导数定义及公式(教学备用)
导数的概念及计算

导数的概念及计算一.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→ f (x 0+Δx )-f (x 0)Δx=0lim x ∆→ Δy Δx 为函数y =f (x )在x =x 0处的导数,记作y ′|x =x 0 =f ′(x 0) =0lim x ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)值就是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).二.基本初等函数的导数公式三.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 四.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′.考向一 利用公式及运算法则求导【例2】求下列函数的导数2311(1)()y x x x x =++ (2) (3) ()234(21)x y x =+ (5)sin2xy e x -= 【举一反三】1.下列求导运算正确的是( )A .(3x )′=x •3x−1B .(2e x )′=2e x (其中e 为自然对数的底数)C .(x 2+1x )′=2x +1x 2 D .(x cosx)′=cosx−xsinx cos 2x2.求下列函数的导数: (1)y =√x 5+√x 7+√x 9√x ; (2)y =x ⋅tanx (3)y =x n ⋅lg x ;(4)y =1x +2x 2+1x 3;考向二 复合函数求导【例3】求下列函数导数(1)y =sin(2x +1) ()(2)cos2f x x x =⋅ (3)()cos ln y x =【举一反三】求下列函数的导数: (1)y =; (2)2()5log 21y x =+.(3)sin()eax b y +=;(提示:设e uy =,sin u v =,v ax b =+,x u v xy y u v ''''=⋅⋅)(4)2(πsin 2)3y x =+; 考向三 利用导数求值【例4】(1)f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0= . 2.若f (x )=x 2+2x ·f ′(1),则f ′(0)= .3. 已知函数()f x 的导函数为()f x ',且满足()()2e ln f x xf x +'=,则()e f '= 。
导数的定义和求导规则

导数的定义和求导规则一、导数的定义1.1 极限的概念:当自变量x趋近于某一数值a时,函数f(x)趋近于某一数值L,即称f(x)当x趋近于a时的极限为L,记作:lim (x→a) f(x) = L1.2 导数的定义:函数f(x)在点x=a处的导数,记作f’(a)或df/dx|_{x=a},表示函数在某一点的瞬时变化率。
定义如下:二、求导规则2.1 常数倍法则:如果u(x)是可导函数,c是一个常数,则cu(x)也是可导函数,且(cu(x))’ = c*u’(x)。
2.2 幂函数求导法则:如果u(x) = x^n,其中n为常数,则u’(x) = n*x^(n-1)。
2.3 乘积法则:如果u(x)和v(x)都是可导函数,则(u(x)v(x))’ = u’(x)v(x) +u(x)v’(x)。
2.4 商法则:如果u(x)和v(x)都是可导函数,且v(x)≠0,则(u(x)/v(x))’ =(u’(x)v(x) - u(x)v’(x))/(v(x))^2。
2.5 和差法则:如果u(x)和v(x)都是可导函数,则(u(x) + v(x))’ = u’(x) + v’(x),(u(x) - v(x))’ = u’(x) - v’(x)。
2.6 链式法则:如果y = f(u),u = g(x),则y关于x的导数可以表示为dy/dx = (dy/du) * (du/dx)。
2.7 复合函数求导法则:如果y = f(g(x)),则y关于x的导数可以表示为dy/dx = (df/dg) * (dg/dx)。
2.8 高阶导数:如果f’(x)是f(x)的一阶导数,则f’‘(x)是f’(x)的一阶导数,以此类推。
2.9 隐函数求导法则:如果方程F(x,y) = 0表示隐函数,则y关于x的导数可以表示为(dy/dx) = -F_x / F_y,其中F_x和F_y分别是F(x,y)对x和y的偏导数。
三、导数的应用3.1 函数的单调性:如果f’(x) > 0,则f(x)在区间内单调递增;如果f’(x) < 0,则f(x)在区间内单调递减。
导数知识点概念归纳总结

导数知识点概念归纳总结1. 导数的定义导数的定义是建立在函数的极限概念上的。
设函数y = f(x),在点x处的导数定义为:\[ f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \]其中,Δx表示x的增量,当Δx趋于0时,上式的极限存在则称函数在点x处可导,这个极限的值就是函数在点x处的导数。
导数表示了函数在某一点处的变化率,可以理解为函数在这一点处的斜率。
2. 导数的性质导数具有一些基本性质,例如:(1)可导函数一定是连续函数,但连续函数不一定可导。
(2)导数存在的充要条件是函数在该点处有切线。
(3)可导函数在一点的导数等于该点的切线的斜率。
(4)导数具有线性运算性质,即\[ (f(x) \pm g(x))' = f'(x) \pm g'(x) \],\[ (k \cdot f(x))' = k \cdot f'(x) \],其中f(x)和g(x)都是可导函数,k是常数。
(5)复合函数的导数公式,如果y = f(u),u = g(x),则\[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \]。
3. 导数的计算方法对于简单的函数,可以通过导数的定义进行计算。
但是对于一些复杂的函数,使用导数的定义进行计算过于繁琐,因此需要借助一些常用的导数公式和方法来进行计算。
(1)常用函数的导数公式常用函数的导数公式包括:- 幂函数的导数:\[ (x^n)' = nx^{n-1} \],其中n是常数。
- 指数函数的导数:\[ (a^x)' = a^x \ln a \],其中a是常数。
- 对数函数的导数:\[ (\log_a x)' = \frac{1}{x \ln a} \],其中a是常数。
- 三角函数的导数:\[ (\sin x)' = \cos x \],\[ (\cos x)' = -\sin x \],\[ (\tan x)' = \sec^2 x \]。
高中数学导数的定义及求导公式解题技巧

高中数学导数的定义及求导公式解题技巧导数是高中数学中的重要概念,它描述了函数在某一点处的变化率。
理解导数的定义以及掌握求导公式是解决各类导数题目的关键。
本文将介绍导数的定义及求导公式,并通过具体的题目分析和解答,帮助读者掌握解题技巧。
一、导数的定义导数的定义是函数在某一点处的变化率,用数学符号表示为f'(x)或dy/dx。
导数可以理解为函数图像上某一点处的切线斜率,也可以表示为函数的瞬时变化率。
对于函数y=f(x),若在点x处导数存在,则导数的定义为:f'(x) = lim(x→0) (f(x+h) - f(x))/h其中lim表示极限,h表示x的增量。
这个定义告诉我们,导数可以通过求函数在某一点的极限来计算。
二、求导公式在高中数学中,我们常用的函数求导公式有以下几种:1. 常数函数的导数为0:f(x) = c,则f'(x) = 0,其中c为常数。
2. 幂函数的导数:f(x) = x^n,则f'(x) = nx^(n-1),其中n为正整数。
3. 指数函数的导数:f(x) = a^x,则f'(x) = ln(a) * a^x,其中a为常数。
4. 对数函数的导数:f(x) = log_a(x),则f'(x) = 1/(x * ln(a)),其中a为常数。
5. 三角函数的导数:f(x) = sin(x),则f'(x) = cos(x);f(x) = cos(x),则f'(x) = -sin(x);f(x) = tan(x),则f'(x) = sec^2(x)。
以上是常用的求导公式,掌握它们可以帮助我们快速求解各类导数题目。
三、解题技巧在解题过程中,我们可以运用导数的定义和求导公式来解决各类导数题目。
下面通过具体的题目来说明解题技巧。
题目一:求函数f(x) = 2x^3 - 3x^2 + 4x - 5在点x=2处的导数。
解析:根据求导公式,我们可以依次求出每一项的导数,然后将它们相加。
高中导数公式表

高中导数公式表导数是一种非常重要的数学概念,在大学物理,化学,生物等学科中都有着广泛的应用。
它是研究表面积变化,角速度变化,声能传播等,以及其他曲线变化的重要工具。
它可以说是定量描述变化的利器。
下面我们来看看高中导数公式表。
1、基本导数公式:(1)恒定函数的导数是零:f(x)=0(2)任何一种多项式的导数等于它本身:f(x)=ax^n,其中a为常数,n为自然数,则 f(x)=anx^{n-1} (3)e为自然对数的底数,e^x导数等于本身:f(x)=e^x, f(x)=e^x(4)sin x cos x导数分别为:f(x)=sin x, f(x)=cos xf(x)=cos x, f(x)=-sin x(5)ln x导数等于 1/x:f(x)=ln x, f(x)=1/x2、基本微分链式法则:(1)链式法则初等形式:若 dz/dx=dy/dx,则 dz/dy=dz/dx×dx/dy(2)链式法则延伸形式:若 dz/dy=dz/du×du/dv×dv/dx,则dz/dx=dz/du×du/dv×dv/dx3、定义域:(1)函数在取得有效值时,它的定义域被称为有效域;(2)函数在取得无效值时,它的定义域被称为无效域;(3)定义域内的值称为定义域内值;(4)定义域外的值称为定义域外值。
4、极限:(1)极限定义:极限是指当x的取值越来越接近某一个特定的值的时候,函数的值也越来越接近某一个特定的值,这个特定的值就叫做函数的极限。
(2)极限的计算:极限的计算有两个主要的方法,一种是用数字的方法,即通过给出很多的实数值点,来估算函数的极限;另一种是用公式的方法,即通过函数曲线特性来解决极限问题。
5、微分:(1)确定微分式:微分式是求出y变化率的公式,即可以确定函数变化的速率,其根据函数本质(即模型的特性)来决定。
(2)微分的计算:可以利用解析法进行计算,也可以利用数值法近似计算,甚至可以利用机器学习算法来计算,如神经网络等。
导数的两种定义公式法

导数的两种定义公式法【原创实用版】目录一、导数的定义与公式1.导数的定义2.导数的公式二、导数的两种定义公式1.函数在某点的导数2.函数在某区间的平均导数三、导数的实际应用1.函数的切线斜率2.函数的凹凸性3.函数的最值正文导数是微积分学中的一个重要概念,它表示函数在某一点或某一区间的变化率。
导数有两种定义公式,分别是函数在某点的导数和函数在某区间的平均导数。
一、导数的定义与公式导数是函数在某一点的瞬时变化率,也可以理解为函数在某一点的切线斜率。
导数的定义公式为:f"(x) = lim(h->0) [f(x+h) - f(x)] / h其中,f(x) 表示函数,f"(x) 表示函数在 x 点的导数,h 表示自变量的增量。
当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限即为函数在 x 点的导数。
二、导数的两种定义公式1.函数在某点的导数函数在某点的导数可以通过导数的定义公式求解。
例如,对于函数f(x) = x^2,我们可以求得在 x=1 处的导数:f"(1) = lim(h->0) [f(1+h) - f(1)] / h= lim(h->0) [(1+h)^2 - 1] / h= lim(h->0) [h^2 + 2h] / h= lim(h->0) h + 2= 2因此,函数 f(x) = x^2 在 x=1 处的导数为 2。
2.函数在某区间的平均导数函数在某区间的平均导数可以通过以下公式求解:f"(a) = (f(b) - f(a)) / (b - a)其中,a 和 b 分别表示函数在某区间的端点。
例如,对于函数 f(x) = x^2,我们可以求得在区间 [0, 1] 上的平均导数:f"(0) = (f(1) - f(0)) / (1 - 0)= (1 - 0) / (1 - 0)= 1因此,函数 f(x) = x^2 在区间 [0, 1] 上的平均导数为 1。
导数公式和法则

导数公式和法则一、导数的定义导数是微积分学中的一个重要概念,指的是函数在某一点处的变化率。
在数学上,导数通常用符号f′(f)来表示,表示函数f(f)在点f处的导数。
导数的定义如下:若函数f(f)在f=f处可导,则导数f′(f)定义为:$$ f'(a) = \\lim\\limits_{h \\to 0} \\frac{f(a + h) - f(a)}{h} $$其中f ff0,表示取极限时f逐渐趋近于0。
二、导数的公式对于常见函数,有一些常用的导数公式和法则,可以帮助我们计算导数。
下面列举了一些常见函数的导数公式:1.常数函数f(f)=f的导数为f′(f)=0,其中f为常数。
2.幂函数f(f)=f f的导数为 $f'(x) = n \\cdot x^{n-1}$,其中f为任意实数。
3.指数函数f(f)=f f的导数为f′(f)=f f。
4.对数函数 $f(x) = \\ln{x}$的导数为 $f'(x) =\\frac{1}{x}$,其中f>0。
5.三角函数的导数:–正弦函数 $f(x) = \\sin{x}$ 的导数为 $f'(x) = \\cos{x}$。
–余弦函数 $f(x) = \\cos{x}$ 的导数为 $f'(x) = -\\sin{x}$。
–正切函数 $f(x) = \\tan{x}$ 的导数为 $f'(x) = \\sec^2{x}$。
三、导数的法则在计算导数时,可以通过一些常见的法则来简化问题。
以下是一些常用的导数法则:1.常数倍法则:若 $f(x) = c \\cdot g(x)$,则 $f'(x) = c\\cdot g'(x)$。
2.和差法则:若 $f(x) = g(x) \\pm h(x)$,则 $f'(x) =g'(x) \\pm h'(x)$。
3.乘积法则:若 $f(x) = g(x) \\cdot h(x)$,则 $f'(x) =g'(x) \\cdot h(x) + g(x) \\cdot h'(x)$。
导数公式及导数的运算法则

导数公式及导数的运算法则导数是微积分中的重要概念,用来描述函数在其中一点处的变化率。
导数公式和导数的运算法则是使用导数进行计算和推导的基本工具。
下面将介绍导数的定义、导数公式以及导数的运算法则。
一、导数的定义对于给定的函数y=f(x),在其中一点x=a处的导数定义如下:f'(a) = lim┬(h→0)(f(a+h)-f(a))/h其中,lim表示极限,h为x在a点的增量。
该定义表明导数表示函数在其中一点处的斜率或变化率。
二、导数的主要公式1.常数的导数公式如果f(x)=c,其中c为常数,则f'(x)=0。
2.幂函数的导数公式如果f(x) = x^n,其中n为正整数,则f'(x) = nx^(n-1)。
3.指数函数的导数公式如果f(x)=e^x,则f'(x)=e^x。
指数函数e^x的导数仍然是e^x。
4.对数函数的导数公式如果f(x) = ln(x),其中ln表示以e为底的对数,则f'(x) = 1/x。
5.三角函数的导数公式- sin函数的导数:f(x) = sin(x),则f'(x) = cos(x)。
- cos函数的导数:f(x) = cos(x),则f'(x) = -sin(x)。
- tan函数的导数:f(x) = tan(x),则f'(x) = sec^2(x),其中sec^2表示secant的平方。
6.反三角函数的导数公式- arcsin函数的导数:f(x) = arcsin(x),则f'(x) = 1/√(1-x^2)。
- arccos函数的导数:f(x) = arccos(x),则f'(x) = -1/√(1-x^2)。
- arctan函数的导数:f(x) = arctan(x),则f'(x) = 1/(1+x^2)。
导数具有一些基本的运算法则,可以用于计算复杂函数的导数。
1.常数乘以函数的导数法则如果f(x)的导数是f'(x),则(cf(x))' = cf'(x),其中c为常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数:
1.若f(x)=c,则f‘(x)=
2. 若f(x)=x n(n∈Q∗),则f‘(x)=
3. 若f(x)=sin x,则f‘(x)=
4.若f(x)=cos x,则f‘(x)=
5. 若f(x)= a x,则f‘(x)=
6. 若f(x)= e x,则f‘(x)=
7. 若f(x)= log a x,则f‘(x)=
8. 若f(x)= ln x,则f‘(x)=
9.【f(x)±g(x)】′=
10.【f(x).g(x)】′=
11.【f(x)
g(x)
】′=
12.【cf(x)】′=
13. y=f(u),u=g(x),则y=f(g(x));
y x′=
sin2x=
(e−x)′=
##导数:一般地,函数y=f (x )在x=x 0处的瞬时变化率是
Δy Δx ∆x→0lim =
f (x 0+∆x )−f(x 0)
∆x
∆x→0
lim ,称函数y=f (x )在x=x 0处的导数,记作:
f ‘
(x )或y ‘
|x =x 0。
即 f ‘
(x 0)=Δy Δx
∆x→0lim =
f (x 0+∆x )−f(x 0)
∆x
∆x→0
lim 。
##函数y=f (x )在点x 0处的导数的几何意义,就是曲线y=f (x )在点P (x 0,f (x 0))处的切线斜率,也就是说曲线y=f (x )在点P (x 0,f (x 0))处的切线斜率是f ‘(x 0)。
相应地,过p 点的切线方程为:
y-f (x 0)=f ‘(x 0)(x-x 0)
##导函数:如果函数y=f (x )在开区间(a ,b )内每一点都可导,就说函数f (x )在开区间(a ,b )内可导。
若函数f (x )在开区间(a ,b )内可导,则f (x )在(a ,b )内每一点的导数构成一个新函数,把这一新函数叫做f (x )在开区间(a ,b )内的导函数(简称导数)记作f ‘(x )或y ‘或y ‘x 。
即f ‘
(x )=y ‘
=
Δy Δx
∆x→0lim =
f (x+∆x )−f(x)∆x
∆x→0
lim
一、函数的单调性
一般地,与其导函数的正负有如下关系:在某个区间(a,b)内,如果f‘(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f‘(x)<0那么函数y=f(x)在这个区间内单调递减。
1.如果f‘(x)>0,则f(x)严格增函数;如果f‘(x)<0,则f(x)严格减函数。
2.如果在(a,b)内恒有f‘(x)=0,那么f(x)在(a,b)内是常数。
3.f‘(x)>0是f(x)在此区间上为增函数的充分而不必要条件。
求函数单调区间的步骤:
1.确定y=f(x)的定义域;
2.求导数f‘(x),求出f‘(x)=0的根;
3.函数的无定义点和f‘(x)=0的根将f(x)的定义域分成若干区间,列表考查这若干区间内f‘(x)的符号,进而确定f(x)的单调区间。
注意:A.如果一个函数具有相同单调性的区间不止一个,哪个这些单调区间不能用“U”连接,只能用逗号或“和”字隔开。
B.求函数单调区间时易忽视函数的定义域。
应优先考虑函数的定义域。
二、函数的极值:
1.定义,设函数f(x)在点x0附近有定义,如果对x0附近的所有点,都有f(x)<f(x0),则称f(x0)是函数f(x)的一个
极大值;如果对x0附近的所有点,都有f(x)>f(x0),则称
f(x0)是函数f(x)的一个极小值。
极大值点、极小值点统称极值点,极大值和极小值统称极值。
2.判断f(x0)是极大值或极小值的方法:
第一步,确定函数的定义域,求导数f‘(x);
第二步,求方程f‘(x)=0的根;
第三步,检查f‘(x)在f‘(x)=0的根左右两侧的值的符号;
1.如果“左正右负”,那么f(x)在这个根处取到极大值;
2.如果“左负右正”,那么f(x)在这个根处取到极小值;
3. 如果左右不改变符号,即都为正或都为负,则f(x)在这
个根处无极值。
在此步聚中,最好利用方程f‘(x)=0的根,顺次将函数的定
义区间分成若干个开区间,并列表,依表格内容得出结论。
※函数在极值点的导数为0,但导数为0的点不一定是极值点,如函数f(x)=x3,点x=0就不是极值点,但f‘(0)=0;
※函数的极大值不一定大于极小值;
※在给定的一个区间上,函数可能有若干个极值点,也可能不存在极值点。
三函数的最值:
设函数y=f(x)是定义在区间[a,b]上的函数,y=f(x)在
区间(a,b)内有导数,求y=f(x)在[a,b]上的最大值与最小值,其步骤为:
先求函数y=f(x)在(a,b)内的极值;再将函数y=f(x)的各极值与端点的函数值f(a)、f(b )比较,其中最大的一个是最大值,最小的一个是最小值。
如果在区间[a,b]上,函数y=f(x)的图象是一条连续不
断的曲线,则函数在[a,b]上一定能够取得最大值和最小值,并且函数的最值必在极值点或端点处取得。
※提示:
1.若函数y=f(x)在区间[a,b]上单调递增,则f(a)为最小值,f(b)为最大值;若若函数y=f(x)在区间[a,b]上单调递减,则f(a)为最大值,f (b)为最小值。
2.图象连续不断的函数在开区间(a,b)上不一定有最大(小)值,如果图象连续不断的函数在开区间(a,b)上只有一个极值,则该极值就是最值。
3.函数的极值不一定是最值,求函数的最值与函数的极值不同的是,在求
可导函数的最值时,不需要对各导数为0的点讨论,其是极大值还是极小值,
只需将导数为0的点的函数和端点函数值时行比较。
在解决实际生活中优化问题注意事项:1必须考虑是否符合实际意义2只
有一个点使f‘(x)=0的情形,如果在点有最大(小)值,不与端点比较也能
知道是最大(小)值。
3不仅注意将问题涉及变量关系用函数关系表示出来,而且还应确定函数关系式中自变量的定义区间。
四.定积分及应用
定积分定义:若函数y=f (x )在区间[a ,b]上连续用分点a =x 0<x 1<⋯⋯<x i−1<x i <x n =b,将区间[a ,b]等分成n 个小区间,在每个小区间[x i−1,x i ]上任取一点ξi (i=1,2,3,⋯n ),
作和式∑f (ξi )n i=1∆x =∑b−a n
f (ξi )n i=1
,当n →∞时,上述和式无
限接近某个常数,这个常数叫函数y=f (x )在区间[a ,b]上定
积分,记作∫f (x )b a dx 。
即∫f (x )b a
dx =n→∞lim
∑b−a n
f (ξi )n i=1
其中 f (x )叫做被积函数,a 做积分下限,b 做积分上限。
定积分∫f (x )b
a dx 不是一个表达式,是一个常数。
定积分几何意义:从几何上看,若函数y=f (x )在区间[a ,b]上连续且恒有f (x )≥0,那么定积分∫f (x )b
a dx 表示直线x=a,x=
b (a ≠b ),y=0和曲线y=f (x )所围成的曲边梯形的面积;
定积分性质:∫kf (x )b a dx =k ∫f (x )b
a dx (k 为常数) ∫[f (x )±g(x)]
b a dx =∫f (x )b a dx ±∫g (x )b
a dx ∫f (x )
b a dx =−∫f (x )a
b dx 以上是线性性质,下面是对区间可加性
∫f (x )c a dx =∫f (x )b a dx +∫f (x )c
b
dx (a <b <c )
微积分基本定理--牛顿-莱布尼兹公式
一般地,如果f (x )在区间[a ,b]上的连续函数,并且F‘
(x )=f (x ),那么∫f (x )b
a dx =F(
b )-F(a )。
定积分的简单应用: 一、 求平面图形面积的应用 1. 定积分与平面图形面积的关系
通过定积分运算可以发现,定积分的值可以取正也可以取负,也可为0.
(1) 当对应的曲边梯形位于X轴上方,定积分值取正值,且
等于曲边梯形的面积;
(2) 当对应的曲边梯形位于X轴下方,定积分值取负值,且
等于曲边梯形面积的相反数;
(3) 当位于X轴上方的曲边梯形的面积等于位于X轴下方的
曲边梯形的面积时,定积分的值为0,且等于位于X轴上方的曲边梯形的面积减去位于X轴下方的曲边梯形的面积。
2. 利用定积分求平面图形面积的步骤
(1) 画出草图,在直角坐标系中画出曲线或直线的大致图像; (2) 借助图形确定被积分函数,求出交点坐标,确定积分上、
下限;
(3) 将曲边梯形的面积表示成若干个定积分的和;
(4) 计算并求出结果 二、 定积分在物理学中的应用
1. 求变速直线运动的路程 s=∫v (t )b
a dt 2. 求变力F 所做的功 w=∫F (x )
b a
dx。