3.B解析:依题意有==-,所以=-+-+…+-=-=1-,令1-<-5,解得n>62,故使<-5成立的自然数n有最小值63.4.A解析:由余弦定理得cos C===.又∵C∈(0°,180°),∴C=60°.5.A解析:由=AB·AC·sin A得AC=1,由余弦定理得B=A+A-2AB·AC·cos A=+-2×2×1×cos60°=3,∴BC=,故选A.6.D解析:如图,由题意得∠BAC=30°,∠ACB=75°,∴=,∴BC==10(-) km.7.B解析:依题意,原不等式化为(x+2)(x-1)(x-2)>0,解得-2<x<1或x>2,选B.8.B解析:令a=cos θ,b=sin θ,x=cos φ,y=sin φ,则ax+by=cos θ·cos φ+sin θ·sin φ=cos(θ-φ)≤,故选B.9.B解析:作出可行域如图中阴影部分,可知在可行域内的整点有(-2,0),(-1,0),(0,0),(1,0),(2,0),(-1,1),(0,1),(1,1),(0,2),分别代入z=2x+y可知当x=2,y=0时,z最大为4.10.B解析:最后一辆汽车等待出发的时间为=(h),最后一辆汽车行驶全程用时为h,∴ t =+≥2=10,当且仅当=,即v =80 km /h 时等号成立,∴=10 h .故选B.11. 解析:由已知得=,=,…,=,=1,以上各式左右两边分别相乘得=1·····…···=.12.-3 解析:将A ,B 两点坐标代入f (x )得解得∴ f (x )=·,∴ f (n )=·=,∴==n -3.令≤0,即n -3≤0,n ≤3,∴ 数列前3项小于或等于零,故或最小.==-3.13. 解析:si A +si B -2sin A sin B cos C =(+-2ab cos C )==si C =.14. 解析:根据三角形面积公式,得=ab sin C =(+-),∴ sin C =.又由余弦定理,得cos C =,∴ sin C =cos C ,∴ C =.15.-3 解析:由不等式的解集为{x |x <-1或x >4}可得-1,4是方程+(a +1)x +ab =0的两根,∴解得∴ a +b =-3.16.40 解析:设长x m ,宽y m ,∴ 6x +10y ≤100,即3x +5y ≤50.∵ 50≥3x +5y ≥2,当且仅当3x =5y时等号成立,又∵ x ,y 为正整数,∴ 只有当3x =24,5y =25时面积最大,此时面积xy =40 m 2. 17.解:(1)由=+(n -1)d ,=30,=50,得方程组解得所以=2n+10.(2)由=n+·d,=242得方程12n+×2=242,解得n=11或n=-22(舍去),即n=11.18.解:(1)设首项为,公比为q,由条件可得即解得或又∵数列为递增的,∴q=2.∴==.(2)∵===n,∴=,∴==-,∴=++…+=(1-)+(-)+…+(-)=1-=.19.解:∵sin C=,由正弦定理得c(cos A+cos B)=a+b,再由余弦定理得c·+c·=a+b,∴+b-a-b++a=0,∴(a+b)(+-)=0.又a+b>0,∴=+,∴△ABC为直角三角形.20.解:(1)由a=2c sin A及正弦定理得==.∵sin A≠0,∴sin C=.∵△ABC是锐角三角形,∴C=.(2)∵c=,C=,由面积公式得ab sin=,即ab=6.①由余弦定理得+-2ab cos=7,即+-ab=7,∴=7+3ab.②由①②得=25,故a+b=5(负值舍去).21.解:由于不等式+<0的解集为(-2,-1)∪(2,3),则方程+=0的根分别为-2,-1,2,3.由+<0,得+<0,因此方程+=0的根为,1,-,-.所以不等式+<0的解集为(-,-)∪(,1).22.)(1)设只生产书桌x张,可获得利润z元,则x≤300.又z=80x,所以当x=300时,=80×300=24 000(元),即如果只安排生产书桌,最多可生产300张,可获得利润24 000元.(2)设只生产书橱y个,可获利润z元,则y≤450.又z=120y,所以当y=450时,=120×450=54 000(元),即如果只安排生产书橱,最多可生产450个,可获得利润54 000元.(3)设生产书桌x张,书橱y个,利润总额为z元,则z=80x+120y.在平面直角坐标内作出上面不等式组所表示的平面区域,即可行域如图阴影部分所示.作直线l:80x+120y=0,即直线l:2x+3y=0.把直线l向右上方平移至的位置时,直线经过可行域上的点M,此时z=80x+120y取得最大值.由解得点M的坐标为(100,400).所以当x=100,y=400时,=80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所获利润最大.。