幂的运算评估测试题及答案

合集下载

七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)

七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)

七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)一.选择题(共7小题,满分21分)1.若a•2•23=26,则a等于()A.4B.8C.16D.322.已知a≠0,下列运算中正确的是()A.a2•a3=a6B.a5﹣a3=a2C.(﹣a3)2=a5D.a•a3=a43.若10m=5,10n=3,求102m﹣3n的值()A.B.C.675D.4.若(2x﹣1)0有意义,则x的取值范围是()A.x=﹣2B.x≠0C.x≠D.x=5.若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x取值范围是()A.x≠3B.x≠2C.x≠3且x≠﹣2D.x≠3且x≠2 6.“绿水青山就是金山银山”.某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资1.102×108元资金.数据1.102×108用科学记数法可表示为()A.1102亿B.1.102亿C.110.2亿D.11.02亿7.嫦娥五号返回器携带月球样品安全着陆,标志着中国航天业向前又迈出了一大步.嫦娥五号返回器在接近大气层时,飞行1m大约需要0.0000893s.数据0.0000893s用科学记数法表示为()A.8.93×10﹣5B.893×10﹣4C.8.93×10﹣4D.8.93×10﹣7二.填空题(共7小题,满分21分)8.将2x﹣3y(x+y)﹣1表示成只含有正整数指数幂的形式为.9.新型冠状病毒直径约为100nm,计m(用科学记数法表示).10.若有意义,则x的取值范围是.11.若a2n=2(n为正整数),则(4a3n)2÷4a4n的值为.12.目前全国疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约7.5×105个,则科学记数法数据7.5×105的原数为.13.已知x2n=5,则(3x3n)2﹣4(x2)2n的值为.14.已知m x=2,m y=4,则m x+y=.三.解答题(共6小题,满分58分)15.计算:(1)2+(﹣2)×3+(﹣7)0;(2)×12.16.在数学中,我们经常会运用逆向思考的方法来解决一些问题,例如:“若a m=4,a m+n =20,求a n的值.”这道题我们可以这样思考:逆向运用同底数幂的乘法公式,即a m+n =a m•a n,所以20=4•a n,所以a n=5.(1)若a m=2,a2m+n=24,请你也利用逆向思考的方法求出a n的值.(2)下面是小贤用逆向思考的方法完成的一道作业题,请你参考小贤的方法解答下面的问题:小贤的作业计算:89×(﹣0.125)9.解:89×(﹣0.125)9=(﹣8×0.125)9=(﹣1)9=﹣1.①小贤的求解方法逆用了哪一条幂的运算性质,直接写出该逆向运用的公式:.②计算:52023×(﹣0.2)2022.17.(1)若3×27m÷9m=316,求m的值;(2)已知a x=﹣2,a y=3,求a3x﹣2y的值;(3)若n为正整数,且x2n=4,求(3x2n)2﹣4(x2)2n的值.18.我们知道,同底数幂的乘法法则为a m•a n=a m+n(其中a≠0,m、n为正整数),类似地,我们规定关于任意正整数m、n的一种新运算:f(m)•f(n)=f(m+n)(其中m、n为正整数).例如,若f(3)=2,则f(6)=f(3+3)=f(3)•f(3)=2×2=4.f(9)=f(3+3+3)=f(3)•f(3)•f(3)=2×2×2=8.(1)若f(2)=5,①填空:f(6)=;②当f(2n)=25,求n的值;(2)若f(a)=3,化简:f(a)•f(2a)•f(3a)•…•f(10a).19.如表是某河流今年某一周内的水位变化情况,上周末(星期六)的水位已经达到警戒水位33米.(正号表示水位比前一天上升,负号表示水位比前一天下降).(单位:米)星期日一二三四五六水位变化+0.2+0.8﹣0.4+0.2+0.3﹣0.5﹣0.2(1)本周哪一天河流的水位最高?哪一天河流的水位最低?分别是多少?(2)与上周末相比,本周末河流的水位是上升了还是下降了?本周末的水位是多少?(3)若水位每下降1厘米,就有2.5×102吨水蒸发到大气中,请计算这个星期共有多少吨水蒸发到大气中?20.已知10﹣2α=3,,求106α+2β的值.参考答案一.选择题(共7小题,满分21分)1.解:∵a•2•23=26,∴a=26÷24=22=4.故选:A.2.解:A、原式=a5,故不符合题意;B、a5与a3不是同类项,故不能合并,故不符合题意;C、原式=﹣a6,故不符合题意;D、原式=a4,故符合题意.故选:D.3.解:∵10m=5,10n=3,∴102m﹣3n=102m÷103n=.故选:D.4.解:(2x﹣1)0有意义,则2x﹣1≠0,解得:x≠.故选:C.5.解:若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x﹣3≠0且2x﹣4≠0,解得:x≠3且x≠2.故选:D.6.解:1.102×108=1.102亿.故选:B.7.解:0.0000893=8.93×10﹣5,故选:A.二.填空题(共7小题,满分21分)8.解:原式=•=.故答案为:.9.解:新型冠状病毒的直径约为100nm=100×10﹣9m=1×10﹣7m,故答案为1×10﹣7.10.解:∵有意义,∴0.∴x+2≠0,x﹣2≠0,∴x≠±2.故答案为:x≠±2.11.解:当a2n=2时,(4a3n)2÷4a4n=16(a2n)3÷4(a2n)2=16×23÷(4×22)=16×8÷(4×4)=16×8÷16=8.故答案为:8.12.解:7.5×105=750000,故答案为:750000.13.解:∵x2n=5,∴(3x3n)2﹣4(x2)2n=9x6n﹣4x4n=9(x2n)3﹣4(x2n)2=9×53﹣4×52=1125﹣100=1025.故答案为:1025.14.解:∵m x=2,m y=4,∴m x+y=m x•m y=8,故答案为:8.三.解答题(共6小题,满分58分)15.解:(1)原式=2﹣6+1=﹣3;(2)原式=×12+=5+8﹣1616.解:(1)∵a m=2,∴a2m+n=24,∴a2m×a n=24,(a m)2×a n=24,22×a n=24,∴4a n=24,∴a n=6;(2)①逆用积的乘方,其公式为:a n•b n=(ab)n,故答案为:a n•b n=(ab)n;②52023×(﹣0.2)2022=5×52022×(﹣0.2)2022=5×(﹣0.2×5)2022=5×(﹣1)2022=5×1=5.17.解:(1)∵3×27m÷9m=316,∴3×33m÷32m=316,∴33m+1﹣2m=316,∴3m﹣2m+1=16,解得m=15;(2)∵a x=﹣2,a y=3,∴a3x=﹣8,a2y=9,∴a3x﹣2y=a3x÷a2y=(﹣8)÷9=﹣;(3)∵x2n=4,∴(3x2n)2﹣4(x2)2n=(3x2n)2﹣4(x2n)2=(3×4)2﹣4×42=122﹣4×16=144﹣64=80.18.解:(1)①∵f(2)=5,∴f(6)=f(2+2+2)=f(2)•f(2)•f(2)=125;故答案为:125;②∵25=5×5=f(2)•f(2)=f(2+2),f(2n)=25,∴f(2n)=f(2+2),∴2n=4,∴n=2;(2)∵f(2a)=f(a+a)=f(a)•f(a)=3×3=31+1=32,f(3a)=f(a+a+a)=f(a)•f(a)•f(a)=3×3×3=31+1+1=33,…,f(10a)=310,∴f(a)•f(2a)•f(3a)•…•f(10a)=3×32×33×…×310=31+2+3+…+10=355.19.解:(1)周日:33+0.2=33.2(米),周一:33.2+0.8=34(米),周二:34﹣0.4=33.6(米),周三:33.6+0.2=33.8(米),周四:33.8+0.3=34.1(米),周五:34.1﹣0.5=33.6(米),周六:33.6﹣0.2=33.4(米).答:周四水位最高,最高水位是34.1米,周日水位最低,最低水位是33.2米;(2)33.4﹣33=0.4>0,答:与上周末相比,本周末河流的水位上升了,水位是33.4米;(3)100×(0.4+0.5+0.2)×2.5×102吨=2.75×104(吨),答:这个星期共有2.75×104吨水蒸发到大气中.20.解:∵10﹣2α==3,10﹣β==﹣,∴102α=,10β=﹣5,∴106α+2β=(102α)3•(10β)2,=()3×(﹣5)2,=×25,=.。

幂的运算综合测试卷(含答案)

幂的运算综合测试卷(含答案)

第8章 幂的运算 单元综合卷(B)一、选择题。

(每题3分,共21分)1.31m a +可以写成 ( )A .31()m a +B . 3()1m a +C .a ·a3m D .(m a )21m + 2.下列是一名同学做的6道练习题:①0(3)1-=;②336a a a +=;③5()a -÷3()a -=2a -;④4m 2-=214m;⑤2336()xy x y =;⑥225222+=其中做对的题有 ( ) A .1道 B .2道 C .3道 D .4道3.2013年,我国发现“H 7N 9”禽流感,“H 7N 9”是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012 m ,这一直径用科学记数法表示为 ( )A .1.2×109- mB .1.2×108-m C .12 X 108-m D .1.2×107- m 4.若x 、y 为正整数,且2x ·2y =25;,则x 、y 的值有 ( )A .4对B .3对C .2对D .1对5.若x <一1。

则012x x x --、、之间的大小关系是 ( )A .0x > 2x -> 1x -B .2x ->1x ->0xC .0x >1x ->2x -D ..1x ->2x ->0x6.当x =一6,y =16时,20132014x y 的值为 ( ) A .16 B .16- C .6 D .一6 7.如果(m a ·n b ·b )3=915a b ,那么m 、n 的值分别为 ( )A .m =9,n =一4B .m =3,n =4C .m =4,n =3D .m =9,n =6二、填空题。

(每空2分,共16分)8.将(16)1-、(一2) 0、(一3) 2、一︱-10 ︱这四个数按从小到大的顺序排为 · 9.( )2=42a b ;( )×12n -=223n + 10.若35)x (=152×153,则x = .11.如果43(a )÷25(a )=64,且a <0,那么a = .12.若3n =2,35m =,则2313m n +-的值为 .13.已知2m =x ,43m =y ,用含有字母x 的代数式表示y ,则y .14.如果等式(2a 一1)2a +=1,则a 的值为 .三、解答题。

完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。

-299 B。

-2 C。

299 D。

22.当m是正整数时,下列等式成立的有()1)a^(2m)=(a^m)^2;(2)a^(2m)=(a^2)^m;(3)a^(2m)=(-a^m)^2;4)a^(2m)=(-a^2)^m.A。

4个 B。

3个 C。

2个 D。

1个3.下列运算正确的是()A。

2x+3y=5xy B。

(-3x^2y)^3=-9x^6y^3C。

D。

(x-y)^3=x^3-y^34.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。

an与XXX^(2n)与b^(2n)C。

a^(2n+1)与b^(2n+1) D。

a^(2n-1)与(-b^(2n-1))5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6•(-a)^3•a=a^10;③(-a)^4•(-a)^5=a^20;④25+25=26.A。

0个 B。

1个 C。

2个 D。

3个二、填空题6.计算:x^2•x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^n+1+45,求x的值。

9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))10.已知2x+5y=3,求4x•3^2y的值.11.已知25^m•2•10^n=57•24,求m、n.12.已知a^x=5,a^(x+y)=25,求a^(x+y)的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^n,当a=2,n=3时,求a^n*x-a^y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)•(b-a)^2•(a-b)^m•(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)÷3]3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299解答:(-2)100+(-2)99=(-2)99×(-2)=-299,故选A。

幂的运算评价测试题及答案

幂的运算评价测试题及答案

七(下)数学第八章幂的运算评估测试卷(时间:90分钟满分:100分)一、选择题(每小题2分,共50分)1.下列计算不正确的是( )??3?a---÷÷101?122nn240a??2ab?01 C. D. A3+2= B.10=.=0.a13b13a822.下列计算不正确的是( )aaa--÷(÷÷pm0mnpmmn aaaa =1 B A.=.)=--(3÷(-x)÷335 2 4=l C.(-x)9)=-x D. 3.下列计算正确的是( )a--5÷3÷÷x÷5÷39910810042 8528a 5=5 A.x=3 D.=1 C=x B..3 ( ) 的计算结果是÷1000nm1004.--mn3nm2mn mn A.100000.100B.101000D. C1-( ) 的值是22+x5=2,则.若x x11 0 D..A.4B. C444a-中A的值应是( )÷A=2m+nm a.在等式6-2 m+n+3 nn+2m+n+2aaaa B.. A..DC等于( ) 2m+4a.7a·m+422mm+2 24 m4aaaaaaa.C D.2 A.. B()+-÷(x ( )的结果是 2m+11mm)8x.xA.-l B.1 C.0 D.±19.下列等式正确的是( )-②3.10×1044 =31 00010 ①0.000 126=1.26×-5610.26×=0.000011 ③1.1×10④12 600 000=1 A.①② B.②④ C.①②③ D.①③④2×10×(1.5×10的值是 ( )243 2 )-)(10.311141414 10D4×105×10. B10.- C.- A.-1.11.下列各式中-定正确的是( )1)- 022 0 00?a=1+1)..( A.(2x-3)=1 B.(m=1 D=0 C2009200811????( )的结果是.计算12???????22????20092008200920091111????????B.. DA.. C???1????????2222????????( ) x的值是,m为正整数,则3mx6m>2.若2>2132m3 D.4m B.3m C. A.a-( ) ÷中括号内的式子应是( )=2m+nm a.在算式14--n+22m+n2m+n+2n aaaa. AD CB... ( ) 结果为02)(2×12÷3-15..12 D.无意义 A.0 B.1C ( ) 的式子是结果为16.aa---÷26 2 43421aaaaa.) C.. A.( D B2a( ).下面计算正确的是1785638243277aaa. A.=. Bb+b=b Cx+x=xD=x.xx等于 ( ) 23 a)-218.(569 6aaaa D C. A.44.-B.4419.下列运算正确的是( )-x·(-y) 7 23 795553102- (-y) A.xx=xy B.xy)=y=y D=x.-C.(20.下列运算正确的是( )÷(x÷x÷(xy) 2 332108 643)=x=x B A.x.(xy)=(xy)y--xx÷÷3n2nnnn+2n+14n x=x D C.x.x=x÷5得( ) mm25.计算21mm20.5 D. A.5 B.20 C ( ) 纳米应表示为2.5纳米1=0.000 000 001米,则22.---×10米米 D.2.5×10 C米.2.5×1052米 B..99810102.×5 A.奥运会场馆之一,它的外层膜的展开面积23.国家游泳中心——“水立方”是北京2008 ( ) 260 000用科学记数法表示应为约260 000平方米,将64 5 6 102.62C..6×10×D A.0.26×10 B.26×10.是的列下运算24正确.( )+5x=m=3x A.n.-= D. B(-y)2x=y C.(mn)222623 36 35322aaa万人,这一数据2008年全国普通高考计划招生66725.国家教育部最近提供的数据娃示,科学记数法表示为(结果保留两个有效数字)( )66 6 610×D.67.. B66×10C.67×10×..A6610二、填空题(每小题2分,共44分)a)(-·22a.=____________.26.--÷x=____________(x.·1332).(x)27·(-b)223)=_____________.b28.-b (-2 3=______________.x)-y) (y-29.(x×820092008=_____________.125. 30. 0-8÷1nn=_____________. 31.-43m+12m+4aaa =__________32.aa-b3b=____________. 10=25,则1033.已知10=5,,则A=_____________.2n+1n+1=xAx34.已知×64×25×48388=______________25.35.0.-55)××(-42 2=_____________. 36.-5a-(-2 32 2 3aaa)=______________.)( (.(b)-b) 37a)-÷(36a=____________.38.(- )a÷625aa=____________.39.--5×120=____________.40.5+25·(m÷m10 632=___________. 41.m)-x÷1m+1m=___________42.-x.a-÷mn1 nm a=___________.)(43.2n=4,则n=__________.44.若2,则x=___________.x3=286445.若×1-,则x=____________.÷(2 53)-x46.若2)=(247.用科学记数法表示0.000 000 125=____________.三、计算题(48~51题每小题4分,52、53题每小题5分,共26分)a÷2)3-(.48.3 2a-x÷1n 2nn+1 (x≠(x0) )49.x-x·x·x 2546x.x5011-(-2 03 )+(51.(--3)) 23--·(x-·xx) ·322 2nn x)52.3x+3(----(-3÷3×2009022 232))3×353.(-参考答案1.C 2.B 3.C 4.B 5.B 6.D 7.B 8.B 9.C 10.B 11.D 12.D 13.A 14.D 15.D 16.B 17.D 18.B 19.D 20.A 21.C 22.B23.C 24.D 25.C1-n34 m7 5aa 28.b 29.(y26.-x) 27. 30.8 31.-2 32.10x n 35.4 5 34.x33.123 5 aa 44. 43..m1 .-36.-1 37.0 38 42.-39.x 40.1 41n a-725×1045.15 46.-2 47.1.aa-÷÷462623 22aaaa =9) =948.解:(-3=9---(x÷·x0n 21(n+1)+(n2nn+11)n=1 .解:x =x)=x49x-·x-x2492569=0x=x. x.解:50x 3?21111??????0???51.解:8????3????1??9??????8283??????-3x nn =052.解:原式=3x.---(-3÷3×200902232 236-1=×9-27-=))3×3-(.解:53.。

《幂的运算》习题精选与答案

《幂的运算》习题精选与答案

《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C 、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3= _________ ;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题8、已知3x(x n+5)=3x n+1+45,求x的值。

9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.13、若x m+2n=16,x n=2,求x m+n的值.12、已知a x=5,a x+y=25,求a x+a y的值.14、比较下列一组数的大小.8131,2741,96118、若(a n b m b)3=a9b15,求2m+n的值.15、如果a2+a=0(a≠0),求a2005+a2004+12的值.16、已知9n+1﹣32n=72,求n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣,当a=2,n=3时,求a n x﹣ay的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42 (2)(﹣0.25)12×412(3)0.52×25×0.125(4)[()2]3×(23)3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。

第八章《幂的运算》培优训练卷(含答案)

第八章《幂的运算》培优训练卷(含答案)

第八章《幂的运算》培优训练卷班级___________ 姓名___________ 学号____________ 分数____________一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2021·重庆八中九年级阶段练习)计算52a a ⋅的结果是( ) A .52aB .62aC .53aD .63a2.(2022·全国·七年级)下列选项中,是同底数幂的是( ) A .()2a -与2aB .2a -与()3a -C .5x -与5xD .()3-a b 与()3b a -3.(2022·重庆涪陵·八年级期末)下列计算正确的是( ) A .2323a a a +=B .623a a a ÷=C .33(2)6a a =D .()1432a a =4.(2021·重庆市万盛经济技术开发区溱州中学八年级阶段练习)若a m =4,a n =2,则a m+3n的值是( )A .8B .12C .24D .325.(2022·福建省福州第十六中学八年级期末)近年来,新冠肺炎给人类带来了巨大灾难,经科学家研究,冠状病毒多数为球形或近似球形,其直径约为0.00000011米,其中数据0.00000011用科学记数法表示正确的是( ) A .81.110-⨯B .71.110-⨯C .61.110-⨯D .60.1110-⨯6.(2021·北京·清华附中八年级期中)已知781a =,927b =,139c =,则a ,b ,c 的大小关系是( ) A .a b c >>B .a c b >>C .a b c <<D .b c a >>二、填空题(本大题共10小题,每小题2分,共20分) 7.(2022·四川南充·八年级期末)计算22-的结果是______.8.(2022·天津市第七中学八年级期末)计算:36x x ⋅=________________.9.(2021·黑龙江·哈尔滨德强学校八年级阶段练习)计算:202120212552⎛⎫⎛⎫-⨯= ⎪⎪⎝⎭⎝⎭_______.10.(2021·辽宁兴城·八年级期中)已知a m =4,a n =6,则a m +n =______. 11.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________.12.(2021·浙江嘉兴·七年级期末)若9a ∙27b ÷81c =9,则2c ﹣a ﹣32b 的值为____.13.(2022·全国·七年级)若n 是正整数,且210n a =,则3222()8()n n a a --=__________.14.(2021·湖南永兴·八年级阶段练习)11()6-,0(2)-,2(3)-这三个数按从小到大的顺序排列,正确的排列是____(用<号连接)15.(2021·山东·济南育英中学七年级期中)我们定义:三角形=a b •a c ,五角星=z •(x m •y n ),若=4,则的值=_____.16.(2022·吉林吉林·八年级期末)如图,王老师把家里的WIFI 密码设置成了数学问题.吴同学来王老师家做客,看到WIFI 图片,思索了一会儿,输入密码,顺利地连接到了王老师家里的网络,那么她输入的密码是________.账号:Mr .Wang 's house王134wang1314x yz ⎢⎥⊕=⎣⎦ 浩15220hao31520xy x z ⎢⎥⊕⋅=⎣⎦ 阳()()422244x y y z ⎢⎥⊕⋅=⎢⎥⎣⎦密码三、解答题(本大题共11小题,17,18每小题7分,19,20,21,22,23,24,25每小题8分,26,27每小题9分,共88分.解答应写出文字说明、证明过程或演算步骤) 17.(2021·吉林临江·八年级期末)计算:2222342()()a b a b a ----⋅÷18.(2021·广东高州·七年级期末)计算: (1)﹣12021+(13)﹣2+(π﹣3.14)0;(2)(6a 3b 2﹣4a 2b )÷2ab .19.(2021·全国·八年级课时练习)已知3m a =,5n a =,求: (1)m n a -的值; (2)32m n a -的值.20.(2022·全国·七年级)声音的强弱用分贝表示,通常人们讲话时的声音是50分贝,它表示声音的强度是105,汽车的声音是100分贝,表示声音的强度是1010,喷气式飞机的声音是150分贝,求:(1)汽车声音的强度是人声音的强度的多少倍? (2)喷气式飞机声音的强度是汽车声音的强度的多少倍?21.(2021·河南·八年级阶段练习)规定*33a b a b =⨯,求: (1)求1*2;(2)若2*(1)81x +=,求x 的值.22.(2021·福建永春·八年级期中)规定两个非零数a ,b 之间的一种新运算,如果a m =b ,那么a ∧b =m .例如:因为52=25,所以5∧25=2;因为50=1,所以5∧1=0. (1)根据上述规定填空:2∧32= ;﹣3∧81= . (2)在运算时,按以上规定请说明等式8∧9+8∧10=8∧90成立.23.(2021·山西·太原市外国语学校七年级阶段练习)若a *b =c ,则a c =b .例如:若2*8=3,则23=8(1)根据上述规定,若5*1125=x ,则x = . (2)记5*2=a ,5*6=b ,5*18=c ,求a ,b ,c 之间的数量关系.24.(2020·江苏江都·七年级期中)如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.25.(2019·福建·莆田第十五中学七年级阶段练习)我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果b a =N (a >0,a ≠1,N >0),则b 叫做以a 为底N 的对数,记作log Na =b ,例如:因为35=125,所以1255log =3;因为211=121,所以12111log =2(1)填空:66log = ,16log = ; (2)如果(2)2log m -=3,求m 的值.26.(2021·河北邢台·八年级阶段练习)按要求解答下列各小题. (1)已知10m =6,10n =2,求10m ﹣n 的值; (2)如果a +3b =4,求3a ×27b 的值; (3)已知8×2m ÷16m =215,求m 的值.27.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=① 则22021202222222S =++⋅⋅⋅++② ②-①得,2022221S S S -==-. 请仿照小明的方法解决以下问题: (1)220222++⋅⋅⋅+=______; (2)求2501111222+++⋅⋅⋅++=______;(3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2021·重庆八中九年级阶段练习)计算52a a ⋅的结果是( ) A .52a B .62a C .53a D .63a【答案】B 【分析】根据同底数幂的乘法运算法则求解即可. 【详解】 解:562=2a a a ⋅. 故选:B . 【点睛】此题考查了同底数幂的乘法,解题的关键是熟练掌握同底数幂的乘法运算法则.同底数幂相乘,底数不变,指数相加.2.(2022·全国·七年级)下列选项中,是同底数幂的是( ) A .()2a -与2a B .2a -与()3a -C .5x -与5xD .()3-a b 与()3b a -【答案】C 【分析】根据各项的底数分析判断即可 【详解】A . ()2a -的底数是a -,2a 的底数是a ,故该选项不符合题意;B . 2a -的底数是a ,()3a -的底数是a -,故该选项不符合题意; C . 5x -与5x 的底数都是x ,故该选项符合题意;D . ()3-a b 的底数是()a b -,()3b a -的底数是()b a -,故该选项不符合题意;故选C 【点睛】本题考查了同底数幂的形式,理解幂的定义是解题的关键.把n 个相同的因数a 相乘的积记作n a ,其中a 叫做底数,n 叫做指数.3.(2022·重庆涪陵·八年级期末)下列计算正确的是( ) A .2323a a a +=B .623a a a ÷=C .33(2)6a a =D .()1432a a =【分析】根据合并同类项,同底数幂的除法,积的乘方,幂的乘方依次计算判断即可得. 【详解】解:A 、22a a +,不是同类项,不能化简,选项错误; B 、624a a a ÷=,选项错误; C 、()3328a a =,选项错误; D 、()4312a a =,选项正确; 故选:D . 【点睛】本题主要考查合并同类项,同底数幂的除法,积的乘方,幂的乘方,熟练掌握各运算法则是解题的关键.4.(2021·重庆市万盛经济技术开发区溱州中学八年级阶段练习)若a m =4,a n =2,则a m +3n的值是( )A .8B .12C .24D .32【答案】D 【分析】根据同底数幂的乘法的逆运算,以及幂的乘方的逆运算进行求解即可. 【详解】解:∵4m a =,2n a =,∴()()33334232m n m n m n a a a a a +=⋅=⋅=⨯=,故选D . 【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,解题的关键在于能够熟练掌握相关计算法则.5.(2022·福建省福州第十六中学八年级期末)近年来,新冠肺炎给人类带来了巨大灾难,经科学家研究,冠状病毒多数为球形或近似球形,其直径约为0.00000011米,其中数据0.00000011用科学记数法表示正确的是( ) A .81.110-⨯B .71.110-⨯C .61.110-⨯D .60.1110-⨯【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00000011=71.110-⨯, 故选B . 【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.(2021·北京·清华附中八年级期中)已知781a =,927b =,139c =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .a b c << D .b c a >>【答案】A 【分析】根据幂的乘方的逆运算可直接进行排除选项. 【详解】解:∵781a =,927b =,139c =,∴()742833a ==,()932733b ==,()1322633c ==,∴a b c >>; 故选A . 【点睛】本题主要考查幂的乘方的逆用,熟练掌握幂的乘方的逆用是解题的关键. 二、填空题(本大题共10小题,每小题2分,共20分) 7.(2022·四川南充·八年级期末)计算22-的结果是______. 【答案】14【分析】根据负整数指数幂的运算法则计算即可.解:2211224-==, 故答案为:14.【点睛】本题考查了负整数指数幂,熟知运算法则是解题的关键.8.(2022·天津市第七中学八年级期末)计算:36x x ⋅=________________. 【答案】9x 【分析】根据同底数幂的乘法法则,底数不变,指数相加计算即可. 【详解】 ∵36x x ⋅=9x , 故答案为:9x . 【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.9.(2021·黑龙江·哈尔滨德强学校八年级阶段练习)计算:202120212552⎛⎫⎛⎫-⨯= ⎪⎪⎝⎭⎝⎭_______.【答案】1- 【分析】由积的乘方的逆运算进行计算,即可得到答案. 【详解】 解:20212021202120212525()(1)15252⎛⎫⎛⎫-⨯=-⨯=-=- ⎪⎪⎝⎭⎝⎭;故答案为:1-. 【点睛】本题考查了积的乘方的逆运算,解题的关键是掌握运算法则,正确的进行计算. 10.(2021·辽宁兴城·八年级期中)已知a m =4,a n =6,则a m +n =______. 【答案】24 【分析】利用同底数幂的乘法的逆运算即可求解.解:4,6m n a a ==, 又4624m n m n a a a +=⋅=⨯=, 故答案是:24. 【点睛】本题考查了同底数幂的乘法的逆运算,解题的关键是掌握相应的运算法则. 11.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________. 【答案】3x ≠ 【分析】任何不为零的数的零次幂都等于零,根据定义解答. 【详解】解:∵0(3)1x -=, ∴3x ≠, 故答案为:3x ≠. 【点睛】此题考查了零指数幂定义,熟记定义是解题的关键.12.(2021·浙江嘉兴·七年级期末)若9a ∙27b ÷81c =9,则2c ﹣a ﹣32b 的值为____.【答案】-1 【分析】根据幂的乘方公式以及同底数幂的乘法公式的逆运用,即可求解. 【详解】解:∵9a ∙27b ÷81c =9,∴(32)a ∙(33)b ÷(34)c =9,即:32a ∙33b ÷34c =32,∴2a +3b -4c =2,即: a +32b -2c =1,∴2c ﹣a ﹣32b =-1,故答案是:-1. 【点睛】本题主要考查幂的乘方公式以及同底数幂的乘法公式,熟练掌握幂的乘方公式以及同底数幂的乘法公式的逆运用是解题的关键.13.(2022·全国·七年级)若n 是正整数,且210n a =,则3222()8()n n a a --=__________. 【答案】200 【分析】把所求式子化为含a 2n 的形式,再代入即可求值; 【详解】解:32222322()8()()8()1000800200n n n n a a a a --=-=-= 故答案为:200 【点睛】本题考查代数式求值,解题的关键是熟练掌握积的乘方、幂的乘方公式逆用.14.(2021·湖南永兴·八年级阶段练习)11()6-,0(2)-,2(3)-这三个数按从小到大的顺序排列,正确的排列是____(用<号连接)【答案】()1201(2)36-⎛⎫-<<- ⎪⎝⎭【分析】根据负整数指数幂,零次幂,有理数的乘方分别计算,再比较大小即可. 【详解】()()1021=62=1,396-⎛⎫--= ⎪⎝⎭,,169<< ∴()1201(2)36-⎛⎫-<<- ⎪⎝⎭故答案为:()1201(2)36-⎛⎫-<<- ⎪⎝⎭.【点睛】本题考查了负整数指数幂,零次幂,有理数的乘方,掌握负整数指数幂,零次幂,有理数的乘方是解题的关键.15.(2021·山东·济南育英中学七年级期中)我们定义:三角形=a b •a c ,五角星=z •(x m •y n ),若=4,则的值=_____.【答案】32【分析】根据题意可得出算式2334x y ⋅=,根据同底数幂的乘法得出234x y +=,求出2422316(3)x y y x ++==,根据题意得出所求的代数式是2(981)x y ⋅,再根据幂的乘方和积的乘方进行计算,最后求出答案即可.【详解】解:根据题意得:2334x y ⋅=,所以234x y +=,即2423416x y +==,所以2(981)x y ⋅242[(3)(3)]x y =⨯⋅242(33)x y =⨯⋅222(33)x y =⨯⋅224=⨯32=,故答案为:32.【点睛】本题考查了有理数的混合运算和整式的混合运算,解题的关键是能灵活运用整式的运算法则进行计算.16.(2022·吉林吉林·八年级期末)如图,王老师把家里的WIFI 密码设置成了数学问题.吴同学来王老师家做客,看到WIFI 图片,思索了一会儿,输入密码,顺利地连接到了王老师家里的网络,那么她输入的密码是________. 账号:Mr .Wang 's house王134wang1314x yz ⎢⎥⊕=⎣⎦浩15220hao31520xy x z ⎢⎥⊕⋅=⎣⎦阳()()422244x y y z ⎢⎥⊕⋅=⎢⎥⎣⎦密码【答案】yang 8888【分析】根据题中wifi 密码规律确定出所求即可.【详解】解:阳()()422244x y y z ⎢⎥⊕⋅=⎢⎥⎣⎦阳88888888x y z yang ⊕= 故答案为:yang 8888.【点睛】此题考查了同底数幂相乘和幂的乘方,熟练掌握运算法则是解本题的关键.三、解答题(本大题共11小题,17,18每小题7分,19,20,21,22,23,24,25每小题8分,26,27每小题9分,共88分.解答应写出文字说明、证明过程或演算步骤)17.(2021·吉林临江·八年级期末)计算:2222342()()a b a b a ----⋅÷【答案】8b【分析】幂的混合运算,先做乘方,然后做乘除.【详解】解:2222342()()a b a b a ----⋅÷22668a b a b a ---=⋅÷888a b a --=÷8b =.【点睛】本题考查了整式的混合运算,负整数指数幂,同底数幂的乘法,幂的乘方与积的乘方,解题关键是熟练掌握幂的有关运算法则.18.(2021·广东高州·七年级期末)计算:(1)﹣12021+(13)﹣2+(π﹣3.14)0; (2)(6a 3b 2﹣4a 2b )÷2ab .【答案】(1)9;(2)232a b a -【分析】(1)根据有理数的乘方,负整指数幂,零次幂进行计算即可;(2)直接根据多项式除以单项式的法则计算即可.【详解】(1)(1)﹣12021+(13)﹣2+(π﹣3.14)0 191=-++9=;(2)(6a 3b 2﹣4a 2b )÷2ab3226242a b ab a b ab =÷-÷232a b a =-【点睛】本题考查了有理数的乘方,负整指数幂,零次幂,多项式除以单项式,掌握以上运算法则是解题的关键.19.(2021·全国·八年级课时练习)已知3m a =,5n a =,求:(1)m n a -的值; (2)32m n a -的值.【答案】(1)35;(2)2725. 【分析】(1)根据同底数幂的除法法则的逆运算解题;(2)根据同底数幂的除法法则的逆运算、幂的乘方法则的逆运算解题.【详解】解:(1)∵3m a =,5n a =, ∴3355m n m n a a a -=÷÷==; (2)∵3m a =,5n a =, ∴32323232()527(352)m n m n m n a a a a a -====÷÷÷. 【点睛】本题考查幂的运算,涉及同底数幂的除法的逆运算、幂的乘方的逆运算等知识,是重要考点,掌握相关知识是解题关键.20.(2022·全国·七年级)声音的强弱用分贝表示,通常人们讲话时的声音是50分贝,它表示声音的强度是105,汽车的声音是100分贝,表示声音的强度是1010,喷气式飞机的声音是150分贝,求:(1)汽车声音的强度是人声音的强度的多少倍?(2)喷气式飞机声音的强度是汽车声音的强度的多少倍?【答案】(1) 105;(2) 105.【分析】(1)由题意直接根据同底数幂的除法运算法则进行计算即可得出答案;(2)根据题意利用同底数幂的除法运算法则进行计算即可得出答案.【详解】解:(1)因为1010÷105=1010-5=105,所以汽车声音的强度是人声音的强度的105倍;(2)因为人的声音是50分贝,其声音的强度是105,汽车的声音是100分贝,其声音的强度为1010,所以喷气式飞机的声音是150分贝,其声音的强度为1015,所以1015÷1010=1015-10=105,所以喷气式飞机声音的强度是汽车声音的强度的105倍.【点睛】本题主要考查的是同底数幂的除法的应用,熟练掌握同底数幂的除法法则是解题的关键. 21.(2021·河南·八年级阶段练习)规定*33a b a b =⨯,求:(1)求1*2;(2)若2*(1)81x +=,求x 的值.【答案】(1)27;(2)1x =【分析】(1)根据规定即可完成;(2)根据规定及幂的运算,可得关于x 的方程,解方程即可.【详解】(1)33a b a b *=⨯,1212333927∴*=⨯=⨯=;(2)2(1)81x *+=,214333x +∴⨯=,3433x +∴=则34x +=,解得:1x =.本题是新定义运算问题,考查了同底数幂的运算,解方程等知识,理解新定义运算是解题的关键.22.(2021·福建永春·八年级期中)规定两个非零数a,b之间的一种新运算,如果a m=b,那么a∧b=m.例如:因为52=25,所以5∧25=2;因为50=1,所以5∧1=0.(1)根据上述规定填空:2∧32=;﹣3∧81=.(2)在运算时,按以上规定请说明等式8∧9+8∧10=8∧90成立.【答案】(1)5,4;(2)说明见解析.【分析】(1)结合新定义运算及有理数的乘方运算法则分析计算;(2)结合新定义运算及同底数幂的乘法运算法则进行分析说明.【详解】解:(1)∵25=32,∴2∧32=5,∵(−3)4=81,∴−3∧81=4,故答案为:5;4;(2)设8∧9=a,8∧10=b,8∧90=c,∴8a=9,8b=10,8c=90∴8a×8b=8a+b=9×10=90=8c,∴a+b=c,即8∧9+8∧10=8∧90.【点睛】本题考查新定义运算,掌握有理数乘方运算法则,同底数幂的乘方运算法则是解题关键.23.(2021·山西·太原市外国语学校七年级阶段练习)若a*b=c,则a c=b.例如:若2*8=3,则23=8(1)根据上述规定,若5*1125=x,则x=.(2)记5*2=a,5*6=b,5*18=c,求a,b,c之间的数量关系.【答案】(1)﹣3;(2)2b=a+c.(1)根据定义和负整数指数幂公式即可解答;(2)根据定义得5a =2,5b =6,5c =18,发现62=2×18,从而得到a ,b ,c 之间的关系.【详解】解:(1)根据题意得:3311551255x -===, ∴x =﹣3.故答案为:﹣3;(2)根据题意得:5a =2,5b =6,5c =18,∴52b =(5b )2=62=36,5a ×5c =2×18=36,∴52b =5a ×5c =5a +c ,∴2b =a +c .【点睛】本题考查了负整数指数幂,同底数幂的乘法,幂的乘方,会逆用幂的运算法则是解题的关键.24.(2020·江苏江都·七年级期中)如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.【答案】(1)3,0,﹣2;(2)a +b =c ,理由见解析.【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a ,b ,c 的等式,然后根据幂的运算法则求解即可.【详解】(1)∵33=27,∴(3,27)=3,∵40=1,∴(4,1)=0, ∵2﹣2=14,∴(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a +b =c .理由:∵(3,5)=a ,(3,6)=b ,(3,30)=c ,∴3a =5,3b =6,3c =30,∴3a ×3b =5×6=3c =30,∴3a ×3b =3c ,∴a +b =c .【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.25.(2019·福建·莆田第十五中学七年级阶段练习)我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果b a =N (a >0,a ≠1,N >0),则b 叫做以a 为底N 的对数,记作log N a =b ,例如:因为35=125,所以1255log =3;因为211=121,所以12111log =2 (1)填空:66log = ,16log = ;(2)如果(2)2log m -=3,求m 的值.【答案】(1)1,0;(2)m =10.【分析】(1)把对数运算转化为幂运算求解即可;(2)把对数运算转化为幂的运算求解即可.【详解】解:(1)∵1066,61==,∴66log =1,16log =0,故答案为:1,0;(2)∵(2)2log m -=3,∴32=m ﹣2,解得:m =10.【点睛】本题考查了新运算问题,解答时,熟练将对数运算转化为对应的幂的运算是解题的关键. 26.(2021·河北邢台·八年级阶段练习)按要求解答下列各小题.(1)已知10m =6,10n =2,求10m ﹣n 的值;(2)如果a +3b =4,求3a ×27b 的值;(3)已知8×2m ÷16m =215,求m 的值.【答案】(1)3;(2)81;(3)4m =-【分析】(1)根据同底数幂的除法逆用可直接进行求解;(2)根据同底数幂的乘法的逆用可直接进行求解;(3)根据同底数幂的乘除法可直接进行求解.【详解】解:(1)∵10m =6,10n =2,∴101010623m n m n -=÷=÷=;(2)∵a +3b =4,∴334327333381a b a b a b +⨯=⋅===;(3)∵8×2m ÷16m =215,∴31534422222m m m m +-==⨯÷∴3315m -=,解得:4m =-.【点睛】本题主要考查同底数幂的乘除运算,熟练掌握同底数幂的乘除运算是解题的关键. 27.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______; (3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)【答案】(1)221−2;(2)2-5012;(3)101223-;(4)()121n a a a +--+11n na a +- 【分析】(1)根据阅读材料可得:设s =220222++⋅⋅⋅+①,则2s =22+23+…+220+221②,②−①即可得结果;(2)设s =2501111222+++⋅⋅⋅+①,12s =2505111112222++⋅⋅⋅++②,②−①即可得结果; (3)设s =()()()2100222-+-+⋅⋅⋅+-①,-2s =()()()23101222-+-+⋅⋅⋅+-②,②−①即可得结果;(4)设s =2323n a a a na +++⋅⋅⋅+①,as =234123n a a a na ++++⋅⋅⋅+②,②−①得as -s =-a -2341n n a a a a na +--⋅⋅⋅-++,同理:求得-2314n a a a a ++--⋅⋅⋅-,进而即可求解.【详解】解:根据阅读材料可知:(1)设s =220222++⋅⋅⋅+①,2s =22+23+…+220+221②,②−①得,2s −s =s =221−2;故答案为:221−2;(2)设s =2501111222+++⋅⋅⋅+①, 12s =2505111112222++⋅⋅⋅++②, ②−①得,12s −s =-12s =5112-1, ∴s =2-5012, 故答案为:2-5012; (3)设s =()()()2100222-+-+⋅⋅⋅+-①-2s =()()()23101222-+-+⋅⋅⋅+-②②−①得,-2s −s =-3s =()1012-+2 ∴s =101223-; (4)设s =2323n a a a na +++⋅⋅⋅+①,as =234123n a a a na ++++⋅⋅⋅+②,②-①得:as -s =-a -2341n n a a a a na +--⋅⋅⋅-++,设m =-a -234n a a a a --⋅⋅⋅-+③,am =-2314n a a a a ++--⋅⋅⋅-④,④-③得:am -m =a -1n a +,∴m =11n a a a +--, ∴as -s =11n a a a +--+1n na +, ∴s =()121n a a a +--+11n na a +-. 【点睛】本题考查了规律型−实数的运算,解决本题的关键是理解阅读材料进行计算。

幂的运算综合专项练习题(有答案过程)ok

幂的运算综合专项练习题(有答案过程)ok

幂的运算专项练习50题(有答案)1.2 2 2 32.(4ab)×(﹣ab)3.(1);(2)(3x3)2(?﹣x);(3)m2?7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d的大小.2 3 77.计算:(﹣2m)+m÷m.2 ﹣33﹣2)﹣28.计算:(2mn) ?(﹣mn9.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x?32y的值.mn3m+2n 13.已知3×9m×27m=316,求m的值.5.已知3=x,3=y,用x,y表示3 .nm3915,求2 m+n 14.若(abb ) =ab 的值.2 3 2 615.计算:(x?x )÷x .2n 2 3n+2 216.计算:(a )÷a ?a .17.若a m =8,a n = ,试求a 2m ﹣3n的值.n+1 2n18.已知9 ﹣3=72,求n 的值.m n 2m+n19.已知x=3,x=5,求x 的值.20.已知3m =6,9n =2,求32m ﹣4n+1的值.21.(x ﹣y )5[(y ﹣x )4]3(用幂的形式表示)m m m m 3024.已知:3?9?27?81=3,求m 的值.6﹣b 2b+1 11 a ﹣1 4﹣b 525.已知x ?x =x ,且y ?y =y ,求a+b 的值.x ﹣1 y26.若2x+3y ﹣4=0,求9 ?27.2 43 3 6 227.计算:(3ax )﹣(2ax ).28.计算: .m2n ﹣2 n m+3 2010 的值. 29.已知16=4×2 ,27=9×3 ,求(n ﹣m )30.已知162×43×26=22m ﹣2,(102)n =1012.求m+n 的值.5 3 4 231.(﹣a )(?﹣a )÷(﹣a ).22.若x m+2n =16,x n =2,(x ≠0),求x m+n ,x m ﹣n的值. 32.(a ﹣2b ﹣1)﹣3(?2ab 2)﹣2.﹣3 4 2 2﹣2 a+b 2b ﹣a 9 b 323.计算:(5a b )(?ab ) . 33.已知x ?x =x ,求(﹣3)+(﹣3)的值.2/64 4 2 4 4234.a?a+(a)﹣(﹣3x )5m+n2m﹣n 3 6 15 m 35.已知(x y )=xy,求n的值.m n 3m+2n 2n﹣3m 36.已知a=2,a=7,求a ﹣a 的值.2n+2 n 3 3 2 n 37.计算:(﹣3x y)÷[(﹣xy)]2 6 n n 3n 23 2 n 42.计算:(ab)+5(﹣ab)﹣3[(﹣ab)].43..n﹣5 n+13m﹣2 2 n﹣1 m﹣2 33m+244.计算:a (a b )+(a b )(﹣b )45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.﹣2 ﹣3 ﹣1 2 ﹣3 238.计算:(x y )(?xy ).46.已知2a?27b?37c=1998,其中a,b,c为整数,2m 3n3m 2 2n 3 2m 3n求(a﹣b﹣c)1998的值.39.已知a=2,b =3,求(a)﹣(b)+a?b的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n47.﹣(﹣0.25)1998×(﹣4)1999.的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n2n+1 3?(2a+b)n ﹣448.(1)(2a+b)?(2a+b)的值.3/6(2)(x ﹣y )2?(y ﹣x )5. 50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a 2b 3(2a ﹣1b 3);22 ﹣1﹣2 ﹣232 49.(1)(3xyz ) ?(5xy z ).2 ﹣12 ) ﹣43 ﹣2 (2)(4xyz )?(2xyz ÷(yz ) .幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2 4 63 8 72.原式=16ab ×(﹣ ab )=﹣2ab3.解:(1)原式=(﹣5)×3=﹣15; (2)原式=9x 6(?﹣x )=﹣9x 7; 3 2 2(3)原式=7mp ÷(﹣7mp )=﹣mp ;2 2( 4)原式=6a+2a ﹣9a ﹣3=6a ﹣7a ﹣3.故答案为﹣15、﹣9x 7、﹣m 2p 、6a 2﹣7a ﹣34.解:a x+y=a x?a y =2×3=6; a 2x ﹣y =a 2x ÷a y =22÷3=3m 2n5.解:原式=3×3,=(3m )3×(3n )2, 3 2 =xy5 11 116.解:a=(2)=32;3 11 11 c=(4)=48; 2 11 11d=(5)=25; 可见,b >c >a >d2 3 77.解:(﹣2m )+m ÷m ,3 2 3 6=(﹣2)×(m )+m ,6 6 =﹣8m+m ,6 =﹣7m2﹣33 ﹣2 ﹣26 ﹣9 ﹣248.解:(2mn )?(﹣mn )=8mn ?mn=9.解:原式=(﹣4)+4×1=010.解:原式= ÷(﹣ )+2×1=﹣2+2 =0﹣2 ﹣3 ﹣1 3(2)(a )(bc );2﹣3 2 ﹣2 (3)2(2abc )÷(ab).11.解:∵2x=4y+1,x2y+2,∴2=2∴x=2y+2①y x﹣1又∵27=3 ,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x?32y=22x?25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,2m 3m=3×3×3,=31+5m,1+5m 16∴3=3,∴1+5m=16,解得m=3nm3n3m333n3m+3 14.解:∵(abb)=(a)(b)b=ab ,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2?a2=a4n÷a3n+2?a24n﹣3n﹣2 2=a ?an﹣22=a ?a=a n﹣2+2n=a17.解:a2m﹣3n=(a m)2÷(a n)3,m n∵a=8,a=,4/6∴原式=64÷ =512.故答案为 51218.解:∵9n+1﹣32n =9n+1﹣9n =9n (9﹣1)=9n×8,而72=9 ×8, ∴当9n+1﹣32n =72时,9n×8=9×8, ∴ 9n=9, ∴n =1 19.解:原式=(x m )2?x n2 =3×5 =9×5 =45 20.解:由题意得, 9n =32n =2,32m =62=36,故 32m ﹣4n+1=32m ×3÷34n=36×3÷4=275 4 3 5 4 321.解:(x ﹣y )[(y ﹣x )]=(x ﹣y )[(x ﹣y )]=( x ﹣y )5(?x ﹣y )12=(x ﹣y )1722.解:∵x m+2n=16,x n=2,m+2nn m+n ∴x ÷x=x =16÷2=8, x m+2n ÷x 3n =x m ﹣n =16÷23=223.解:( ﹣3 4 22﹣2 5a b )?(ab )﹣6 8 ﹣4 ﹣2 =25a b?a b =24.解:由题意知, 3m ?9m ?27m ?81m,m 2m3m 4m =3?3 ?3?3 , m+2m+3m+4m =3 , =330,∴ m +2m+3m+4m=30,整理,得10m=30, 解得m=325.解:∵x 6﹣b ?x 2b+1=x 11,且y a ﹣1?y 4﹣b =y 5, ∴ ,解得: ,则 a+b=1026.解:∵2x+3y ﹣4=0, ∴2x+3y=4, x ﹣1y 2x ﹣23y 2x+3y ﹣22∴9 ?27=3 ?3 =3=3=9 27.解:(3a 2x 4)3﹣(2a 3x 6)2=27a 6x 12﹣4a 6x 12=23a 6x 1228.解:原式= ? a 2b 3=29.解:∵16m =4×22n ﹣2,∴(24)m=22×22n ﹣2,∴24m =22n ﹣2+2,∴ 2n ﹣2+2=4m ,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,2010∴(n﹣m)=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5?a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣17 2 15a÷a=﹣a.32.解:(a ﹣2﹣1﹣3 2﹣2 b)?(2ab)=(a6b3)(? a﹣2b﹣4)= a4b﹣1=33.解:∵x a+b?x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,b 3 3 3 3∴(﹣3)+(﹣3)=(﹣3)+(﹣3) =2×(﹣3)=2 ×(﹣27)=﹣5434.解:原式88 8=a+a ﹣9x,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,5m+n2m﹣n 3 6 15∵(xy )=xy ,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,3m+2n 2n﹣3m m 3 n 2 n 2 m 3 ∴a ﹣a =(a)(?a)﹣(a)÷(a)=8×49﹣49÷8=2n+2 n 3 3 2 n37.解:(﹣3x y)÷[(﹣xy)],=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2?y﹣3)﹣1(?x2?y﹣3)2,5/6234﹣6=xy?xy ,=39.解:(a3m)2﹣(b2n)3+a2m?b3n,=(a2m)3﹣(b3n)2+a2m?b3n,3 2=2﹣3+2×3,=56n6n40.解:原式=27x﹣4x=23(x3n)2=23×7×7=11272n41.解:∵x=5,∴(3x3n)2﹣34(x2)3n6n6n=9x﹣34x2n3=﹣25(x )3=﹣25×5=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n =6a2n b6n﹣3a2n b6n=3a2n b6n50 50)50101543.解:原式=()x?(x =x44.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=0a b45.解:(1)∵x=2,x=6,∴x a﹣b=x a÷x b=2÷6=;(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a?33b?37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=4(2n+1)+3+(n﹣4)48.解:(1)原式=(2a+b)3n =(2a+b);WORD 格式专业资料整理( 2)原式=﹣(x ﹣y )2(?x ﹣y )5=﹣(x ﹣y )749.解:(1)原式=( )﹣2(? )2= ?= ;(2)原式= ? ÷= ?y 2z 6=150.解:(1)a 2b 3(2a ﹣1b 3)=2a 2﹣1b 3+3=2ab 6;( 2)(a ﹣2)﹣3(bc ﹣1)3,=a 6b 3c ﹣3,= ;( 3)2(2ab 2c ﹣3)2÷(ab )﹣2,=2(4a 2b 4c ﹣6)÷(a ﹣2b ﹣2),=8a 4b 6c ﹣6, =6/6。

初中八年级数学上册幂的运算评估测试题及答案

初中八年级数学上册幂的运算评估测试题及答案

七年级下册数学第八章幂的运算评估测试卷(时间:90分钟满分:100分)一、选择题(每小题2分,共50分)1.下列计算不正确的是 ( )A.30+2-1=112B.10-4÷10-2=0.01 C.a2n÷a n=a2 D.()331328baba---=-2.下列计算不正确的是 ( ) A.a m÷a m=a0=1 B.a m÷(a n÷a p)=a m-n-pC.(-x) 5÷(-x) 4=-x D.9-3÷(3-3) 2=l3.下列计算正确的是 ( ) A.x8÷x4=x2 B.a8÷a-8=1 C.3100÷399=3 D.510÷55÷5-2=534.100m÷1000n的计算结果是 ( ) A.100000m-n B.102m-3n C.100mn D.1000mn5.若1x=2,则x2+x-2的值是 ( )A.4 B.144C.0 D.146.在等式a m+n÷A=a m-2中A的值应是 ( ) A.a m+n+2 B.a n-2 C.a m+n+3 D.a n+27.a2m+4等于 ( ) A.2a m+2 B.(a m) 2 a4 C.a2·a m+4 D.a2 a m+a48.x m+1 x m-1÷(x m) 2的结果是 ( ) A.-l B.1 C.0 D.±19.下列等式正确的是 ( )①0.000 126=1.26×10-4 ②3.10×104=31 000③1.1×10-5=0.000 011 ④12 600 000=1.26×106A.①② B.②④ C.①②③ D.①③④10.(-23×103) 2×(1.5×104) 2的值是 ( )A.-1.5×1011 B.1014 C.-4×1014 D.-101411.下列各式中-定正确的是 ( )A.(2x-3) 0=1 B.π0=0 C.(a2-1) 0=1 D.(m2+1) 0=112.计算200820091122⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭的结果是 ( )A.2009112⎛⎫+⎪⎝⎭B.200912⎛⎫- ⎪⎝⎭C.200812⎛⎫- ⎪⎝⎭D.200912⎛⎫⎪⎝⎭13.若26m>2x>23m,m为正整数,则x的值是 ( )A.4m B.3m C.3 D.2m14.在算式a m+n÷( )=a m-2中括号内的式子应是 ( ) A.a m+n+2 B.a n-2 C.a m+n-2 D.a n+215.(2×3-12÷2)0结果为 ( ) A.0 B.1 C.12 D.无意义16.结果为a2的式子是 ( ) A.a6÷a3 B.a4 a-2 C.(a-1) 2 D.a4-a217.下面计算正确的是 ( ) A.a4 a2=a8 B.b3+b3=b6 C.x5+x2=x7 D.x x7=x8 18.(-2a3) 2等于 ( ) A.4a5 B.4a6 C.4a9 D.-4a619.下列运算正确的是 ( ) A.x5 x=x5 B.x5-x2=x3 C.(-y) 2 (-y) 7=y9 D.-y3·(-y) 7=y10 20.下列运算正确的是 ( ) A.x10÷(x4÷x2)=x8 B.(xy) 6÷(xy) 2=(xy) 3=x3y3C.x n+2÷x n+1=x-n D.x4n÷x2n x3n=x-n21.计算25m÷5m得 ( )A.5 B.20 C.5m D.20m22.1纳米=0.000 000 001米,则2.5纳米应表示为 ( ) A.2.5×10-8米 B.2.5×10-9米 C.2.5×10-10米 D.2.5×109米23.国家游泳中心——“水立方”是北京2008奥运会场馆之一,它的外层膜的展开面积约260 000平方米,将260 000用科学记数法表示应为 ( )A.0.26×106 B.26×104 C.2.6×105 D.2.6×10624.下列运算正确的是 ( )A.a2 a3=a6 B.(-y2) 3=y6 C.(m2n) 3=m5n3 D.-2x2+5x2=3x2 25.国家教育部最近提供的数据娃示,2008年全国普通高考计划招生667万人,这一数据科学记数法表示为(结果保留两个有效数字) ( ) A.6.6×106 B.66×106 C.6.7×106 D.67×106二、填空题(每小题2分,共44分)26.a2·(-a)2=____________.27.(x2)-3·(x3)-1÷x=____________.28.-b2·(-b) 2 (-b3)=_____________.29.(x-y) 2 (y-x) 3=______________.30. 0.1252008×82009=_____________.31.-4n÷8n-1=_____________.32.a3 __________ a m+1=a2m+433.已知10a=5,10b=25,则103a-b=____________.34.已知Ax n+1=x2n+1,则A=_____________.35.0.258×643×258×48=______________.36.-52×(-5) 2×5-4=_____________.37.(a2) 2 (a b) 3-(-a2b) 3(-a)=______________.38.(-a)6÷(-a)3=____________.39.a2 a5÷a6=____________.40.50×5-2+25-1=____________.41.m3·(m2) 6÷m10=___________.42.-x m+1÷x m-1=___________.43.(a m-1) n÷a mn=___________.44.若22n=4,则n=__________.45.若64×83=2x,则x=___________.46.若x3=(-2) 5÷(12)-2,则x=____________.47.用科学记数法表示0.000 000 125=____________.三、计算题(48~51题每小题4分,52、53题每小题5分,共26分) 48.(-3a3) 2÷a249.x n+1 ÷x n-1(x n) 2 (x≠0) 50.x5 x4-x6·x2·x51. ( -3) 0+(-12)3-(13)-252.3x2·x n-2+3(-x) 2·x n-3·(-x) 53.(-3×3-2)-3-(-32) 2÷32×20090参考答案1.C 2.B 3.C 4.B 5.B 6.D 7.B 8.B 9.C 10.B 11.D12.D 13.A 14.D 15.D 16.B 17.D 18.B 19.D 20.A 21.C 22.B23.C 24.D 25.C26.a 4 27.101x 28.b 7 29.(y -x) 5 30.8 31.-23-n 32.a m33.5 34.x n 35.436.-1 37.0 38.-a 3 39.a 40.1 41.m 5 42.-x 2 43.1na 44.1 45.15 46.-2 47.1.25×10-748.解:(-3a 3) 2÷a 2 =9a 6÷a 2 =9a 6-2=9a 449.解:x n+1·x n -1÷(x n ) 2 =x (n+1)+(n -1)-2n =x 0=150.解:x 5·x 4-x 6 x 2 x=x 9-x 29=0.51.解:()320111131982388π-⎛⎫⎛⎫⎛⎫-+--=+--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭52.解:原式=3x n -3x n =0.53.解:(-3×3-2)-3-(-32) 2÷32×20090=-27-9×1=-36。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七(下)数学第八章幂的运算评估测试卷
(时间:90分钟满分:100分)
一、选择题(每小题2分,共50分)
1.下列计算不正确的是 ( )
A.30+2-1=
1
1
2
B.10-4÷10-2=0.01 C.a2n÷a n=a2 D.()
3
3
1
3
2
8
b
ab
a
-
-
-=-
2.下列计算不正确的是 ( ) A.a m÷a m=a0=1 B.a m÷(a n÷a p)=a m-n-p
C.(-x) 5÷(-x) 4=-x D.9-3÷(3-3) 2=l
3.下列计算正确的是 ( ) A.x8÷x4=x2 B.a8÷a-8=1 C.3100÷399=3 D.510÷55÷5-2=53
4.100m÷1000n的计算结果是 ( ) A.100000m-n B.102m-3n C.100mn D.1000mn
5.若1
x
=2,则x2+x-2的值是 ( )
A.4 B.
1
4
4
C.0 D.
1
4
6.在等式a m+n÷A=a m-2中A的值应是 ( ) A.a m+n+2 B.a n-2 C.a m+n+3 D.a n+2
7.a2m+4等于 ( ) A.2a m+2 B.(a m) 2a4 C.a2·a m+4 D.a2a m+a4
8.x m+1x m-1÷(x m) 2的结果是 ( ) A.-l B.1 C.0 D.±1
9.下列等式正确的是 ( )
①0.000 126=1.26×10-4 ②3.10×104=31 000
③1.1×10-5=0.000 011 ④12 600 000=1.26×106
A.①② B.②④ C.①②③ D.①③④
10.(-2
3
×103) 2×(1.5×104) 2的值是 ( )
A.-1.5×1011 B.1014 C.-4×1014 D.-1014
11.下列各式中-定正确的是 ( )
A.(2x-3) 0=1 B.π0=0 C.(a2-1) 0=1 D.(m2+1) 0=1
12.计算
20082009
11
22
⎛⎫⎛⎫
-+-
⎪ ⎪
⎝⎭⎝⎭
的结果是 ( )
A.
2009
1
1
2
⎛⎫
+

⎝⎭
B.
2009
1
2
⎛⎫
- ⎪
⎝⎭
C.
2008
1
2
⎛⎫
- ⎪
⎝⎭
D.
2009
1
2
⎛⎫

⎝⎭
13.若26m>2x>23m,m为正整数,则x的值是 ( )
A.4m B.3m C.3 D.2m
14.在算式a m+n÷( )=a m-2中括号内的式子应是 ( ) A.a m+n+2 B.a n-2 C.a m+n-2 D.a n+2
15.(2×3-12÷2)0结果为 ( ) A.0 B.1 C.12 D.无意义
16.结果为a2的式子是 ( ) A.a6÷a3 B.a4a-2 C.(a-1) 2 D.a4-a2
17.下面计算正确的是 ( ) A.a4a2=a8 B.b3+b3=b6 C.x5+x2=x7 D.x x7=x8
18.(-2a3) 2等于 ( ) A.4a5 B.4a6 C.4a9 D.-4a6
19.下列运算正确的是 ( ) A.x5x=x5 B.x5-x2=x3 C.(-y) 2 (-y) 7=y9 D.-y3·(-y) 7=y10 20.下列运算正确的是 ( ) A.x10÷(x4÷x2)=x8 B.(xy) 6÷(xy) 2=(xy) 3=x3y3
C.x n+2÷x n+1=x-n D.x4n÷x2n x3n=x-n
21.计算25m÷5m得 ( )
A.5 B.20 C.5m D.20m
22.1纳米=0.000 000 001米,则2.5纳米应表示为 ( ) A.2.5×10-8米 B.2.5×10-9米 C.2.5×10-10米 D.2.5×109米23.国家游泳中心——“水立方”是北京2008奥运会场馆之一,它的外层膜的展开面积约260 000平方米,将260 000用科学记数法表示应为 ( )
A.0.26×106 B.26×104 C.2.6×105 D.2.6×106
24.下列运算正确的是 ( )
A.a2a3=a6 B.(-y2) 3=y6 C.(m2n) 3=m5n3 D.-2x2+5x2=3x2
25.国家教育部最近提供的数据娃示,2008年全国普通高考计划招生667万人,这一数据科学记数法表示为(结果保留两个有效数字) ( ) A.6.6×106 B.66×106 C.6.7×106 D.67×106
二、填空题(每小题2分,共44分)
26.a2·(-a)2=____________.
27.(x2)-3·(x3)-1÷x=____________.
28.-b2·(-b) 2 (-b3)=_____________.
29.(x-y) 2 (y-x) 3=______________.
30. 0.1252008×82009=_____________.
31.-4n÷8n-1=_____________.
32.a3__________a m+1=a2m+4
33.已知10a
=5,10b=25,则103
a-b
=____________.
34.已知Ax n+1=x2n+1,则A=_____________.
35.0.258×643×258×48=______________.
36.-52×(-5) 2×5-4=_____________.
37.(a2) 2 (a b) 3-(-a2b) 3(-a)=______________.38.(-a)6÷(-a)3=____________.
39.a2a5÷a6=____________.
40.50×5-2+25-1=____________.
41.m3·(m2) 6÷m10=___________.
42.-x m+1÷x m-1=___________.
43.(a m-1) n÷a mn=___________.
44.若22n=4,则n=__________.
45.若64×83=2x,则x=___________.
46.若x3=(-2) 5÷(1
2
)-2,则x=____________.
47.用科学记数法表示0.000 000 125=____________.
三、计算题(48~51题每小题4分,52、53题每小题5分,共26分) 48.(-3a3) 2÷a2
49.x n+1÷x n-1(x n) 2 (x≠0) 50.x5x4-x6·x2·x
51.( -3) 0+(-1
2
)3-(
1
3
)-2
52.3x2·x n-2+3(-x) 2·x n-3·(-x) 53.(-3×3-2)-3-(-32) 2÷32×20090
参考答案
1.C 2.B 3.C 4.B 5.B 6.D 7.B 8.B 9.C 10.B 11.D
12.D 13.A 14.D 15.D 16.B 17.D 18.B 19.D 20.A 21.C 22.B
23.C 24.D 25.C
26.a 4 27.101x
28.b 7 29.(y -x) 5 30.8 31.-23-n 32.a m 33.5 34.x n 35.4
36.-1 37.0 38.-a
3 39.a 40.1 41.m 5 42.-x 2 43.1n a 44.1
45.15 46.-2 47.1.25×10-7
48.解:(-3a 3) 2÷a 2 =9a 6÷a 2 =9a 6-2=9a 4
49.解:x n+1·x
n -1÷(x n ) 2 =x (n+1)+(n -1)-2n =x 0
=1
50.解:x 5·x 4-x 6 x 2x=x 9-x 29=0. 51.解:()32
0111131982388π-⎛⎫⎛⎫⎛⎫-+--=+--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 52.解:原式=3x n -3x n
=0.
53.解:(-3×3-2)-3-(-32) 2÷32×20090=-27-9×1=-36。

相关文档
最新文档