初中数学(人教版)第二十二章-一元二次方程教案
一元二次方程的解法教案人教版

- 一元二次方程的定义和解法(直接开方法、因式分解法、求根公式法)
- 一元二次方程的解法检验
- 一元二次方程的应用
在教学过程中,我们通过实例讲解、小组讨论等教学方法,使学生能够更好地理解和掌握一元二次方程的解法。同时,通过实践活动,学生能够运用所学知识解决实际问题。
二、新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的基本概念。一元二次方程是……(详细解释概念)。它是……(解释其重要性或应用)。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了一元二次方程在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调直接开方法、因式分解法和求根公式法这三个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
学生可以通过阅读《数学年鉴》了解一元二次方程的历史背景和发展,对数学有更深的认识。
学生可以通过阅读《数学思维训练》和《一元二次方程的奇妙世界》提高自己的数学思维能力和对一元二次方程的理解。
学生可以观看与一元二次方程相关的视频资源,如数学讲座、教学视频等,从不同角度理解和掌握一元二次方程的解法。
鼓励学生积极参与课后拓展,通过阅读、思考和实践,进一步提高自己的数学素养和解决问题的能力。
针对这些问题和不足,我计划在今后的教学中进行改进。例如,在讲解重点难点部分时,我可以通过更多实例和比较来帮助学生理解,或者通过分组教学,让学生有更多的机会进行实践操作。在实验操作环节,我可以在课堂上安排更多时间,让学生有更多的机会进行实验操作,提高他们对一元二次方程的理解。
课堂小结,当堂检测
1.课堂小结
2.拓展要求
鼓励学生在课后自主学习和拓展,可以结合课堂所学的知识点进行深入阅读和思考。学生在阅读过程中遇到疑问可以随时向老师提问,老师会提供必要的指导和帮助。
人教版九年级数学22章二次函数全章教案

第二十二章二次函数分析与教学建议(一).二次函数在初中数学教材中的分析二次函数是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。
二次函数是描述现实世界变量之间关系的重要的数学模型。
二次函数也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。
二次函数曲线——抛物线,也是人们最为熟悉的曲线之一,喷泉的水流、标枪的投掷等都形成抛物线路径,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。
和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
本章的主要内容有二次函数的概念、二次函数的图象、二次函数的性质和二次函数的应用。
函数是数学的核心概念,也是初中数学的基本概念,函数不仅仅可以看成变量之间的依赖关系,同时,函数的思想方法将贯穿整个数学学习过程。
学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。
本章的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。
二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。
本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。
(二)本章课时安排本章教学时间约需15课时 ,具体安排如下:22.1节 二次函数…………………………7课时22.2用函数的观点看一元二次方程…………………2课时22.3实际问题与二次函数…………………3课时教学活动 小结及测试…………………3课时(三)、本章教学目标分析(1)本章教学要求如下①经历描点法画函数图象的过程。
一元二次方程概念教案

《一元二次方程的概念》教案一、教材分析:一元二次方程是人教版九年级上第二十二章第一节,是中学数学的主要内容,在初中代数中占有重要的地位.实数与代数式的运算、一元一次方程是学习一元二次方程的基础,通过一元二次方程的学习,可以对上述内容加以巩固.同时,一元二次方程也是以后学习(指数方程、对数方程、三角方程以及不等式、函数、二次曲线等内容)的基础.此外,学习一元二次方程对其他学科也有重要意义本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。
(二)教学目标二、教法与学法分析:教法分析:针对九年级学生复习时的知识结构和心理特征,本节课可选择引导探索归纳法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,归纳总结。
这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:复习引入—新知探讨—问题解决—课堂练习—课堂小结—布置作业六部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,回顾和获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。
教学中力求体现“问题情景---数学模型-----概念归纳”的模式。
但是由于学生将实践问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。
同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。
三、教学过程设计教学过程设计例2、将方程3x(x-1一般形式,并写出其中的二次项系数、一次项系数和常数项。
例3、例3、方程(在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?五、小测六、小结归纳1.一元二次方程的概念及其一般形式,能将一个一元二次方程化为一般形式,并正确指出其各项系数2.一元二次方程的根的概念,能判断一个数是否是四、教学评价根据新课程标准的评价理念,在教学过程中,不仅注重学生的参与意识和学生对待学习的态度是否积极,而且注重引导学生尝试从不同角度分析和解决问题。
第22章 二次函数(二)二次函数与一元二次方程 讲义 人教版数学九年级上册

第二十二章二次函数(二)二次函数与一元二次方程知识点一二次函数与一元二次方程的关系要点1.一元二次方程是二次函数的函数值y=0时的情况,反映在图象上就是一元二次方程的根为对应二次函数的图象与x轴交点的横坐标.求二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标,就是令y=0,求ax2+bx+c=0中x的值的问题.此时二次函数就转化为一元二次方程.要点2.二次函数y=ax2+bx+c(a≠0)的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。
这对应着一元二次方程ax2+bx+c=0的根的三种情况:没有实数根,有两个相等的实数根,有两个不相等的实数根.因此一元二次方程根的个数决定了抛物线与x轴的交点的个数;二次函数图象与x轴的交点情况决定一元二次方程根的情况,它们的关系如下表:要点3.二次函数y=ax2+bx+c(a≠0)图象与x轴的交点的个数由∆=b2-4ac的值来确定的.(1)当二次函数的图象与x轴有两个交点时,∆=b2-4ac>0,方程有两个不相等的实根;(2)当二次函数的图象与x轴有且只有一个交点时,∆=b2-4ac=0,方程有两个相等的实根;(3)当二次函数的图象与x轴没有交点时,∆=b2-4ac<0,方程没有实根.课堂练习1.在平面直角坐标系xOy中,二次函数y=x2-4x的图象与x轴的交点坐标是()A.(0,0)B.(4,0)C.(4,0)、(0,0)D.(2,0)、(-2,0)2.已知关于x的一元二次方程ax2+bx+c=0有两个相等的实数根,则抛物线y=ax2+bx+c与x轴的交点个数是()A.0B.1C.2D.33.若函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠04.已知抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,那么关于x的一元二次方程ax2+bx+c=0的两个解为()A.-1,3B.-2,3C.1,3D.3,45.二次函数y=x2-6x-7的图象与x轴的交点坐标是,与y轴的交点坐标是.6.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0),B(5,0),则一元二次方程ax2+bx+c =0(a≠0)的根是.7.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行与y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=-5D. x1=-1,x2=58.已知抛物线y=2(k+1)x2+4kx+2k-3,求k为何值时,抛物线与x轴有两个交点、有唯一交点、没有交点.9.已知关于x 的一元二次方程:x 2-(t -1)x +t -2=0. (1)求证:对于任意实数t ,方程都有实数根;(2)当t 为何值时,二次函数y =x 2-(t -1)x +t -2的图象与x 轴的两个交点的横坐标互为相反数?请说明理由.知识点二 抛物线与x 轴两交点之间的距离 要点1.抛物线与x 轴两交点之间的距离公式:若抛物线y =ax 2+bx +c (a ≠0)与x 轴两交点为A (x 1,0),B (x 2,0)由于x 1、x 2是方程ax 2+bx +c =0的两个根,.有2121acx x a b x x =-=+,则结合两点之间的距离公式:22)()(B A B A x x y y AB -+-=(勾股定理).a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=444)()(222122122121.课堂练习1.已知抛物线y =43x 2415-x +3经过与x 轴相交于A ,B 两点,与y 轴相交于C 点,顶点为D 点,分别求出△ABC 和△ABD 的面积.知识点三利用二次函数的图象求一元二次方程的近似解要点1.我们可以利用二次函数的图象求一元二次方程的解.由于作图或观察可能有误差,由图象求得的解一般是近似的.利用二次函数的图象求一元二次方程的近似解的一般步骤如下:(1)作出二次函数y=ax2+bx+c(a≠0)的图象,由图象确定与x轴交点的个数,即方程解的个数;(2)观察图象与x轴的交点在哪两个数之间,即确定交点的横坐标的取值范围;(3)在两个数之间取值估计,并用计算器估算近似解近似解出现在对应y值正负交替的地方.当x由x1到x2,对应的y值出现y1>0,y2<0(或y1<0<y2)时,则x1,x2中必有一个是方程的近似解.再比较|y1|和|y2|,若|y1|<|y2|,则x1是方程的近似解;若|y1|>|y2|则x2是方程的近似解.利用二次函数的图象求一元二次方程的近似解的常用方法如下表:方法步骤结论方法一直接作出二次函数y=ax2+bx+c(a≠0)的图象图象与x轴的交点的横坐标就是方程ax2+bx+c=0(a≠0)的根方法二先将一元二次方程变为ax2+bx=-c(a≠0),再在同一直角坐标系中画出抛物线y=ax2+bx和直线y=-c两图象交点的横坐标就是方程ax2+bx+c=0(a≠0)的根方法三先将一元二次方程化为ax2=-bx-c(a≠0)移项后得再在同一直角坐标系中画出抛物线y=ax2和直线y=-bx-c两图象交点的横坐标就是方程ax2+bx+c=0(a≠0)的根课堂练习1.已知二次函数y=x2-2x-3.(1)请你将函数解析式化成y=a(x-h)2+k的形式,并在平面直角坐标系中画出y=x2-2x-3的图象(2)利用(1)中的图象结合图象变换表示x2-2x-1=0的根,要求保留作图痕迹,指出方程的图形意义.2.如图,点A (2.18,-0.51),B (2.68,0.54),在二次函数y =ax 2+bx +c (a ≠0)的图象上,则方程ax 2+bx +c =0的一个近似值可能是( ) A.2.18 B.2.68C.-0.51D.2.453.根据下列表格的对应值,判断ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的一个解x 的取值范围是 .知识点四 二次函数与一元二次不等式的关系要点1.二次函数y =ax 2+bx +c (a ≠0)与一元二次不等式ax 2+bx +c >0(a ≠0)及ax 2+bx +c <0(a ≠0)之间的关系如下(x 1<x 2): (1)a <0时:判别式a >0抛物线y =ax 2+bx +c 与x 轴的交点不等式ax 2+bx +c >0 的解集 不等式ax 2+bx +c <0的解集△>01x x <或2x x > 12x x x <<△=01x x ≠(或2x x ≠)无解△<0全体实数 无解x 3.23 3.24 3.25 3.26 ax 2+bx +c-0.06-0.020.030.09(2)a<0时:利用二次函数y=ax2+bx+c(a≠0)的图象解不等式:不等式ax2+bx+c>0(a≠0)的解集是二次函数y=ax2+bx+c(a≠0)的图象位于x轴上方的所有点的横坐标.不等式ax2+bx+c<0(a≠0)的解集是二次函数y=ax2+bx+c(a≠0)的图象位于x轴下方的所有点的横坐标;当二次函数y=ax2+bx+c(a≠0)的函数值y>0时,其自变量x的取值范围是不等式ax2+bx+c>0的解集;当二次函数y=ax2+bx+c(a≠0)的函数值y<0时,其自变量x的取值范围是不等式ax2+bx+c<0的解集.要点2.利用二次函数图象解一元二次不等等式的步骤:(1)将一元二次不等式化为ax2+bx+c>0(或<0)的形式;(2)明确二次项系数a的正负、对称轴在y轴哪侧,并计算b2-4ac的值;(3)作出不等式对应的二次函数y=ax2+bx+c(a≠0)的草图;(4)二次函数在x轴上方的图象对应的函数值大于零,在x轴下方的图象对应的函数值小于零.课堂练习1.解不等式-x2+5x+3>7.2.已知二次函数y=x2-4x+3.(1)求出该二次函数图象的顶点坐标和对称轴;(2)在坐标系中画出该函数的图象;(3)根据图象直接写出不等式x2-4x+3>0的解集.3.已知二次函数y=-x2+2x+3.(1)求其开口方向、对称轴、顶点坐标,并画出这个函数的图象;(2)根据图象,直接写出;①当函数值y为正数时,自变量x的取值范围;②当-2<x<2 时,函数值y的取值范围.4.函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<-4或x>2B.-4<x<2C.x<0或x>2D.0<x<2。
九年级数学上人教版《一元二次方程的概念》教案

《一元二次方程的概念》教案一、教学目标1.理解一元二次方程的概念,能根据定义识别一元二次方程,并了解一元二次方程的有关概念。
2.通过观察、比较、分析等方法,自主发现一元二次方程的特点,培养学生的观察能力、抽象概括能力和归纳能力。
3.初步感受方程的思想方法,培养学生对数学的兴趣和良好的学习习惯。
二、教学重点与难点重点:一元二次方程的概念。
难点:识别一元二次方程,并理解一元二次方程的一般形式。
三、教具准备投影仪、小黑板。
四、教学过程1.复习导入首先引导学生回顾“元”和“次”的含义,并请学生举例说明一元一次方程和二元一次方程的概念。
接着让学生思考:什么样的方程是一元二次方程?请学生尝试给出定义,并引导学生进行讨论和修正,最终得出结论。
然后教师进行总结和强调,让学生明确一元二次方程的概念和一般形式。
2.探索新知教师出示一些方程,让学生判断是否是一元二次方程,并说明理由。
通过这些例题,引导学生深入理解一元二次方程的概念,并掌握识别一元二次方程的方法。
同时,通过比较一元二次方程与一元一次方程、二元一次方程的区别和联系,培养学生的分析能力和归纳能力。
3.巩固练习教师出示一些练习题,让学生自主完成并进行检查和纠正。
通过这些练习题,让学生加深对一元二次方程的认识和理解,并巩固所学知识。
同时,教师可适当出示一些拓展题目,引导学生进一步思考和探索一元二次方程的应用和拓展。
4.课堂小结教师引导学生回顾本节课所学内容,并总结一元二次方程的概念和一般形式。
同时强调识别一元二次方程的方法和注意事项,以及解题时需要注意的问题。
最后教师可适当进行情感教育和价值观的培养,引导学生感受数学的思想方法和实际应用价值,培养学生对数学的兴趣和良好的学习习惯。
5.布置作业教师布置适量的练习题,让学生巩固所学知识并拓展思维。
同时提醒学生注意解题规范和解题策略的选择,培养学生的解题能力和数学素养。
一元二次方程说课稿

一元二次方程说课稿一、教材分析(一)、教材的地位和作用《一元二次方程》是人教版九年制义务教育课程标准实验教科书九年级上册第二十二章第(1)节内容。
一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。
在此之前,学生已学习了一元一次方程,因式分解等知识,这为过渡到本节的学习起着铺垫作用。
同时为今后学习一元二次不等式及二次函数打下基础。
(二)、根据上述教材分析,考虑到学生已有的认知结构心理特征,特制定如下教学目标:①知识与技能目标:理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。
②过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。
③情感态度与价值观目标:通过对《一元二次方程》的教学,激发学生学习数学的兴趣,体会数学的快乐,形成主动学习的态度。
(三)、教学重难点及关键介于学生对知识理解和掌握程度的差异与不同,立足渗透类比这一重要思想方法,又根据大纲的要求,所以我确定教学重点为:由实际问题列出一元二次方程和一元二次方程的概念。
教学难点为:由实际问题列出一元二次方程及准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。
因此这节课的关键则为通过问题情景的设计,课堂实验的研讨,引导学生发现,分析和解决问题。
二、学生分析任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。
这就要求我们教师必须从学生的认知结构和心理特征出发。
九年级的学生较为活泼开朗,对新鲜事物的好奇心也较强。
使得他们很快就能融入课堂,接受知识也事半功倍。
当他们在解决实际问题时,发现列出的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想需要进一步研究和探索有关方程的问题。
从而激发学生学习的兴趣,促进学生个性的形成和发展。
要让学生成为课堂真正的主人,变厌学为乐学。
第二十二章第2节降次——解一元二次方程(一)(1)

二.知识要点:
1.形如x2=p或(mx+n)2=p(p≥0)的方程用开平方法将一元二次方程降次转化为两个一元一次方程.
2.配方的原理及过程
原理:完全平方公式a2±2ab+b2=(a±b)2.
过程:以方程2x2-3x-1=0为例.
第一步:二次项系数化为1,移项得x2-x=,即x2-2×x×=;
(2)计算b2-4ac的值;
(3)若b2-4ac≥0,则代入求根公式求解.
6.对于一元二次方程ax2+bx+c=0(a≠0),
(1)当b2-4ac>0时,方程有实数根: ;
(2)当b2-4ac=0时,方程有实数根:x1=x2=;
(3)当b2-4ac<0时,方程没有实数根.
三.重点难点:
本讲重点是用配方法和公式法解一元二次方程,难点是配方的过程和对求根公式推导过程的理解.
x===±,
x1=+,x2=-.
评析:用公式法解一元二次方程的一般步骤是:①把方程化为一般形式,确定a、b、c的值;②求出b2-4ac的值;③若b2-4ac≥0,则把a、b、c及b2-4ac的值代入一元二次方程的求根公式x=,求出x1、x2,若b2-4ac<0,则方程没有实数根.
例4.不解方程判断下列方程根的情况.
第二步:方程两边同时加上()2,x2-2×x×+()2=+()2.
第三步:完成配方,(x-)2=.
通过配方,方程的左边变形为含x的完全平方形式(mx+n)2=p(p≥0),可直接开平方,将一个一元二次方程转化为两个一元一次方程.这样解一元二次方程的方法叫做配方法.
3.用配方法解一元二次方程的步骤:
(1)把二次项系数化为1;
分析:方程(1)是一元二次方程的一般形式,且二次项系数为1,所以直接移项、配方、求解即可;方程(2)要先把二次项系数化为1;方程(3)不要急于打开括号,可把(x+1)2看成一个整体合并,可避免重复配方.
初中数学精品教案:一元二次方程--教学设计

人教版数学九年级上册21.1 一元二次方程教学设计一、内容和内容解析1.内容一元二次方程的概念;根据实际问题中的数量关系建立方程模型.2.内容解析一元二次方程是在一元一次方程基础上“次”的推广,它是解决诸多实际问题的桥梁。
本节课以实际问题为背景,建立数学模型,列出一元二次方程,引导学生观察这些方程的共同特点,并类比一元一次方程,归纳得出一元二次方程的概念,体现了研究代数学问题的一般方法;一元二次方程一般形式也是对具体方程从“元”(未知数的个数)、“次数”和“项数”等角度进行归纳的结果.这样编排有利于学生理解并接收新知识,有充分地反映出一元二次方程以及有关概念来源于现实世界,是刻画现实世界的一个有效数学模型.一元二次方程的学习是一次方程、方程组及不等式知识的延续和深化,也是函数等重要数学思想方法的基础。
本节课是研究一元二次方程的导入课,它为进一步学习一元二次方程的解法及简单应用起到铺垫作用。
基于以上分析,本节课的重点是:由实际问题列出一元二次方程和形成一元二次方程的概念.二、教学目标与解析1.教学目标(1)体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念.(2)使学生理解并能够掌握一元二次方程的一般形式以及确定项和系数.(3)了解一元二次方程根的概念.2.目标解析(1)通过建立一元方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程.学生能了解一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,培养学生分析问题和解决问题的能力及用数学思维的意识.(2)将不同形式的一元二次方程统一为一般形式,让学生从数学符号的角度,完善一元二次方程的概念.学生能够将一元二次方程整理成一般形式,准确的说出方程的各项系数.(3)会判断一个数是否是一元二次方程的根.三、教学问题诊断分析我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学生学习可化为一元二次方程的分式方程、二次函数等知识的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十二章一元二次方程主备人:刘鸿智教材内容本单元教学的主要内容:1.一元二次方程及其有关概念,一元二次方程的解法(开平方法、配方法、公式法、分解因式法),一元二次方程根与系数的关系,运用一元二次方程分析和解决实际问题.2.本单元在教材中的地位和作用:教学目标1.一分析实际问题中的等量关系并求解其中未知数为背景,认识一元二次方程及其有关概念。
2.根据化归思想,抓住“降次”这一基本策略,熟练掌握开平方法、配方法、公式法和分解因式法等一元二次方程的基本解法.3.经历分析和解决问题的过程,体会一元二次方程的教学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。
教学重点、难点重点:1.一元二次方程及其有关概念2.一元二次方程的解法(开平方法、配方法、公式法、分解因式法)3.一元二次方程根与系数的关系以及运用一元二次方程分析和解决实际问题。
难点:1.一元二次方程及其有关概念2.一元二次方程的解法(配方法、公式法、分解因式法),3.一元二次方程根与系数的关系以及灵活运用课时安排本章教学时约需课时,具体分配如下(供参考)22.1 一元二次方程 1课时22.2 降次 7 课时22.3 实际问题与一元二次方程 3 课时教学活动、习题课、小结22.1 一元二次方程教学目的1.使学生理解并能够掌握整式方程的定义.2.使学生理解并能够掌握一元二次方程的定义.3.使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式.教学重点、难点重点:一元二次方程的定义.难点:一元二次方程的一般形式及其二次项系数、一次项系数和常数项的识别.教学过程复习提问1.什么叫做方程?什么叫做一元一次方程?2.指出下面哪些方程是已学过的方程?分别叫做什么方程?(l)3x+4=l; (2)6x-5y=7;3.结合上述有关方程讲解什么叫做“元”,什么叫做“次”.引入新课1.方程的分类:(通过上面的复习,引导学生答出)学过的几类方程是没学过的方程有x2-70x+825=0, x(x+5)=150.这类“两边都是关于未知数的整式的方程,叫做整式方程.”像这样,我们把“只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程.”据此得出复习中学生未学过的方程是(4)一元二次方程:x2-70x+825=0, x(x+5)=150.同时指导学生把学过的方程分为两大类:2.一元二次方程的一般形式注意引导学生考虑方程x2-70x+825=0和方程x(x+5)=150,即x2+5x=150,可化为:x2+5x-150=0.从而引导学生认识到:任何一个一元二次方程,经过整理都可以化为ax2+bx+c=0(a≠0)的形式.并称之为一元二次方程的一般形式.其中ax2,bx,c分别称为二次项、一次项、常数项;a,b分别称为二次项系数、一次项系数.【注意】二次项系数a是不等于0的实数(a=0时,方程化为bx+c=0,不再是二次方程了);b,c可为任意实数.例 把方程5x(x+3)=3(x-1)+8化成一般形式.并写出它的二次项系数、一次项系数及常数项.课堂练习 P27 1、2题归纳总结1.方程分为两大类:判别整式方程与分式方程的关键是看分母中是否含有未知数;判别一元一次方程,一元二次方程的关键是看方程化为一般形式后,未知数的最高次数是一次还是二次.2.一元二次方程的定义:一个整式方程,经化简形成只含有一个未知数且未知数的最高次数是2,则这样的整式方程称一元二次方程.其一般形式是ax 2+bx+c=0(a ≠0),其中b ,c 均可为任意实数,而a 不能等于零.布置作业:习题22.1 1、2题.达标测试1.在下列方程中,一元二次方程的个数是( )①3x 2+7=0,②ax 2+bx+c=0,③(x+2)(x-3)=x 2-1,④x 2-x 5+4=0, ⑤x 2-(2+1)x+2=0,⑥3x 2-x4+6=0 A.1个 B.2个 C.3个 D.4个2.关于x 的一元二次方程3x 2=5x-2的二次项系数,一次项和常数项,下列说法完全正确的是( )A.3,-5,-2B.3,-5x,2C.3,5x,-2D.3,-5,23.方程(m+2)m x +3mx+1=0是关于x 的一元二次方程,则( )A.m=±2B.m=2C.m=-2D.m ≠±24.若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是5.方程4x 2=3x-2+1的二次项是 ,一次项是 ,常数项是 课后反思:22.2解一元二次方程第一课时直接开平方法教学目的1.使学生掌握用直接开平方法解一元二次方程.2.引导学生通过特殊情况下的解方程,小结、归纳出解一元二次方程ax2+c=0(a>0,c<0)的方法.教学重点、难点重点:准确地求出方程的根.难点:正确地表示方程的两个根.教学过程复习过程回忆数的开方一章中的知识,请学生回答下列问题,并说明解决问题的依据.求下列各式中的x:1.x2=225; 2.x2-169=0;3.36x2=49; 4.4x2-25=0.一元二次方程的解也叫做一元二次方程的根.解题的依据是:一个正数有两个平方根,这两个平方根互为相反数.即一般地,如果一个数的平方等于a(a≥0),那么这样的数有两个,它们是互为相反数.引入新课我们已经学过了一些方程知识,那么上述方程属于什么方程呢?新课例1 解方程 x2-4=0.解:先移项,得x2=4.即x1=2,x2=-2.这种解一元二次方程的方法叫做直接开平方法.例2 解方程 (x+3)2=2.练习:P28 1、2归纳总结1.本节主要学习了简单的一元二次方程的解法——直接开平方法.2.直接法适用于ax2+c=0(a>0,c<0)型的一元二次方程.布置作业:习题22.1 4、6题达标测试1.方程x2-0.36=0的解是A.0.6B.-0.6C.±6D.±0.62.解方程:4x 2+8=0的解为A.x 1=2 x 2=-2B.2,221-==x xC.x 1=4 x 2=-4D.此方程无实根3.方程(x+1)2-2=0的根是 A.21,2121-=+=x x B. 21,2121+-=+=x x C. 21,2121+=--=x x D. 21,2121--=+-=x x4.对于方程(ax+b)2=c 下列叙述正确的是A.不论c 为何值,方程均有实数根B.方程的根是ab c x -= C.当c ≥0时,方程可化为:c b ax c b ax -=+=+或 D.当c=0时,ab x =5.解下列方程: ①.5x 2-40=0 ②.(x+1)2-9=0③.(2x+4)2-16=0 ④.9(x-3)2-49=0课后反思 第二课时配方法教学目的1.使学生掌握用配方法解一元二次方程的方法.2.使学生能够运用适当变形的方法,转化方程为易于用配方法求解的形式,来解某些一元二次方程.并由此体会转化的思想.教学重点、难点重点:掌握配方的法则.难点:凑配的方法与技巧.教学过程复习过程用开平方法解下列方程:(1)x 2=441; (2)196x 2-49=0;引入新课我们知道,形如x 2-A=0的方程,可变形为x 2=A(A ≥0),再根据平方根的意义,用直接开平方法求解.那么,我们能否将形如ax 2+bx+c=0(a >0)的一类方程,化为上述形式求解呢?这正是我们这节课要解决的问题.新课我们研究方程x 2+6x+7=0的解法:将方程视为:x 2+2·x ·3=-7, 即 x 2+2·x ·3+32=32-7,∴ (x+3)2=2,这种解一元二次方程的方法叫做配方法.这种方法的特点是:先把方程的常数项移到方程的右边,再把左边配成一个完全平方式,如果右边是非负数,就可以进一步通过直接开平方法来求出它的解.例1 解方程x 2-4x-3=0.配方法解之.在解的过程中,注意介绍配方的法则.例2 解方程2x 2+3=7x .练习:P34 1、2题归纳总结应用配方法解一元二次方程ax 2+bx+c=0(a ≠0)的要点是:(1)化二次项系数为1;(2)移项,使方程左边为二次项和一次项,右边为常数;(3)方程两边各加上一次项系数一半的平方,使左边配成一个完全平方式.布置作业:习题22.2 1、3题达标测试1.方程x 2-a 2=(x-a)2(a≠0)的根是A.aB.0C.1或aD.0或a2.已知关于x 的方程(m+3)x 2+x+m 2+2m-3=0一根为0,另一根不为0,则m 的值为A.1B.-3C.1或-3D.以上均不对3.若x 2-mx+41是一个完全平方式,则m= A.1 B.-1 C.±1 D.以上均不对4.方程x 2=5的解是 ,方程(x-1)2=5的解是 ,方程(3x-1)2=5的解是5.①+-x x 212 =(x- )2 ②++x x 252 =(x+ )2 课后反思: 第三课时求根公式法教学目的1.使学生掌握一般一元二次方程的求根公式的推导过程,并由此培养学生的分析、综合和计算能力.2.使学生掌握公式法解一元二次方程的方法.教学重点、难点重点:要求学生正确运用求根公式解一元二次方程.难点:1.求根公式的推导过程.2.含有字母参数的一元二次方程的公式解法.教学过程复习提问提问:当x 2=c 时,c ≥0时方程才有解,为什么?练习:用配方法解下列一元二次方程(1)x 2-8x=20; (2)2x 2-6x-1=0.引入新课我们思考用配方法解一般形式的一元二次方程,应如何配方来进行求解?新课(引导学生讨论)用配方法解一元二次方程ax 2+bx+c=0(a ≠0)的步骤.解:∵a ≠0,两边同除以a ,得把常数项移到方程右边,并两边各加上一次项系数的一半的平方,得(a ≠0)的求根公式.用此公式解一元二次方程的方法叫做公式法.应用求根公式解一元二次方程的关键在于:(1)将方程化为一般形式ax 2+bx+c=0(a ≠0);(2)将各项的系数a ,b ,c 代入求根公式.例1 解方程x 2-3x+2=0.例2 解方程2x 2+7x=4.例5 解关于x 的方程 x 2-m(3x-2m+n)-n 2=0.练习P37 1题归纳总结1.本节课我们推导出了一元二次方程ax 2+bx+c=0(a ≠0)的求根公式,即要重点让学生注意到应用公式的大前提,即b 2-4ac ≥0.2.应注意把方程化为一般形式后,再用公式法求解.布置作业:习题22.2 5、8、10题达标测试1.若代数式4x 2-2x-5与2x 2+1的值互为相反数,则x 的值为A.1或23-B.1或32- C.-1或32 D.1或23 2.对于一元二次方程ax 2+bx+c=0,下列叙述正确的是A.方程总有两个实数根B.只有当b 2-4ac ≥0时,才有两实根C.当b 2-4ac<0时,方程只有一个实根D.当b 2-4ac=0时,方程无实根3.已知三角形两边长分别是1和2,第三边的长为2x 2-5x+3=0的根,则这个三角形的周长是 A.4 B.214 C.4或214 D.不存在 4.如果分式3322---x x x 的值为0,则x 值为 A.3或-1 B.3 C.-1 D.1或-35.把2)3(32x x +=+化成ax 2+bx+c=0(a ≠0)的形式后,则a= ,b= ,c= 6.若分式222---x x x 的值为0,则x=7.已知x=-1是关于x 的一元二次方程ax 2+bx+c=0的根,则a c ab -=__________. 8.若a 2+b 2+2a-4b+5=0,则关于x 的方程ax 2-bx+5=0的根是___________.课后反思:第四课时因式分解法教学目的使学生掌握应用因式分解法解某些系数较为特殊的一元二次方程的方法.教学重点、难点重点:用因式分解法解一元二次方程.难点:将方程化为一般形式后,对左侧二次三项式的因式分解.教学过程复习提问1.在初一时,我们学过将多项式分解因式的哪些方法?2.方程x2=4的解是多少?引入新课方程x2=4还有其他解法吗?新课众所周知,方程x2=4还可用公式法解.此法要比开平方法繁冗.本课,我们将介绍一种较为简捷的解一元二次方程的方法——因式分解法.我们仍以方程x2=4为例.移项,得 x2-4=0,对x2-4分解因式,得 (x+2)(x-2)=0.我们知道:∴ x+2=0,x-2=0.即 x1=-2,x2=2.由上述过程我们知道:当方程的一边能够分解成两个一次因式而另一边等于0时,即可解之.这种方法叫做因式分解法.例1 解下列方程:(1)x2-3x-10=0; (2)(x+3)(x-1)=5.在讲例1(1)时,要注意讲应用十字相乘法分解因式;讲例1(2)时,应突出讲将方程整理成一般形式,然后再分解因式解之.例2 解下列方程:(1)3x(x+2)=5(x+2); (2)(3x+1)2-5=0.在讲本例(1)时,要突出讲移项后提取公因式,形成(x+2)(3x-5)=0后求解;再利用平方差公式因式分解后求解.注意:在讲完例1、例2后,可通过比较来讲述因式分解的方法应“因题而宜”.例3 解下列方程:(1)3x 2-16x+5=0 ;(2)3(2x 2-1)=7x .练习:P40 1、2题归纳总结对上述三例的解法可做如下总结:因式分解法解一元二次方程的步骤是1.将方程化为一般形式;2.把方程左边的二次三项式分解成两个一次式的积;(用初一学过的分解方法)3.使每个一次因式等于0,得到两个一元一次方程;4.解所得的两个一元一次方程,得到原方程的两个根.布置作业:习题22.2 6、10题达标测试1.对方程(1)(2x-1)2=5,(2)x 2-x-1=0,(3)x x x -=-3)3(选择合适的解法是A.分解因式法、公式法、分解因式法B.直接开平方法、公式法、分解因式法C.公式法、配方法、公式法D.直接开平方法、配方法、公式法2.方程2x(x-3)=5(x-3)的根为 A.25=x B.x=3 C.3,2521==x x D.52=x 3.若x 2-5∣x ∣+4=0,则所有x 值的和是A .1 B.4 C.0 D.1或45.若方程x 2+ax-2a=0的一根为1,则a 的取值和方程的另一根分别是A.1,-2B.-1,2C.1,2D.-1,-25.已知3x 2y 2-xy-2=0,则x 与y 之积等于6.关于x 的一元二次方程(m+2)x 2+x-m 2-5m-6=0有一根为0,则m= 。