最新整理初中数学试题试卷初中二年级数学竞赛试卷.doc
初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
数学初二竞赛试题及答案

数学初二竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的立方等于它本身,那么这个数可以是:A. 0B. 1C. -1D. 以上都是3. 一个等腰三角形的两边长分别为3cm和4cm,那么它的周长可能是:A. 10cmB. 11cmC. 12cmD. 13cm4. 下列哪个选项是完全平方数?A. 12B. 13C. 14D. 155. 一个数的相反数是它本身,这个数是:A. 0C. -1D. 26. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 0D. 非负数7. 如果一个角是直角的一半,那么这个角的度数是:A. 45°B. 60°C. 90°D. 120°8. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和,那么第五项是:A. 4B. 5C. 6D. 79. 一个圆的直径是10cm,那么它的面积是:A. 25π cm²B. 50π cm²C. 100π cm²D. 200π c m²10. 一个等差数列的前三项是2, 5, 8,那么它的公差是:A. 1C. 3D. 4二、填空题(每题4分,共20分)1. 一个数的平方根是3,那么这个数是________。
2. 如果一个三角形的三个内角分别是30°,60°,90°,那么这个三角形是________三角形。
3. 一个数的立方根是2,那么这个数是________。
4. 一个数的倒数是1/2,那么这个数是________。
5. 一个圆的半径是5cm,那么它的直径是________cm。
三、解答题(每题10分,共50分)1. 已知等差数列的前三项是3, 6, 9,求这个数列的第10项。
2. 一个直角三角形的两个直角边长分别是6cm和8cm,求这个三角形的斜边长。
数学初二竞赛试卷及答案

一、选择题(每题5分,共20分)1. 下列各数中,绝对值最小的是:A. -3B. -2C. 0D. 12. 如果一个数的平方等于4,那么这个数是:A. ±2B. ±1C. ±4D. ±33. 下列各式中,正确的是:A. 3x + 2 = 2x + 5B. 2(x + 3) = 2x + 6C. 3x - 2 = 2x - 5D. 2(x - 3) = 2x - 94. 一个长方形的长是8厘米,宽是5厘米,它的周长是:A. 16厘米B. 20厘米C. 24厘米D. 32厘米5. 如果a > b,那么下列不等式中不正确的是:A. a + 3 > b + 3B. a - 3 < b - 3C. a + 2 > b + 2D. a - 2 < b - 2二、填空题(每题5分,共25分)6. 若x² - 4x + 3 = 0,则x的值为______。
7. 若a² - 5a + 6 = 0,则a的值为______。
8. 若3a - 2 = 5,则a的值为______。
9. 若2x + 3 = 11,则x的值为______。
10. 若x - 7 = 3,则x的值为______。
11. 若a² = 25,则a的值为______。
12. 若|a| = 5,则a的值为______。
三、解答题(每题10分,共30分)13. 解方程:2x - 5 = 3x + 1。
14. 解方程:x² - 6x + 9 = 0。
15. 已知等腰三角形的底边长为10厘米,腰长为13厘米,求该三角形的周长。
四、应用题(每题15分,共30分)16. 一辆汽车从甲地出发,以每小时60千米的速度行驶,3小时后到达乙地。
然后汽车以每小时50千米的速度返回甲地,返回时遇到一辆自行车,自行车从乙地出发,速度为每小时15千米,自行车与汽车相遇后继续向甲地行驶,汽车与自行车相遇后继续行驶,直到返回甲地。
初二数学竞赛试卷及答案

一、选择题(每题3分,共30分)1. 已知一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为()A. 24cmB. 26cmC. 28cmD. 30cm2. 下列分数中,分子分母互质的是()A. $\frac{2}{3}$B. $\frac{4}{5}$C. $\frac{6}{7}$D. $\frac{8}{9}$3. 下列数中,能被3整除的是()A. 258B. 267C. 278D. 2874. 下列图形中,具有轴对称性的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形5. 下列方程中,方程的解为x=2的是()A. 2x-1=3B. 2x+1=3C. 2x-1=5D. 2x+1=56. 下列数中,平方根是整数的是()A. 16B. 25C. 36D. 497. 下列代数式中,合并同类项后的结果为3x的是()A. 2x+1xB. 2x-1xC. 2x+2xD. 2x-2x8. 下列函数中,函数值为正数的x值有()A. x=1B. x=2C. x=3D. x=49. 下列数中,是质数的是()A. 17B. 18C. 19D. 2010. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形二、填空题(每题5分,共25分)11. 若a=3,b=5,则a+b的值为______。
12. 下列分数中,最简分数是______。
13. 下列数中,能被5整除的是______。
14. 下列方程中,方程的解为x=3的是______。
15. 下列数中,平方根是正数的是______。
16. 下列代数式中,合并同类项后的结果为5x的是______。
17. 下列函数中,函数值为0的x值有______。
18. 下列数中,是合数的是______。
19. 下列图形中,面积最小的是______。
20. 若a=2,b=4,则a×b的值为______。
三、解答题(每题15分,共30分)21. 已知一个等腰三角形的底边长为8cm,腰长为10cm,求该三角形的面积。
初中二年级数学竞赛试题卷

初中二年级数学竞赛试题卷一、 选择题:(每题1分,共10分)1.若a<0,[ ] A .1 B .1 C .2a 1D .12a2.若一个数的平方是则这个数的立方是[ ]A.或C.或或-3.在四边形ABCD 中ΔABD =1, S ΔBCD 则 ∠ABC+∠CDA 等于[ ]A .150°B .180°.C .200°D .210°.4.一个三角形的三边长分别为2,4,a ,如果a 的数值恰是方程4|x-2|2-4|x-2|+1=0的根,那么三角形的周长为 [ ]A.712; B.812; C.9; D.10. 5.如果实数x ,y 满足等式2x+x 2+x 2y 2+2=-2xy ,那么x+y 的值是 [ ] A.1. B .0. C .1 .D .2.6.设为正整数,如果2x 2+197xy+2y 2=1993成立,那么n 的值为[ ] A .7.B .8.C .9. D.107.如图81,在△ABC 中,∠A=36°,AB=AC 、BD 平分∠ABC .若△ABD 的周长比△BCD 的周长多1厘米,则BD 的长是 [ ]A .0.5厘米.B .1厘米.C .1.5厘米.D .2厘米 8.方程x 2-2x-5|x-1|+7=0的所有根的和是 [ ] A .2 . B .0. C .-2 . D .4.9.如图82,将△ABC 的三边AB ,BC ,CA 分别延长至B ',C ',A ', 且使BB '=AB ,CC '=2BC ,AA '=3AC .若S △ABC =1,那么S △A 'B 'C '是 [ ] A .15. B .16. C .17. D .18.10.如果方程|3x|-ax-1=0的根是负数,那么a 的取值范围是 [ ] A .a >3. B.a ≥3. C .a <3. D .a ≤3.二、填空题(每题1分,共10分)1.若两个数的平方和为637,最大公约数与最小公倍数的和为49,则这两个数是______.2.设x 1,x 2是方程x 2+px+1993=0的两个负整数根,则221212x x x x +=_______.3.1111x +=-的解是____________. 4.如图83,四边形ABCD 的对角线AC 和BD 相交于O 点, 如果S △ABD =5,S △ABC =6,S △BCD =10,那么S △OBC ______. 5.设二次方程ax 2+bx+c=0的两根为x 1,x 2,记S 1=x 1+1993x 2,S 2=x 12+1993x 22,┉┉,S n =x 1n +1993x 2n ,则aS 1993+bS 1992+cS 1991=__________. 6.6.设[x]表示不大于x 的最大整数,(例如[3]=3,[3.14=3]),那么[┉7.已知以x 为未知数的二次方程abx 2-(a 2+b 2)x+ab=0,其中a ,b 是不超过10的质数,且a >b ,那么两根之和超过3的方程是______.8.如图84,在△ABC 中,∠BAC=90°,AD ⊥BC 于D ,∠BCA 的平分线交AD 于F ,交AB 于E ,FG ∥BC 交AB 于G .AE=4,AB=14,则BG=______.9.已知k 为整数,且关于x 的方程(k 2-1)x 2-3(3k-1)x+18=0有两个不相等的正整数根,则k=______.10.某校奖励学生,初一获奖学生中,有一人获奖品3件,其余每人获奖品7件;初二获奖学生中,有一人获奖品4件,其余每人获奖品9件.如果两个年级获奖人数不等,但奖品数目相等,且每个年级奖品数大于50而不超过100,那么两个年级获奖学生共有______人.三、解答题:(写出推理、运算的过程及最后结果.每题5分,共10分)1. 如图85,三所学校分别记作A ,B ,C .体育场记作O ,它是△ABC 的三条角平分线的交点.O ,A ,B ,C 每两地之间有直线道路相连.一支长跑队伍从体育场O 点出发,跑遍各校再回到O 点.指出哪条路线跑的距离最短(已知AC >BC >AB ),并说明理由.2.如果求a2的值.答案与提示一、选择题提示:5.等式2x+x2+x2y2+2=-2xy化简为(x+1)2+(xy+1)2=0.∴x+1=0,xy+1=0.解之得x=-1,y=1.则x+y=0.∴应选(B).6.由题设得:xy=1,x+y=4n+2由2x2+197xy+2y2=1993,得2(x+y)2+193xy=1993.将xy=1,x+y=4n+2代入上式得:(4n+2)2=900,即4n+2=30.∴n=7.∴应选(A).7.由∠A=36°,AB=AC,可得∠B=∠C=72°.∴∠ABD=∠CBD=36°,∠BDC=72°.∴AD=BD=BC.由题意,1=(AB+AD+BD)-(BD+BC+CD)=AB-CD=AC-CD=AD=BD.∴应选(B).8.原方程化为(x2-2x+1)-5|x-1|+6=0.即|x-1|2-5|x-1|+6=0.∴|x-1|=2,或|x-1|=3.∴x1=-1,x2=3,x3=-2,x4=4.则x1+x2+x3+x4=4.∴应选(D).9.连结CB',∵AB=BB',∴S△BB'C=S△ABC=1,又CC'=2BC∴S△B'CC'=2S△BB'C=2.∴S△BB'C'=3.同理可得S△A'CC'=8,S△A'B'A=6.∴S△A'B'C'=3+8+6+1=17.∴应选(D).10.原方程为|3x|=ax+1.(1)若a=3,则|3x|=3x+1.当x≥0时,3x=3x+1,不成立.(2)若a>3.综上所述,a≥3时,原方程的根是负数.∴应选(B).另解:(图象解法)设y1=|3x|,y2=ax+1。
初二数学竞赛题(含答案)

初中数学竞赛初二第1试试题一、选择题(每小题7分共56分)1、某商店售出两只不同的计算器,每只均以90元成交,其中一只盈利20%,另一只亏本20%,则在这次买卖中,该店的盈亏情况是( )A 、不盈不亏B 、盈利2.5元C 、亏本7.5元D 、亏本15元2、设20012000,20001999,19991998===c b a ,则下列不等关系中正确的是( ) A 、c b a << B 、b c a << C 、a c b << D 、a b c <<3、已知,511ba b a +=+则b a a b +的值是( ) A 、5 B 、7 C 、3 D 、31 4、已知xB x A x x x +-=--1322,其中A 、B 为常数,那么A +B 的值为( ) A 、-2 B 、2C 、-4D 、45、已知△ABC 的三个内角为A 、B 、C ,令B A A C C B +=+=+=γβα,,则γβα,,中锐角的个数至多为( )A 、1B 、2C 、3D 、06、下列说法:(1)奇正整数总可表示成为14+n 或34+n 的形式,其中n 是正整数;(2)任意一个正整数总可表示为n 3或13+n 或23+n 的形式,其中;(3)一个奇正整数的平方总可以表示为18+n 的形式,其中n 是正整数;(4)任意一个完全平方数总可以表示为n 3或13+n 的形式A 、0B 、2C 、3D 、47、本题中有两小题,请你选一题作答:(1)在19991002,1001,1000 这1000个二次根式中,与2000是同类二次根式的个数共有……………………( )A 、3B 、4C 、5D 、6(2)已知三角形的每条边长是整数,且小于等于4,这样的互不全等的三角形有( )A 、10个B 、12个C 、13个D 、14个8、钟面上有十二个数1,2,3,…,12。
将其中某些数的前面添上一个负号,使钟面上所有数之代数和等于零,则至少要添n 个负号,这个数n 是( )A 、4B 、5C 、6D 、7二、填空题(每小题7分共84分)9、如图,XK ,ZF 是△XYZ 的高且交于一点H ,∠XHF =40°,那么∠XYZ = °。
初二竞赛数学试题大全及答案

初二竞赛数学试题大全及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于16,这个数是什么?A. 4B. -4C. 4或-4D. 16答案:C3. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A4. 一个数的立方是-27,这个数是什么?A. -3B. 3C. -27D. 27答案:A5. 如果一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 0答案:C6. 一个数的倒数是1/4,这个数是什么?A. 4B. -4C. 1/4D. 4/1答案:A7. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π答案:B8. 一个数的平方根是4,这个数是什么?A. 16B. -16C. 4D. 8答案:A9. 如果一个数的立方根是2,这个数是什么?A. 8B. 6C. 4D. 2答案:A10. 一个数的对数以10为底是2,这个数是什么?A. 100B. 10C. 20D. 200答案:B二、填空题(每题3分,共15分)11. 一个数的平方是36,这个数是_________。
答案:±612. 一个数的立方是64,这个数是_________。
答案:413. 一个圆的周长是2π,那么它的半径是_________。
答案:114. 如果一个数的绝对值是10,那么这个数可以是_________。
答案:±1015. 一个数的对数以2为底是3,这个数是_________。
答案:8三、解答题(每题5分,共55分)16. 证明勾股定理。
答案:略(根据直角三角形的两条直角边的平方和等于斜边的平方进行证明)17. 解一元二次方程:x² - 5x + 6 = 0。
答案:(x - 2)(x - 3) = 0,解得 x₁ = 2,x₂ = 3。
初二数学竞赛测试卷及答案

一、选择题(每题5分,共20分)1. 下列各数中,不是有理数的是()A. √4B. -πC. 0.25D. 1/22. 已知a、b是方程x² - 3x + 2 = 0的两个根,则a + b的值为()A. 3B. -3C. 1D. 23. 一个长方形的长是6cm,宽是4cm,它的对角线长是()A. 8cmB. 10cmC. 12cmD. 16cm4. 在直角坐标系中,点A(2,3)关于原点对称的点的坐标是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (3,-2)5. 一个数的平方是64,那么这个数可能是()A. 8B. -8C. 8或-8D. 无法确定二、填空题(每题5分,共25分)6. 0.5的平方根是______。
7. 如果a² = 9,那么a的值是______。
8. 下列各数中,正数是______。
9. 3x - 5 = 2的解是______。
10. 下列各图中,是圆的是______。
三、解答题(每题10分,共30分)11. 解下列方程:(1) 2(x - 1) - 3 = 5(2) 5x + 2 = 3x - 712. 一个等腰三角形的底边长为10cm,腰长为8cm,求这个三角形的周长。
13. 已知一个数列的前三项分别是3,6,9,求这个数列的第四项。
四、应用题(每题15分,共30分)14. 小明骑自行车去图书馆,他骑行的速度是每小时12公里,骑行了1小时后,他离图书馆还有15公里。
请问小明骑自行车去图书馆需要多少时间?15. 某商店将一台电脑标价为5000元,打八折后,再赠送顾客一台价值200元的显示器。
请问顾客实际需要支付的金额是多少?答案一、选择题1. B2. A3. B4. A5. C二、填空题6. ±√27. ±38. 3,6,99. x = 110. ②三、解答题11. (1) x = 4(2) x = -312. 周长 = 10 + 8 + 8 = 26cm13. 第四项是 9 + 3 = 12四、应用题14. 小明离图书馆的距离是 15公里,以每小时12公里的速度骑行,需要的时间是 15 / 12 = 1.25小时,即1小时15分钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中二年级数学竞赛试卷
班级:姓名:
卷首语:没有比人更高的山,没有比脚更长的路。
亲爱的同学们请相信自
己,沉着应答,你一定能愉快地完成这次竞赛之旅,祝你成功!
一、填空题(每题3分,共39分):
1、在如图的“五角星”中,∠A+∠B+∠C+∠D+∠E等于度;
2、不等边△ABC的三边长为整数a、b、c,且a2+b2-6a-4b+13=0,则c=。
3、如图,△ABC的三条高AD、BE、CF交于点H,则△ABH的三条高分别是,而这三条高所在直线相交于点。
4、已知三角形两边长分别为5和7,则第三边上的中线长x的取值范围是。
5、如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,点C落在C′BC与BC′之间的数量关系是__;
6、已知y-3与x成正比例,且x=2,y=7,则y=-4,x=__;
7、已知直线y=ax+2与两坐标轴围成的面积为1,则a=__;
8、一次函数y=(2a-3)+a+2在-2≤x≤1内的一段都在x轴上方,则a的取值范围__;
9、平面坐标系中,点A(x+1,y+2),B(y,2x-2)关于x轴对称,则x=__;y=__;
10、a x=3,a y=5,则a x+y=__;a x+2y=__;
11、直角三角形的三边长分别是5,12,13,若此三角形内一点到三
顶点的距离均为x,则x= .
12、某音像社对外出租光盘的收费方法是:每张光盘在出租的头三天每天收0.8元, 以后每天收0.4元,那么一张光盘在租出后第n
天应收租金元。
13、写出直线y=-2x-3关于y轴对称的直线的解析式_________。
二、选择题(每题3分,共30分)
1、点p1是p(3,-5)关于x轴的对称点,且正比例函数过p1,则此函数的表达式()。
A B C D
2、若点P(,b)的纵坐标变为原来的2倍,然后右移2个单位后,坐标为(1,4),那么点P原来的坐标是()
A. B. (2,2) C. D.
3、函数的x的取值范围是()。
A B C D
4、下列的命题中,正确的命题是()
A.有两边和第三边上的高对应相等的两个三角形全等
B.有两边和其中一边上的高对应相等的两个三角形全等
C.有两边和其中一边的对角对应相等的两个三角形全等
D.有两边和第三边上的中线对应相等的两个三角形全等
5、三角形两边长分别为3和9,第三边上的高h的取值范围是()
A.0<h<3 B.0<h≤3 C.3<h<9 D.3≤h<9
6、下面各题给出的三条线段,其中可以组成三角形的是()
A.3、4、7 B.a∶b∶c=1∶2∶4
C.a2+1,a2,a2+3 D.3a、5a、2a+1(a>1)
7、如图的△BDC′是将矩形纸片ABCD沿对角线BD折叠得到的,图中(包括实线,虚线在内)共有全等三角形()
A.2对B.3对 C.4对D.5对
8、如图,△ABC的三条角平分线AD、BE、CF交于点G,则与∠EGC 互余的角是()
A. ∠CGD B.∠FAG C. ∠ECG D. ∠FBG
9、如图,已知点D在AC上,点B在AE上,△ABC≌△DBE,且∠BDA=∠A,若∠A∶∠C=5∶3,则∠DBC等于()
A.3O°B.25°C.20°D.15°
10、若A(a,b),B(b,a)表示同一点,那么这一点在()(A)、第一、三象限内两坐标轴夹角平分线上;
(B)、第一象限内两坐标轴夹角平分线上;
(C)、第二、四象限内两坐标轴夹角平分线上;
(D)、平行于y轴的直线上;
三、解答题(第1、2题每题8分,第3题15分,共31分)
1、求直线y=x+2,直线y=4x,直线y=x所围成的三角形的面积。
2、如图,BD为长方形ABCD的对角线,BD=10,∠ABD=150 ,求长方形ABCD的面积。