信号与系统--第四章
合集下载
信号与系统自测题(第4章 连续时间信号与系统的复频域分析)含答案

) 。
D
、6
−t
18
( s) s 、线性系统的系统函数 H (s) = Y = ,若其零状态响应 y(t ) = (1 − e F ( s) s + 1
D B
−t
)u (t )
,则系
统的输入信号 f (t ) = (
A
) 。
−t
、 δ (t )
、e
u (t )
C
、e
−2 t
u (t )
D
、 tu(t )
C
2
、s
ω e −2 s + ω2
12
、原函数 e
1 − t a
t f( ) a
的象函数是(
B
B
) 。
C
s 1 F( + ) 、1 a a a 注:原书答案为 D
A
、 aF (as + 1)
、 aF (as + a)
D
、 aF (as + 1 ) a
t f ( ) ↔ aF (as ) a e f (t ) ↔ F ( s + 1)
A
−s s −s s
A
s 、1 F ( )e a a
−s
b a
B
s 、1 F ( )e a a
− sb
C
s 、1 F ( )e a a
t 0
s
b a
D
s 、1 F ( )e a a
sb
、 已知信号 x(t ) 的拉普拉斯变换为 X (s) ,则信号 f (t ) = ∫ λ x(t − λ )d λ 的拉普拉斯变换 为( B ) 。 1 1 1 1 A、 X ( s ) B、 X (s) C、 X ( s) D、 X (s) s s s s 注:原书答案为 C。 f (t ) = ∫ λ x(t − λ )d λ = tu(t ) ∗ x(t )u(t ) tu(t ) ∗ x(t )u(t ) ↔ s1 X (s) 9、函数 f (t ) = ∫ δ ( x)dx 的单边拉普拉斯变换 F ( s ) 等于( D ) 。 1 1 A、 1 B、 C、 e D、 e s s
信号与系统第4章 周期信号的频域分析(3学时)

T0 /2
0
x(t )sin(n 0t )dt
四、信号对称性与傅里叶系数的关系
3、半波重迭信号
~ x (t ) ~ x (t T0 / 2)
~ x (t )
A t
T0
T0 / 2 0
T0 / 2
T0
特点: 只含有正弦与余弦的偶次谐波分量,而无奇次谐波分量。
四、信号对称性与傅里叶系数的关系
~ x (t )
2 1 -4 -3 -2 -1 1 2 3 4
~ x (t ) ~ x1 (t ) ~ x2 (t )
nπ nπt t~ x (t ) 1.5 Sa ( ) cos( ) 2 2 n 1
~ x1 (t )
2
x 1(t ) 2
1 2 3 4
-4 -3 -2 -1
三、周期信号的功率谱
一、周期信号频谱的概念
连续时间周期信号可以表示为虚指数信号之和,其 中Cn 为傅里叶系数 。
~ x (t )
n =
Cn e
jn0t
1 Cn T0
T0 t 0
t0
~ x (t )e jn 0t dt
问题1:不同信号的傅里叶级数形式是否相同? 相同 问题2:不同信号的傅里叶级数不同表现在哪里? 系数
例3 课本P129
例4 已知连续周期信号的频谱如图,试写出信号的 Fourier级数表示式。 Cn
3 2 1 1 3 4 3 2
9
6
0
3
6
9
n
解: 由图可知 C0 4
C 1 3
C2 1
C 3 2
~ x (t )
精品文档-信号与系统分析(徐亚宁)-第4章

F1= w0/(s^2+w0^2)
F2= s/(s^2+w0^2)
第4章 连续时间信号与系统的复频域分析
【例4-10】用MATLAB求解【例4-3】, 设τ=1 解 求解的代码如下: %program ch4-10 R=0.02; t=-2:R:2; f=stepfun(t, 0)-stepfun(t, 1); S1=2*pi*5; N=500; k=0:N; S=k*S1/N; L=f*exp(t′*s)*R; L=real(L);
本例中
和
的ROC均为
Re[s]>0,
极点均在s=0处。但
有一个s=0的零点,
抵消了该处的极点,相应地ROC扩大为整个s平面。
第4章 连续时间信号与系统的复频域分析 4.2.3 复频移(s域平移)特性
【例4-4】
, s0为任意常数 (4-12)
求e-atcosω0tU(t)及e-atsinω0tU(t)的象函数。
第4章 连续时间信号与系统的复频域分析
1. s 借助复平面(又称为s平面)可以方便地从图形上表示 复频率s。如图4-1所示,水平轴代表s Re[s]或σ, 垂直轴代表s的虚部,记为Im[s]或jω, 水平 轴与垂直轴通常分别称为σ轴与jω轴。如果信号f(t)绝 对可积,则可从拉氏变换中得到傅里叶变换:
f= exp(-t)+2*t*exp(-2*t)-exp(-2*t)
第4章 连续时间信号与系统的复频域分析
【例4-9】 用MATLAB求解【例4-2】 解 求解的代码如下:
%program ch4-9 syms w0t; F1=laplace(sin(w0*t)) F2=laplace(cos(w0*t))
(4-2)
F2= s/(s^2+w0^2)
第4章 连续时间信号与系统的复频域分析
【例4-10】用MATLAB求解【例4-3】, 设τ=1 解 求解的代码如下: %program ch4-10 R=0.02; t=-2:R:2; f=stepfun(t, 0)-stepfun(t, 1); S1=2*pi*5; N=500; k=0:N; S=k*S1/N; L=f*exp(t′*s)*R; L=real(L);
本例中
和
的ROC均为
Re[s]>0,
极点均在s=0处。但
有一个s=0的零点,
抵消了该处的极点,相应地ROC扩大为整个s平面。
第4章 连续时间信号与系统的复频域分析 4.2.3 复频移(s域平移)特性
【例4-4】
, s0为任意常数 (4-12)
求e-atcosω0tU(t)及e-atsinω0tU(t)的象函数。
第4章 连续时间信号与系统的复频域分析
1. s 借助复平面(又称为s平面)可以方便地从图形上表示 复频率s。如图4-1所示,水平轴代表s Re[s]或σ, 垂直轴代表s的虚部,记为Im[s]或jω, 水平 轴与垂直轴通常分别称为σ轴与jω轴。如果信号f(t)绝 对可积,则可从拉氏变换中得到傅里叶变换:
f= exp(-t)+2*t*exp(-2*t)-exp(-2*t)
第4章 连续时间信号与系统的复频域分析
【例4-9】 用MATLAB求解【例4-2】 解 求解的代码如下:
%program ch4-9 syms w0t; F1=laplace(sin(w0*t)) F2=laplace(cos(w0*t))
(4-2)
(仅供参考)信号与系统第四章习题答案

e −sT
=
−sT
2 − 4e 2
+ 2e −sT
Ts 2
(f) x(t) = sin πt[ε (t)− ε (t − π )]
sin π tε (t ) ↔
π s2 + π 2
L[sin
πtε (t
−π
)]
=
L e jπt
− 2
e− jπt j
ε (t
−π
)
∫ ∫ =
1 2j
∞ π
e
jπt e−st dt
4.3 图 4.2 所示的每一个零极点图,确定满足下述情况的收敛域。
(1) f (t) 的傅里叶变换存在
(2) f (t )e 2t 的傅里叶变换存在
(3) f (t) = 0, t > 0
(4) f (t) = 0, t < 5
【知识点窍】主要考察拉普拉斯变换的零极点分布特性。 【逻辑推理】首先由零极点写出拉普拉斯变换式,再利用反变换求取其原信号,即可求取其收
= cosϕ eω0tj + e−ω0tj − sin ϕ eω0tj − e−ω0tj
2
2j
=
cos 2
ϕ
−
sin 2
ϕ j
e
ω0 t j
+
cosϕ 2
+
sin ϕ 2j
e −ω 0tj
F(s) =
L
cosϕ 2
−
sin ϕ 2j
eω0tj
+
cos 2
ϕ
+
sin ϕ 2j
e
−ω0
t
j
ε
(t
)
∫ ∫ =
信号与系统(第四章)-离散傅里叶变换与快速傅里叶变换

解:变量n用k替代
反转,并取主值区间序列
周期延拓
反转后
向右平移1位 向右平移3位
向右平移2位
于是,由
y
(n)
3
x(k
)h((n
k
))
4
G4
(n)
,得
k 0
y(0) 1114 13 02 8
y(1) 1 2 1114 03 7
y(2) 1312 11 04 6
y(3) 14 1312 01 9
➢ 线卷积与圆周卷积
• 线卷积的移位是平移,圆周卷积的移位是周期位 移。
• 线卷积不要求两序列长度一致。若 x(n)与h(n)的长度分别为M和N,则 y(n)=x(n)*h(n)的长度为M+N-1。 圆周卷积要求两序列长度一致,否则短序列须补 零,使两序列等长后,才可进行圆周卷积。
DFT ax1(n) bx2(n) aDFT x1(n) bDFT x2(n)
(4.9)
当序列x1(n)和x2(n)长度不一致时,则可通过将较 短序列补零,使两序列长度一致,此时,式(4.9)成立。
2、圆周位移特性 圆周时移:圆周时移指长度为N的序列x(n),以N 为周期做周期延拓生成xp(n),位移m位后,得序 列xp(n-m),在此基础上取其主值区间上序列。
于是
x(n)
x(t)
t nTs
k
X e jk1nTs k
X e X e
j
2 T1
knTs
k
j 2 nk N
k
(4.3)
k
k
式(4.3)两边同乘
e
j 2 N
nm
,再取合式
N 1
,得
n0
反转,并取主值区间序列
周期延拓
反转后
向右平移1位 向右平移3位
向右平移2位
于是,由
y
(n)
3
x(k
)h((n
k
))
4
G4
(n)
,得
k 0
y(0) 1114 13 02 8
y(1) 1 2 1114 03 7
y(2) 1312 11 04 6
y(3) 14 1312 01 9
➢ 线卷积与圆周卷积
• 线卷积的移位是平移,圆周卷积的移位是周期位 移。
• 线卷积不要求两序列长度一致。若 x(n)与h(n)的长度分别为M和N,则 y(n)=x(n)*h(n)的长度为M+N-1。 圆周卷积要求两序列长度一致,否则短序列须补 零,使两序列等长后,才可进行圆周卷积。
DFT ax1(n) bx2(n) aDFT x1(n) bDFT x2(n)
(4.9)
当序列x1(n)和x2(n)长度不一致时,则可通过将较 短序列补零,使两序列长度一致,此时,式(4.9)成立。
2、圆周位移特性 圆周时移:圆周时移指长度为N的序列x(n),以N 为周期做周期延拓生成xp(n),位移m位后,得序 列xp(n-m),在此基础上取其主值区间上序列。
于是
x(n)
x(t)
t nTs
k
X e jk1nTs k
X e X e
j
2 T1
knTs
k
j 2 nk N
k
(4.3)
k
k
式(4.3)两边同乘
e
j 2 N
nm
,再取合式
N 1
,得
n0
信号与系统第4章

35
正方波为奇谐函数
f (t)
1
OT
2T t
1
f
(t
)
4
sin(t)
1 3
sin(3t)
1 5
sin(5t)
36
傅里叶级数的指数形式
f
(t)
A0 2
n1
An
c os (nt
n)
A0 2
n1
An
1 2
e j (nt n )
e j(nt n )
A0 2
1 2
n1
Ane jn e jnt
t1
(t)
i
(t)dt
0,
i 1,2,, n
则称该函数集为完备正交函数集。函数 ψ (t) 应满足条 件
0 t2 2 (t)dt t1
5
正交的三角函数集 (1)
1, cos 2 1 t , cos 2 2 t ,cos 2 m t ,,
T T
T
sin 2 1 t ,sin 2 2 t ,sin 2 n t ,
1 2
n1
Ane jn e jnt
A0 2
1 2
n1
Ane jn e jnt
1 2
Ane
n1
e j n
jnt
A0 2
1 2
n1
Ane jn e jnt
1 2
Ane
n1
e jn
jnt
1 2
Ane jn e jnt
n
37
傅里叶级数的指数形式
f
(t)
1 2
Ane
n
e j n
jnt
Fne jnt
n
上式中,
正方波为奇谐函数
f (t)
1
OT
2T t
1
f
(t
)
4
sin(t)
1 3
sin(3t)
1 5
sin(5t)
36
傅里叶级数的指数形式
f
(t)
A0 2
n1
An
c os (nt
n)
A0 2
n1
An
1 2
e j (nt n )
e j(nt n )
A0 2
1 2
n1
Ane jn e jnt
t1
(t)
i
(t)dt
0,
i 1,2,, n
则称该函数集为完备正交函数集。函数 ψ (t) 应满足条 件
0 t2 2 (t)dt t1
5
正交的三角函数集 (1)
1, cos 2 1 t , cos 2 2 t ,cos 2 m t ,,
T T
T
sin 2 1 t ,sin 2 2 t ,sin 2 n t ,
1 2
n1
Ane jn e jnt
A0 2
1 2
n1
Ane jn e jnt
1 2
Ane
n1
e j n
jnt
A0 2
1 2
n1
Ane jn e jnt
1 2
Ane
n1
e jn
jnt
1 2
Ane jn e jnt
n
37
傅里叶级数的指数形式
f
(t)
1 2
Ane
n
e j n
jnt
Fne jnt
n
上式中,
《信号与系统》教与学第四章

j n e 3
j n
e3
1 n
sin
n 3
,
n
0, 1,
2,
2
《信号与系统》教与学第四章答案
4.4 周期信号 f (t ) 的双边频谱 Fn 如图所示,求其三角函数表达式。
【知识要点:】本题主要考查周期信号的频谱概念,单边谱与双边谱的关系。
(3)计算信号的功率。
【知识要点:】本题主要考查周期信号的频谱概念应用;帕斯瓦尔功率等式应用。
T
2
;
f
t
A0 2
n1
An
cos
nt n
;P
Fn 2 。
n
【解题方法:】利用已知条件观察求出 ,并带入公式计算求出各次谐波分量;
根据单边幅度谱和双边幅度谱的关系、单边相位谱和双边相位谱的关系画出双
边幅度谱和相位谱;最后利用帕斯瓦尔功率等式计算信号的功率。
解:(1)
x
t
16 cos
20
t
4
6
cos
30
t
6
4
cos
40
t
3
10 (rad/s) ,
T
2
2 10
1 (s) , 5
周期信号所含谐波次数为二次,三次,四次;
求得。
(1) cos( t ) sin 2t
解: T1
信号与系统讲义第四章5系统频率特性及稳定性

大,输出信号VO(s) 与差分输入信号V1(s)和V2(s)之间满足关系式: Vo(s)A[V2(s)V1(s)],求:(1)H(s)VV1o((ss)) (2)A满足什么条件,系统稳定?
06.06.2019
信号与系统
例:图示反馈系统,求系统函数分析稳定性 Q(s)
稳定系统的充要条件: h()d<
06.06.2019
信号与系统
2、根据系统函数零、极点分布判断稳定性
系统稳定的条件
H(s)全部极点在s左半开平面,稳定 H(s)的极点在右半开平面,或虚轴上有二阶以
上高阶极点,不稳定 H(s)虚轴上单极点,不稳定(边界稳定)
06.06.2019
根据幅频特性的不同,可划分成如下几种
06.06.2019
截止频率--下降3dB的频率点
信号与系统
二、由极、零点分布分析频响特性
m
(s z j)
H (s) K
j 1 n
(s pi)
i 1
s沿 虚 轴 移s 动j
m
( j z j )
H ( j) K
j 1 n
信号与系统
1 1 R1C1 R2C2
06.06.2019
信号与系统
小结: (232页)
若函数有一对非常靠近jω轴的极点,则ω 在极点附近,幅频特性出现峰点,相频特性 迅速下降
若函数有一对非常靠近jω轴的零点,则ω 在零点附近,副频特性出现下陷,相频特性 迅速上升
若系统函数的零、极点远离jω轴,则对频 率响应特性曲线的影响较小,只是大小有所 增减。
信号与系统
4.11 线性系统的稳定性
1、稳定系统
有限(界)激励,产生有限(界)输出,稳定系统 有限(界)激励,产生无限(界)输出,为不稳定系统
06.06.2019
信号与系统
例:图示反馈系统,求系统函数分析稳定性 Q(s)
稳定系统的充要条件: h()d<
06.06.2019
信号与系统
2、根据系统函数零、极点分布判断稳定性
系统稳定的条件
H(s)全部极点在s左半开平面,稳定 H(s)的极点在右半开平面,或虚轴上有二阶以
上高阶极点,不稳定 H(s)虚轴上单极点,不稳定(边界稳定)
06.06.2019
根据幅频特性的不同,可划分成如下几种
06.06.2019
截止频率--下降3dB的频率点
信号与系统
二、由极、零点分布分析频响特性
m
(s z j)
H (s) K
j 1 n
(s pi)
i 1
s沿 虚 轴 移s 动j
m
( j z j )
H ( j) K
j 1 n
信号与系统
1 1 R1C1 R2C2
06.06.2019
信号与系统
小结: (232页)
若函数有一对非常靠近jω轴的极点,则ω 在极点附近,幅频特性出现峰点,相频特性 迅速下降
若函数有一对非常靠近jω轴的零点,则ω 在零点附近,副频特性出现下陷,相频特性 迅速上升
若系统函数的零、极点远离jω轴,则对频 率响应特性曲线的影响较小,只是大小有所 增减。
信号与系统
4.11 线性系统的稳定性
1、稳定系统
有限(界)激励,产生有限(界)输出,稳定系统 有限(界)激励,产生无限(界)输出,为不稳定系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19:57
■
第4章连续系统的复频域分析
3
第一节 拉普拉斯变换
一、从傅里叶变换到拉普拉斯变换
傅里叶变换条件,信号在无限区间绝对可积
f (t) dt -
F(w) f (t) e- jwt dt -
f (t) 1 F(w) e jwt dw 2 -
若f(t)不满足绝对可积条件, 则其傅里叶变换不一定存在。
第2章连续系统的时域分析
信号与系统
Signals and systems
■
第4章连续系统的复频域分析
2
由第三章学习,知连续 时间系统的频域分析为
F [f ( t )]
F -1[ y ( jw )]
f (t) F( jw) 系统的零状态响应H ( jw) Y( jw)
y(t )
频域分析法缺点: 1、有些f (t)的傅里叶变换不存在。 2、傅里叶分析求逆变换 的过程比较繁琐。
(t) 1 ( -)
(at) 1
a
(at - b) 1 e-bs/ a
19:57
a
(t - b) e-bs (at - b) 1 e-bs/ a
a
■
第4章连续系统的复频域分析
27
5. 时域卷积
19:57
■
第4章连续系统的复频域分析
28
利用卷积特性可方便利用是域求解系统的零状态响应
F(s) '(t)e-stdt (-1)'(e-st )' s ( -)
0-
t 0
F(s) (n) (t) e-stdt (-1)(n) (e-st )(n)
( -)
0-
t 0
19:57
■
第4章连续系统的复频域分析
19
5.t的正幂次信号t n (t )
F (s) t n e-st dt 0-
LT[ d 2 f (t)] d 2 f (t) e-st dt
dt 2
0- dt 2
d [ df (t)] e-st dt 0- dt dt
ssF (s) -
(Re( s) max( 0,-)即: 0)
19:57
■
第4章连续系统的复频域分析
29
6. 时域微分
式中,f(1)(t)、f(2)(t)、f(n)(t)分别表示f(t)的一次、二次、n次导数,
f(0-)、f(1)(0-)、f(i)(0-)分别表示f(t)、f(1)(t)、f(i)(t)在t=0-时的值。
19:57
■
第4章连续系统的复频域分析
9
【例】求指数函数
的象函数F(s)。
f (t) eαt (t)
(α>0, α∈R)
【解】根据定义
F (s) ete-stdt e-(s- )tdt e-(s- )t
0
0
- (s -)
0
1 [1- lim e-(s- )t ]
s - t
19:57
ss
s
ss
n! s n1
19:57
t n (t)
n! s n1
( 0)
■
第4章连续系统的复频域分析
20
四、 单边拉普拉斯变换的性质
1. 线性
例: f1 (t )
1 s 1
( -1)
f2 (t)
(s
1 1)( s
2)
( -1)
f1(t)
-
f2 (t)
1 s 1
-
(s
1 1)(s
2)
(s
(s 1) 1)(s
0-
0-
s-
15
( )
即: et (t) 1 s-
( )
同理: e jw0t (t) 1 s - jw0
( 0)
e(0 jw0 )t (t)
1
s - ( 0 jw0)
( 0)
19:57
■
第4章连续系统的复频域分析
16
2.正弦信号 sin(w0t) (t)
F(s)
0-
sin w0t
在实际问题中,我们遇到的都是因果信号,信号总有发生 的起始时刻,如果将起始时刻定为时间原点,
f (t) 0 (t 0)
F(s) f (t)e-stdt 0-
19:57
■
第4章连续系统的复频域分析
7
上式称为f(t)的单边拉普拉斯变换。所以有
0
f
(t)
1
2j
j
F
(
s)e
st
ds
- j
一般而言,若极限 lim f (t)e-t 在σ>σ0时取值为零
,则收敛条件为σ>σ0 。 t
19:57
■
第4章连续系统的复频域分析
12
在以σ为横轴,jω为纵轴的复平面(s平面)上,σ0在复平 面称为收敛坐标,通过σ0的垂直线是收敛区的边界,称为收敛 轴。 收敛轴将复平面划分为两个区域,σ> σ0的是一个区域,称 为象函数F(s)的收敛域,如下图所示。
19:57
■
第4章连续系统的复频域分析
30
•
证明:根据拉氏变换定义
LT[ df (t)] df (t) e-st dt
dt
0- dt
[e-st f (t)]0 -
0-
(-s)e-st f (t)dt
sF (s) - f (0- )
得证。
19:57
■
第4章连续系统的复频域分析
31
•
同理可得
8
二、拉氏变换的收敛域
在引入拉氏变换时我们说过,当f(t)乘以衰减因子e-σt后, 就有可能找到合适的σ值使f(t)e-σt绝对可积,从而f(t)e-σt的傅氏 变换存在,继而得到f(t)的拉氏变换。那么,合适的σ值如何确 定呢?或者说,如果把合适的σ取值范围称为拉氏变换收敛域 的话,那么如何确定该收敛域?下面通过一个例题对拉氏变 换的收敛域给予说明。
25
例、 f (t) e-t cos(w0t) (t), a为实数.求f (t)的象函数.
19:57
■
第4章连续系统的复频域分析
26
4. 尺度变换
若 f (t) F (s), Re[ s] 0 , 则
f (at) 1 F s a a
a 式中, 为常数, a 0
Re[s] a 0
例: 求x(t) (at -b) 的拉氏变换
y (t ) f (t ) * h (t ) Y (s) F (s) H (s)
H (s) Y (s) F (s)
例: f1(t) e-t (t), f2 (t) (t)求[ f1(t) * f2 (t)]
f1 (t )
e-t (t)
s
1
( -)
f2
(t )
(t )
1 s
( 0)
1
[ f1(t) * f2 (t)] s(s )
f t 不满足绝对可积条件,是由于t 或t -时,
f t 不趋于零。如果引入一个衰减因子e-t 去乘以f t ,
只要 选择得适当,就可以克服此困难。
因此其傅里叶变换存在。
19:57
■
第4章连续系统的复频域分析
4
设有信号f(t)e-σt(σ为实数),并且能选择适当的σ使f(t)e-σt绝 对可积,则该信号的傅里叶变换存在。 若用F(σ+jω)表示该信 号的傅里叶变换,根据傅里叶变换的定义, 则有
■
第4章连续系统的复频域分析
10
由于s=σ+jω,因此上式中括号内第二项可写为
lim e-(s- )t lim e e -( - )t -jwt
t
t
只要选择σ>α,随着时间t的增大,e-(σ-α)t将会衰减。故有
lim e-(s- )t 0
t
从而使f(t)的象函数为
F(s) 1
s -
若σ<α,e-(σ-α)t将随着时间t的增大而增大。当t→∞时, 结果 将趋于无穷大, 从而使积分不收敛, f(t)的象函数不存在。
e-st dt
e jw0t - e- jw0t e-st dt
0-
2j
1 2j
s
1
- jw0
-
s
1
jw0
s2
w0 w02
即:
sin w0t (t)
s2
w0 w02
( 0)
同理:
cosw0t
(t)
s2
s
w02
( 0)
19:57
■
第4章连续系统的复频域分析
17
3.单位阶跃信号 (t )
F ( jw ) f (t)e-te- jwtdt f (t)e-( jw )tdt
-
-
根据傅里叶逆变换的定义,则
f (t)e-t 1 F ( jw )e jwtdw
2 -
19:57
■
第4章连续系统的复频域分析源自5令s=+jw,则ds=jdw ,当w=±时,s= ± j,得
象函数
F (s) f (t)e-st dt -
f (t)e-t 1 F ( jw)e( jw)t dw f (t) F (s)
2 -
上式两边乘以eσt,得
F (s) [ f (t)]
原函数
f (t) 1
j
F
(
s)e
st
ds
f (t) -1[F (s)]
2j - j
Laplace变换重新选取函数空间的基底,以衰减振荡
F (s) e-st dt - e-st 1
0-
s 0- s
即:
(t) 1 ( 0)