微专题11等差数列与等比数列(教学案)

合集下载

等差数列与等比数列教案

等差数列与等比数列教案

等差数列与等比数列教案本文为等差数列与等比数列教案,按照教案的格式进行书写。

教案主题:等差数列与等比数列一、教学目标1. 了解等差数列和等比数列的定义;2. 掌握求解等差数列和等比数列的通项公式;3. 能够应用等差数列和等比数列解决实际问题;4. 培养学生的逻辑思维和问题解决能力。

二、教学内容及方法1. 等差数列a. 定义:等差数列是指数列中相邻两项之差保持恒定的数列。

b. 公式:第n项公式为an = a1 + (n-1)d。

c. 求和公式:Sn = (a1 + an) * n / 2。

d. 实例演练:通过练习题让学生熟悉等差数列的求解过程。

2. 等比数列a. 定义:等比数列是指数列中相邻两项之比保持恒定的数列。

b. 公式:第n项公式为an = a1 * r^(n-1)。

c. 求和公式:Sn = (a1 * (r^n - 1)) / (r - 1),其中r不等于1。

d. 实例演练:通过练习题让学生掌握等比数列的求解方法。

三、教学步骤1. 等差数列教学a. 引入:通过引入一组连续的数字,介绍等差数列的概念,并引发学生对等差数列的思考。

b. 定义:给出等差数列的定义,并通过示例展示等差数列的规律。

c. 公式推导:由示例引出等差数列的通项公式和求和公式的推导过程,让学生理解推导的思路。

d. 实例演练:让学生通过计算练习题来掌握等差数列的求解方法。

e. 总结归纳:引导学生总结等差数列的性质和应用场景。

2. 等比数列教学a. 引入:通过一组倍增或倍减的数字,介绍等比数列的概念,并引发学生对等比数列的思考。

b. 定义:给出等比数列的定义,并通过示例展示等比数列的规律。

c. 公式推导:由示例引出等比数列的通项公式和求和公式的推导过程,让学生理解推导的思路。

d. 实例演练:让学生通过计算练习题来掌握等比数列的求解方法。

e. 总结归纳:引导学生总结等比数列的性质和应用场景。

四、教学资源1. 教师准备:黑板、彩色粉笔、练习题;2. 学生使用:练习题、作业本。

等差数列与等比数列的应用备课教案

等差数列与等比数列的应用备课教案

等差数列与等比数列的应用备课教案【教学目标】1. 了解等差数列与等比数列的定义和性质;2. 掌握等差数列与等比数列的常用公式和求和公式;3. 熟练运用等差数列与等比数列解决实际问题;4. 培养学生分析和解决问题的能力。

【教学重点】1. 等差数列与等比数列的定义和性质;2. 等差数列与等比数列的应用。

【教学难点】1. 运用等差数列与等比数列解决实际问题;2. 发展学生分析和解决问题的能力。

【教学准备】1. 教材:教材中关于等差数列与等比数列的理论知识和例题;2. 教具:黑板、彩色粉笔、教学课件。

【教学过程】一、导入(5分钟)1. 创设情境:假设你是班里的财务部长,请设计一份合理的奖学金方案,以激励同学们努力学习。

2. 提问引导:你会如何设计这份奖学金方案呢?有什么考虑因素?二、引入新知(10分钟)1. 教师引导:同学们,在设计奖学金方案时,我们需要考虑到同学们的学习成绩和努力程度,这可以通过等差数列和等比数列来表示和计算。

2. 展示概念:请看下面的数列,它们是等差数列还是等比数列?a) 1, 3, 5, 7, 9,...b) 2, 4, 8, 16, 32,...3. 教师解释:等差数列指的是一个数列中的相邻两项之间的差值相等,等比数列指的是一个数列中的相邻两项之间的比值相等。

三、等差数列的应用(20分钟)1. 展示例题:小明每天往学校走5公里,他记录了连续7天的步行距离。

请问他7天内总共走了多少公里?2. 教师引导:这是一个等差数列问题,我们可以通过等差数列的求和公式来计算。

3. 教师讲解:等差数列的求和公式为:Sn = n/2 * (a1 + an),其中Sn 表示前n项和,a1表示首项,an表示末项。

4. 解题过程:根据题意可知,n = 7,a1 = 5,an = 5 + (7 - 1) * 5 = 35。

代入求和公式得:S7 = 7/2 * (5 + 35) = 7/2 * 40 = 140。

等差数列与等比数列数学教案

等差数列与等比数列数学教案

等差数列与等比数列数学教案引言:数列是数学中一种重要的数学概念,是指按照一定规律排列的数的集合。

其中,等差数列和等比数列是数学中最常见的两种数列。

它们是数学中的基础概念,掌握它们的性质与运算方法对深入理解数学知识、提高解决问题的能力具有非常重要的意义。

本教案将通过丰富的案例和实际问题,帮助学生全面掌握等差数列和等比数列的相关知识。

一、等差数列1. 等差数列的定义与公式等差数列是指数列中任意两个相邻项之差都是一个常数的数列。

设等差数列的首项为a1,公差为d,则第n项可表示为an=a1+(n-1)d。

其中,a1为首项,d为公差,n为项数。

案例:一个等差数列的首项为3,公差为4,求该等差数列的第10项。

2. 等差数列的通项公式推导与应用等差数列的通项公式是指可以通过首项、公差和项数,直接求得等差数列的第n项。

通项公式为an=a1+(n-1)d。

案例:已知一个等差数列的第5项为21,公差为7,求该等差数列的前10项和。

3. 等差数列的性质与运算等差数列具有以下性质和运算方法:(1)等差数列的任意两项的和等于这两项所夹项的两倍。

(2)等差数列的前n项和可以通过n(n+1)/2求得。

案例:某等差数列的前5项和为30,公差为2,求该等差数列的首项和第7项。

二、等比数列1. 等比数列的定义与公式等比数列是指数列中任意两个相邻项之比都是一个常数的数列。

设等比数列的首项为a1,公比为q,则第n项可表示为an=a1 * q^(n-1)。

其中,a1为首项,q为公比,n为项数。

案例:一个等比数列的首项为2,公比为3,求该等比数列的第5项。

2. 等比数列的通项公式推导与应用等比数列的通项公式是指可以通过首项、公比和项数,直接求得等比数列的第n项。

通项公式为an=a1 * q^(n-1)。

案例:已知一个等比数列的第3项为16,公比为2,求该等比数列的前6项和。

3. 等比数列的性质与运算等比数列具有以下性质和运算方法:(1)等比数列的任意两项的比等于这两项所夹项的指数幂。

高中数学教案等差数列与等比数列

高中数学教案等差数列与等比数列

等差数列与等比数列一、高考考点1.等差数列或等比数列定义的应用:主要用于证明或判断有关数列为等差(或等比)数列.2.等差数列的通项公式,前几项和公式及其应用:求;求;解决关于或的问题.3.等比数列的通项公式,前n项和及其应用:求;求;解决有关或的问题.4.等差数列与等比数列的(小)综合问题.5.等差数列及等比数列的主要性质的辅助作用:解决有关问题时,提高洞察能力,简化解题过程.6.数列与函数、方程、不等式以及解析几何等知识相互结合的综合题目:以高中档试题出现,重点考察运用有关知识解决综合问题的能力。

二、知识要点(一)、等差数列1.定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数那么这个数列叫做等差数列,这个常数叫做等差数列的公差.认知:{}为等差数列- =d(n∈N※且d为常数) - =d (n 2, n∈N※且d为常数) 此为判断或证明数列{}为等差数列的主要依据.2.公式(1)通项公式: = +(n-1)d:引申: = +(n-m)d (注意:n=m+(n-m) )认知:{}为等差数列为n的一次函数或为常数 =kn+b (n )(2)前n项和公式: = 或 =n +认知:{}为等差数列为n的二次函数且常数项为0或 =n = +bn(n )3.重要性质(1){}为递增数列 d>0; {}为递减数列 d<0; {}为常数列 d=0(2)设m,n,p,q ,则m+n=p+q + = + ;(3)2m=p+q 2 = +.即等差数列中,如果某三项(或更多的项)的项数成等差数列,则相应的各项依次成等差数列.(4)设 , , 分别表示等差数列{}的前n项和,次n项和,再次n项和,…则, , …依次成等差数列.(二)等比数列1、定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比.认知:(1){}为等比数列 =q (n∈N※且q为非零常数) =q(n≥2,n∈N※且q为非零常数)(2){}为等比数列(n≥2,且≠0 ) (n ※,且≠0)2.公式(1)通项公式: = ;引申: = (注意:n=m+(n-m) )认知:{}为等比数列 =c (c,q均是不为0的常数,且n )(2)前n项和公式认知:{}为等比数列 =A +B (其中n ,且A+B=0).3.主要性质:(1)设m,n,p,q ,则有m+n=p+q ; (2)2m=p+q即在等比数列中,如果某三项(或更多的项)的项数成等差数列,则相应的各项依次成等比数列.(3)设 , , ,……分别表示等比数列的前n项和,次n项和,再次n项和,……,则 , , ,……依次成等比数列。

等差数列、等比数列(教学案)-2020年高考文数二轮复习精品资料Word版含解析

等差数列、等比数列(教学案)-2020年高考文数二轮复习精品资料Word版含解析

高考侧重于考查等差、等比数列的通项a n ,前n 项和S n 的基本运算,另外等差、等比数列的性质也是高考的热点.备考时应切实文解等差、等比数列的概念,加强五个量的基本运算,强化性质的应用意识.1.等差数列(1)定义式:a n +1-a n =d (n ∈N *,d 为常数); (2)通项公式:a n =a 1+(n -1)d ; (3)前n 项和公式:S n =na 1+a n 2=na 1+n n -1d2;(4)性质:①a n =a m +(n -m )d (n 、m ∈N *);②若m +n =p +q (m 、n 、p 、q ∈N *),则a m +a n =a p +a q . 2.等比数列(1)定义式:a n +1a n =q (n ∈N *,q 为非零常数);(2)通项公式:a n =a 1q n -1;(3)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1 q =1,a 11-q n 1-q q ≠1.(4)性质:①a n =a m q n-m (n ,m ∈N *);②若m +n =p +q ,则a m a n =a p a q (p 、q 、m 、n ∈N *).3.复习数列专题要把握等差、等比数列两个定义,牢记通项、前n 项和四组公式,活用等差、等比数列的性质,明确数列与函数的关系,巧妙利用a n 与S n 的关系进行转化,细辨应用问题中的条件与结论是通项还是前n 项和,集中突破数列求和的五种方法(公式法、倒序相加法、错位相减法、分组求和法、裂项相消法).【误区警示】1.应用a n 与S n 的关系,等比数列前n 项和公式时,注意分类讨论. 2.等差、等比数列的性质可类比掌握.注意不要用混.3.讨论等差数列前n 项和的最值时,不要忽视n 为整数的条件和a n =0的情形. 4.等比数列{a n }中,公比q ≠0,a n ≠0.高频考点一 等差数列的运算例1、(2018年江苏卷)已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n 项和,则使得成立的n 的最小值为________.【答案】27 【解析】设,则由得所以只需研究是否有满足条件的解, 此时,,为等差数列项数,且.由得满足条件的最小值为27.【变式探究】(2017·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8【变式探究】(1)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97 解析:通解:∵{a n }是等差数列,设其公差为d , 由题意得⎩⎪⎨⎪⎧S 9=9a 1+9×82d =27a 10=a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98,选C.优解:设等差数列{a n }的公差为d ,因为{a n }为等差数列,且S 9=9a 5=27,所以a 5=3.又a 10=8,解得5d =a 10-a 5=5,所以d =1,所以a 100=a 5+95d =98,选C.答案:C(2)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9 D .11【方法规律】1.通解是寻求a 1与d 的关系,然后用公式求和.优解法是利用等差中项性质转化求和公式.2.在等差数列中,当已知a 1和d 时,用S n =na 1+nn -12d 求和.当已知a 1和a n 或者a 1+a n =a 2+a n -1形式时,常用S n =a 1+a n n2=a 2+a n -1n2求解.学+科网【变式探究】若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为调和数列,已知数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=( )A .10B .20C .30D .40解析:选B.∵数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,∴11x n +1-11x n=x n +1-x n =d ,∴{x n }是等差数列,∵x 1+x 2+…+x 20=200=20x 1+x 202,∴x 1+x 20=20,又∵x 1+x 20=x 5+x 16,∴x 5+x 16=20.高频考点二 等比数列的运算 例2、(2018年浙江卷)已知成等比数列,且.若,则A. B. C.D.【答案】B 【解析】令则,令得,所以当时,,当时,,因此,若公比,则,不合题意; 若公比,则但,即,不合题意; 因此, ,选B.【变式探究】【2017江苏,9】等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知,则8a = ▲ . 【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,,解得1142a q ⎧=⎪⎨⎪=⎩,则.【变式探究】(1)(2016·高考全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:通解:求a 1a 2…a n 关于n 的表达式a 2+a 4a 1+a 3=a 1+a 3·q a 1+a 3=510,∴q =12 ∴a 1+a 1⎝⎛⎭⎫122=10,∴a 1=8 ∴a 1·a 2·a 3…a n =a n 1·q n n -12=8n ×⎝⎛⎭⎫12n n -12=2-n 2+7n 2当n =3或n =4时,-n 2+7n 2最大为6.∴a 1a 2…a n 的最大值为26=64 优解:利用数列的单调变化设{a n }的公比为q ,由a 1+a 3=10,a 2+a 4=5得a 1=8,q =12,则a 2=4,a 3=2,a 4=1,a 5=12,所以a 1a 2…a n ≤a 1a 2a 3a 4=64.答案:64(2)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12D.18解析:通解:∵a 3=a 1·q 2,a 4=a 1·q 3,a 5=a 1·q 4, ∴a 21·q 6=4(a 1·q 3-1) ∵a 1=14,∴q 6-16q 3+64=0,∴q 3=8,∴q =2,∴a 2=a 1·q =12.优解:设{a n }的公比为q ,由等比数列的性质可知a 3a 5=a 24,∴a 24=4(a 4-1),即(a 4-2)2=0,得a 4=2,则q 3=a 4a 1=214=8,得q =2,则a 2=a 1q =14×2=12,故选C.答案:C 【方法规律】1.解题关键:抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.2.运用函数性质:数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.【变式探究】等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4D .3解析:选C.由题意知a 1·a 8=a 2·a 7=a 3·a 6=a 4·a 5=10,∴数列{lg a n }的前8项和等于lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 4·a 5)4=4lg(a 4·a 5)=4lg 10=4.故选C.高频考点三 数列递推关系的应用例3、(2018年天津卷)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6.(Ⅰ)求S n 和T n ;(Ⅱ)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值. 【答案】(Ⅰ),;(Ⅱ)4.【解析】(I )设等比数列的公比为q ,由b 1=1,b 3=b 2+2,可得.因为,可得,故.所以,.设等差数列的公差为.由,可得.由,可得从而,故,所以,.(II )由(I ),有 由可得, 整理得解得(舍),或.所以n 的值为4.【变式探究】已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n .(1)求{a n }的通项公式. (2)求{b n }的前n 项和.解析:(1)因为a n b n +1+b n +1=nb n , 所以a 1b 2+b 2=b 1,解得a 1=2又{a n }是公差为3的等差数列,所以a n =a 1+(n -1)d =2+(n -1)×3=3n -1,即通项公式为a n =3n -1. (2)由a n b n +1+b n +1=nb n 得b n +1b n =13,所以数列{b n }是首项b 1=1,公比q =13的等比数列所以数列{b n }的前n 项和为S n =1-⎝⎛⎭⎫13n 1-13=32-12·31-n . 【方法规律】判断和证明数列是等差(比)数列的方法1.定义法:对于n ≥1的任意自然数,验证a n +1-a n ⎝⎛⎭⎫或a n +1a n 为与正整数n 无关的一常数. 2.中项公式法:(1)若2a n =a n -1+a n +1(n ∈N *,n ≥2),则{a n }为等差数列; (2)若a 2n =a n -1·a n +1(n ∈N *,n ≥2),则{a n }为等比数列. 【变式探究】已知等差数列{a n }的公差d ≠0,{a n }的部分项ak 1,ak 2,…,ak n 构成等比数列,若k 1=1,k 2=5,k 3=17,求k n .1. (2018年浙江卷)已知成等比数列,且.若,则 A. B.C.D.【答案】B 【解析】令则,令得,所以当时,,当时,,因此,若公比,则,不合题意; 若公比,则但,即,不合题意; 因此, ,选B.2. (2018年北京卷)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为A. B. C.D.【答案】D【解析】因为每一个单音与前一个单音频率比为,所以,又,则,故选D.3. (2018年江苏卷)已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.4. (2018年浙江卷)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1−b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)由是的等差中项得,所以,解得.由得,因为,所以.(Ⅱ)设,数列前n项和为.由解得.由(Ⅰ)可知,所以,故,.设,所以,因此,又,所以.5. (2018年天津卷)设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.【答案】(Ⅰ),;(Ⅱ)4.【解析】(I)设等比数列的公比为q,由b1=1,b3=b2+2,可得.因为,可得,故.所以,.设等差数列的公差为.由,可得.由,可得从而,故,所以,.(II)由(I),有由可得,整理得解得(舍),或.所以n的值为4.6. (2018年北京卷)设是等差数列,且.(Ⅰ)求的通项公式;(Ⅱ)求.【答案】(I)(II)【解析】(I)设等差数列的公差为,∵,∴,又,∴.∴.(II)由(I)知,∵,∴是以2为首项,2为公比的等比数列.∴.∴7. (2018年江苏卷)设,对1,2,···,n的一个排列,如果当s<t时,有,则称是排列的一个逆序,排列的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记为1,2,···,n的所有排列中逆序数为k的全部排列的个数.(1)求的值;(2)求的表达式(用n表示).【答案】(1)2 5(2)n≥5时,【解析】(1)记为排列abc的逆序数,对1,2,3的所有排列,有,所以.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,.(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,所以.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,所以.为计算,当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置.因此,.当n≥5时,,因此,n≥5时,.1.(2017·高考全国卷Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为() A.1B.2C .4D .8解析:通解:选C.设{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,解得d =4.故选C.优解:由S 6=48得a 4+a 3=16, (a 4+a 5)-(a 4+a 3)=8, ∴d =4,故选C.2.(2017·高考全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A.由已知条件可得a 1=1,d ≠0,由a 23=a 2a 6可得(1+2d )2=(1+d )(1+5d ),解得d =-2.所以S 6=6×1+6×5×-22=-24.故选A.3.(2017·高考全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解析:设等比数列{a n }的公比为q , ∵a 1+a 2=-1,a 1-a 3=-3, ∴a 1(1+q )=-1, ① a 1(1-q 2)=-3. ②②÷①,得1-q =3,∴q =-2. ∴a 1=1,∴a 4=a 1q 3=1×(-2)3=-8. 答案:-84.(2017·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 11+q =2,a 11+q +q 2=-6.解得q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =-2[1--2n ]1+2=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎡⎦⎤-23+-1n 2n +13=2S n , 故S n +1,S n ,S n +2成等差数列.1. 【2016高考新课标1卷】已知等差数列{}n a 前9项的和为27,108a =,则100a = ( )(A )100 (B )99 (C )98 (D )97【答案】C【解析】由已知,所以故选C.2【2016高考浙江文数】如图,点列{A n },{B n }分别在某锐角的两边上,且,,().若( )A .{}n S 是等差数列B .2{}nS 是等差数列 C .{}n d 是等差数列 D .2{}nd 是等差数列 【答案】A【解析】n S 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度一半,即,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,过1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了等腰梯形,那么,其中θ为两条线的夹角,即为定值,那么,,作差后:,都为定值,所以1n n S S +-为定值.故选A .3.【2016年高考北京文数】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______..【答案】6【解析】∵{}n a 是等差数列,∴,40a =,,2d =-,∴,故填:6.【解析】依题意得2214S S S =,∴,解得112a =-.【考点定位】等差数列、等比数列的通项公式、等比数列的前n 项和公式.7. 【2014大纲高考文第10题】等比数列{}n a 中,,则数列{lg }n a 的前8项和等于 ( )A .6B .5C .4D .3【答案】C . 【解析】由已知得为等比数列,为等差数列,∴所求和为,故选C .【考点定位】等差数列、等比数列的通项公式、等差数列的前n 项和公式.8. 【2014高考广东卷文第13题】若等比数列{}n a 的各项均为正数,且,则 .【答案】50【考点定位】等比数列的基本性质与对数的基本运算9. 【2014高考安徽卷文第12题】数列{}n a 是等差数列,若构成公比为q 的等比数列,则q =________.【答案】1【解析】∵成等比,∴,令,则,即,∴0y=,即10d +=,∴1q =. 【考点定位】等差、等比数列的性质.10. 【2014高考北京版文第12题】若等差数列{}n a 满足,则当n = 时,{}n a 的前n 项和最大.【答案】8【解析】由等差数列的性质,,08>a ,又因为0107<+a a ,所以098<+a a 所以09<a ,所以78S S >,98S S >,故数列}{n a 的前8项最大.【考点定位】等差数列的性质,前n 项和的最值11. 【2014高考大纲文第18题】等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤. (I )求{}n a 的通项公式;(II )设11n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)133n a n =-;(2).【解析】(1)由已知可得等差数列{}n a 的公差d 为整数.由4n S S ≤可得列出不等式组解得d 的范围,从而可确定整数d 的值,最后由等差数列的通项公式可求得数列{}n a 的通项公式;(2)由已知先写出,列出n T 的表达式,由于n b 可分裂为,故采用裂项相消法求n T .(1)由110a =,2a 为整数知,等差数列{}n a 的公差d 为整数.又4n S S ≤,故于是,解得,因此3d =-,故数列{}n a 的通项公式为133n a n =-.(2),于是.【考点定位】等差数列通项公式、裂项法求数列的前n 项和.12. 【2014高考广东文第19题】设数列{}n a 的前n 项和为n S ,满足,n N *∈,且315S =.(1)求1a 、2a 、3a 的值;(2)求数列{}n a 的通项公式.【答案】(1)13a =,25a =,37a =;(2)21n a n =+.【解析】(1)由得,整文得,因此有,即,解得28S =,同文有,即,解得13S =,,,;(2)由题意得,由(1)知13a =,25a =,37a =,猜想21n a n =+, 假设当时,猜想成立,即21k a k =+,则有,则当1n k =+时,有,这说明当1n k =+时,猜想也成立,由归纳原文知,对任意n N *∈,21n a n =+.【考点定位】数列的通项13. 【2014高考湖北文第18题】已知等差数列}{n a 满足:21=a ,且1a 、2a 、5a 成等比数列.(1)求数列}{n a 的通项公式.(2)记n S 为数列}{n a 的前n 项和,是否存在正整数n ,使得若存在,求n 的最小值;若不存在,说明文由.【答案】(1)2=n a 或24-=n a n .【解析】(1)设数列}{n a 的公差为d ,依题意,成等比数列, 所以,解得0=d 或4=d ,当0=d 时,2=n a ;当4=d 时,,所以数列}{n a 的通项公式为2=n a 或24-=n a n .【考点定位】等差数列、等比数列的性质、等差数列的求和公式.。

最新高三教案-等差数列与等比数列 精品

最新高三教案-等差数列与等比数列 精品

等差数列与等比数列一、 知识梳理:1、掌握等差数列与等比数列的通项公式、前n 项和公式、中项、性质,并能在解题中灵活运用。

2、注重等差数列与等比数列的区别和联系,类比与转化。

3、重视数列的相关运算经验与技巧的总结并练好运算基本功。

二、 训练反馈:1.给定正数p,q,a,b,c ,其中p ≠q ,若p,a,q 成等比数列,p,b,c,q 成等差数列, 则一元二次方程bx 2-2ax+c=0( ) A .无实数根B .有两个相等的实数根C .有两个同号的相异的实数根D .有两个异号的相异的实数根2.某人为了观看2008年奥运会,从2001年起,每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并约定每年到期存款均自动转为新的一年定期,到2008年将所有的存款及利息全部取回,则可取回的钱的总数(元)为 ( )A .7)1(p a +B .8)1(p a +C .)]1()1[(7p p p a+-+ D .()()[]p p pa+-+118 3.已知等差数列{}n a 的前n 项和为S n ,若m>1,且38,012211==-+-+-m m m m S a a a ,则m 等于( )A .38B .20C .10D .94.数学拓展课上,老师定义了一种运算“*”,对于n ∈N*满足以下运算性质:(1)2*2=1,(2)(2n+2)*2=3(2n*2).则2n*2用含n 的代数式表法为 .5.设数列{n a },{n b }分别为正项等比数列,T n ,R n 分别为数列{lg n a }与{lg n b }的前n 项和,且12+=n nR T n n ,则log 5b 5a 的数值为 .二、典型例题:例1:设{}n a 为等差数列,n S 为数列{}n a 的前n 项和,已知7157,75S S ==,n T 为数列{}nS n的前n 项和,求n T例2:(本小题满分12分)假设你正在某公司打工,根据表现,老板给你两个加薪的方案: (Ⅰ)每年年末....加1000元; (Ⅱ)每半年...结束时加300元。

(精品)等差数列与等比数列的性质教案

(精品)等差数列与等比数列的性质教案

等差数列与等比数列的性质教案教学目标:1、 复习等差、等比数列的定义与性质。

2、 灵活应用等差、等比数列的定义与性质解决各种常见题型。

教学重点:灵活应用等差、等比数列的定义与性质教学难点:等差、等比数列的定义与性质的应用一、 知识回顾二、 知识应用Ⅰ 、等差、等比数列的设法及应用 1.三个数成等差数列可设为 或者 根据具体问题的不同特点而选择不同设法。

2. 三个数成等比数列,则这三个数可设为 也可以设为三、 典型例题例1. 已知三个数成等差数列,其和为15,其平方和为83,求此三个数.,,2; ,,a a d a d a d a a d ++-+,,2x y x y +,,a a aq q 2,,.a aqaq例2. 已知互不等比数列{ n a }的前三项之积为-8,且132,,a a a 成等差,求123,,a a a例3(1)已知等差数列{ n a }满足 ,则 ( )(2)已知等差数列{ n a }前m 项和为30,前2m 项和为 100,则前3m 项和为( )(3)已知在等差数列{n a }的前n 项中,前四项之和为21,后四项之和为67,前n 项之和为286,试求数列的项数n.121010a a a ++⋅⋅⋅+=1101A. 0a a +>2100B. 0a a +<399C. 0a a +=51D. 51a=例4. 数列{ n b }中, , ,若{ n a }是等差数列, 且 ,求{n a }的通项公式四、 基础练习1.在等比数列中,463a a += ,则5357(2)a a a a ++= _____2. 在等差数列{n a }中,若4681012120a a a a a ++++=, 则10122a a -= ( )A.20B.22C.24D.28 123218b b b ++=12318b b b =1()2na nb =3.已知数列{n a }中, 1a =1,并且1331n n a a +-= ,则301a = ( )A.100B.101C.102D.1034. 若{n a }是等比数列,且n a >0,243546225a a a a a a ++=, 那么35a a +的值等于 ( )A.5B.1C.15D.105.等差数列{an}中,已知前4项和是1,前8项和是4,则 17181920a a a a +++的值等于 ( )A.7B.8C.9D.10五、 知识回顾六、 课后作业综合测评P91-P931、等差数列、等比数列的通项公式以及通项公式的推广2、等差数列与等比数列的性质n S n 3、a 与的关系。

新课标高中数学等差数列和等比数列教学设计

新课标高中数学等差数列和等比数列教学设计

等差数列和等比数列一、课程说明1.教学目标:1)知识与技能:理解并掌握等差与等比数列的定义和通项公式,并加以初步应用。

2)过程与方法:通过概念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,着重培养学生观察、比较、概括、归纳、演绎等方面的思维能力,并进—步培养运算能力,分析问题和解决问题的能力,增强应用意识。

3)情感态度与价值观:通过生活中的大量实例,鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;通过对有关实际问题的解决,体现数学与实际生活的密切关系,激发学生学习的兴趣。

2、学习者特征分析高中生与初中生相比,心理和心里都日趋成熟,认识能力也有提高,对事对人都有自己的看法,同时他们思维的独立性也较为成熟,喜欢独立思考问题以获取答案,还具备了一定的自学能力。

因此,将等比数列与等差数列的一些基本性质以问题的形式提出进而引导他们探究新的知识这种教学模式更能激发他们的学习兴趣。

等差与等比数列作为高考的必考内容,难度不是很大。

在教学中,要求学生掌握基本的知识体系与解题思路。

3、难点、重点分析教学重点:等差与等比数列的概念的形成与深化;等比数列通项公式的推导及应用。

教学难点:等差与等比数列性质的灵活应用:等比数列前n项和公式的推导。

二、课前准备1、教学方法:多媒体教学法;问题探究发现教学法。

2、教学器材:多媒体教学工具。

3、教材分析:本节内容先由分析日常生活中的实际问题来引出等差与等比数列的概念,再由归纳演绎法得出通项公式,既让学生感受到等比数列是现实生活中大量存在的数列模型,也让学生经历了从实际问题抽象出数列模型的过程。

4、时间分配:(一)等差与等比数列的概念 (10分钟)(二)、等差数列的通项、基本性质。

(20分钟)(三)、等比数列的通项、基本性质。

(20分钟) (四)、总结 (10分钟)三、课程设计(一)等差与等比数列的概念 创设情境,引入概念(展示图片)引例⒈小明觉得自己英语成绩很差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微专题11等差数列与等比数列
1.掌握并活用等差、等比数列的基本量和性质,进行基本运算.
2.运用定义域分析通项公式,判断或证明一个数列是等差(比)数列.
3.从分析数列特征入手,综合运用通项公式、求和公式、不等式、函数等方法求解最值或参数范围问题.
考题导航题组一等差数列、等比数列的基本量及基本运算
1.记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=________.
2.设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.
1.已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=________,d =________.
2.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2
=________.题组二等差数列、等比数列的判定与证明
1.已知数列{a n }的首项a 1=1,且满足a n +1=a n 4a n +1
,则a n =________.2.已知数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.
(1)设b n =a n +1-a n ,证明:{b n }是等差数列;
(2)求数列{a n }的通项公式.
1.记S n为数列{a n}的前n项和,若S n=2a n+1,则S6=________.
2.设数列{a n}中,S1=1,S2=2,S n+1-3S n+2S n-1=0(n≥2),则命题“{a n}是等比数列”是________命题.(填“真”或“假”)
题组三与等差数列、等比数列有关的最值、参数范围问

1.设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为________.
2.已知数列{a n}为等差数列,若a7
a6
<-1,且它们的前n项和S n有最大值,则使S n>0的n的最大值为________.
3.等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为________.
1.已知首项为3
2的等比数列{a n
}不是递减数列,其前n项和为S n(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.
(1)求数列{a n}的通项公式;
(2)设T n=S n-1
S n
(n∈N*),求数列{T n}最大项的值与最小项的值.
冲刺强化训练(11)
1.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.
2.设S n 为等差数列{a n }的前n 项和,已知S 5=5,S 9=27,则S 7=________.
3.等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634
,则a 8=________.4.设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7
<-1,则当n =________时,S n 最小.
5.已知数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=________.
6.已知数列{a n }为等差数列,其前12项和为354,在前12项中,偶数项之和与奇数项之和的比为32∶27,则这个数列的公差为________.
7.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.
8.已知数列{a n }的首项为a 1=2,且a n +1=12
(a 1+a 2+…+a n )(n ∈N *),记S n 为数列{a n }的前n 项和,则S n =________,a n =______________.
9.在等差数列{a n }中,a 1=1,a 7=4,在等比数列{b n }中,b 1=6,b 2=a 3,则满足b n a 26<1的最小正整数n 是________.
10.若等比数列{a n }(a n ∈R )对任意的正整数m ,n 满足a m +n =a m a n ,且a 3=22,则a 12=________.
11.在等差数列{a n }中,a n >0,且a 1+a 2+a 3+…+a 8=40,则a 4·a 5的最大值是________.
12.设数列{a n }的前n 项和为S n ,n ∈N *,已知a 1=1,a 2=32,a 3=54
,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.
(1)求a 4的值;
(2)n +1-12a (3)求数列{a n }的通项公式.
13.已知n 为正整数,数列{a n }满足
a n >0,4(n +1)a 2n -na 2n +1=0,设数列{
b n }满足b n =a 2n t
n .
(1)(2)若数列{b n }是等差数列,求实数t 的值.。

相关文档
最新文档