乳酸菌降胆固醇
乳酸菌胶囊的作用与功效

乳酸菌胶囊的作用与功效乳酸菌胶囊是一种常见的保健品,它含有益生菌或其发酵产物。
益生菌是一类有益于宿主健康的活菌,通过增加肠道有益菌数量,调节菌群平衡,提高肠道健康水平的作用。
乳酸菌胶囊具有多种作用和功效,下面将详细介绍。
1. 改善肠道菌群乳酸菌胶囊中的益生菌能够在人体的肠道内繁殖生长,并形成一层菌群。
这些益生菌具有对抗病原菌的能力,并可以与肠道内的有害细菌竞争营养物质,抑制其繁殖。
同时,益生菌还可以产生有益物质,例如乳酸和醋酸等,这些物质可以改善肠道环境,增加肠道内有益菌的数量,从而调节肠道菌群平衡。
2. 提高免疫力肠道是人体最大的免疫器官,肠道内约有70%的免疫细胞。
乳酸菌胶囊中的益生菌可以刺激肠道内的免疫细胞,增强肠道免疫系统的功能。
研究表明,乳酸菌胶囊可以增加肠道内IgA的水平,提高肠道黏膜的免疫能力。
3. 缓解便秘乳酸菌胶囊中的益生菌可以改善肠道蠕动,增加肠道的排便频率。
这些益生菌可以产生多种有益物质,例如酸和酶等,这些物质可以加速食物在肠道内的消化和吸收,减少粪便在肠道内的滞留时间,缓解便秘症状。
4. 预防腹泻乳酸菌胶囊中的益生菌可以产生抗菌物质,例如抗菌酶和抑菌肽等,这些物质可以抑制肠道内的有害细菌的繁殖,减少肠道感染的几率,预防腹泻的发生。
此外,益生菌还可以增加肠道内有益菌的数量,提高肠道的抵抗力,预防感染性腹泻。
5. 改善消化功能乳酸菌胶囊中的益生菌可以产生多种消化酶,例如蛋白酶和脂肪酶等,这些酶可以帮助人体分解和消化食物中的蛋白质、脂肪和碳水化合物。
益生菌还可以降低肠道内有害菌的数量,减少有害菌对营养物质的消费,提高肠道对食物的吸收利用率。
6. 降低胆固醇乳酸菌胶囊中的某些益生菌可以分解和吸收食物中的胆固醇,从而降低血液中的胆固醇水平。
此外,益生菌还可以降低肠道内有害菌的数量,减少有害菌对胆固醇的产生和吸收,进一步降低血液中的胆固醇水平。
7. 缓解过敏反应乳酸菌胶囊中的益生菌可以调节免疫系统的功能,减少过敏反应的发生。
乳酸菌素片的功效与作用

乳酸菌素片的功效与作用乳酸菌素片是一种含有乳酸菌素的保健食品,通常用于改善人体内菌群失衡的问题,促进消化、增强免疫系统功能等。
乳酸菌素片有很多功效和作用,下面将对其详细介绍。
乳酸菌素是一种可以促进菌群平衡的物质,它能够抑制有害菌的生长,增强益生菌对宿主的免疫功能。
乳酸菌素片中的乳酸菌素通过口服进入人体后,在胃酸和胃蛋白酶的作用下释放出来,然后进入肠道,发挥其作用。
乳酸菌素片的主要功效和作用如下:1. 调节肠道菌群:乳酸菌素能够促进肠道菌群平衡,抑制有害菌的生长,增强有益菌的数量,从而提高肠道健康水平。
肠道是人体最大的免疫系统器官,肠道菌群与免疫系统之间有着密切的联系,良好的肠道菌群平衡有助于提高免疫力,减少疾病的发生。
2. 促进消化吸收:乳酸菌素能够分解食物中的蛋白质、脂肪和碳水化合物,促进食物的消化吸收。
它能够分泌多种酶,帮助人体消化蛋白质、脂肪和碳水化合物,提高食物的利用率,减少消化不良和营养不良的发生。
3. 预防便秘和腹泻:乳酸菌素对于肠道蠕动和水分平衡有调节作用,可以有效预防便秘和腹泻。
它能够增加肠道内的水分,保持大便的湿润度,减少大便干燥,防止便秘的发生。
同时,乳酸菌素还能够抑制有害菌的增长,减少腹泻的发生。
4. 降低胆固醇和血压:乳酸菌素具有降低血液中胆固醇和血压的作用。
它能够降低胆固醇的合成,增加胆酸的排泄,从而降低血液中胆固醇的含量。
此外,乳酸菌素还能促进一些有益菌的生长,合成血管舒张剂,增加血管弹性,降低血压。
5. 抗肿瘤作用:乳酸菌素具有一定的抗肿瘤作用,可以通过增强免疫功能、抑制肿瘤细胞的生长和转移来达到其抗肿瘤作用。
乳酸菌素可以增加免疫细胞的数量和活性,增强免疫系统对于肿瘤细胞的杀伤作用,降低肿瘤的发生风险。
6. 缓解过敏症状:乳酸菌素具有调节免疫系统的功能,可以减少过敏反应的发生。
它能够调节免疫系统的平衡,减少过敏相关细胞的活性,降低过敏原对于免疫系统的刺激,从而减少过敏症状的发生。
自然发酵肉制品中乳酸菌的体外降胆固醇特性

自然发酵肉制品中乳酸菌的体外降胆固醇特性 李敏 齐鲁工业大学 得利斯集团有限公司试验所用材料与研究方法材料。
菌株:从自然发酵肉制品中分离筛选出13种菌株,分别编号为1、2、3、4、5、6、7、8、9、10、11、12、13。
所用试剂和药品:邻苯二甲醛、蔗糖脂肪酸酯、牛胆盐、胆固醇、MRS肉汤培养基、高胆固醇MRS液体培养基等。
方法。
初步筛选用于进一步研究的乳酸菌菌株。
把13种菌株分别取4%接种到高胆固醇MRS液体培养基中,于37℃厌氧情况下恒温培养24小时,之后进行离心,提取上清液,测定胆固醇含量,以未接种的为空白对照,计算胆固醇去除率,并筛选出胆固醇去除率高的菌株进行进一步研究。
乳酸菌降胆固醇特性研究菌体的同化吸收及共沉淀试验。
对6号和12号菌体分别按照以下步骤进行试验:首先,取4%的供试菌液接种到高胆固醇MRS液体培养基中,于37℃厌氧环境中培养24小时,培养结束后进行离心处理,取上清液;接着倒出剩余液体,加入缓冲液5ml,离心,取上清液作为菌体洗涤液;然后倒出剩余液体,加入缓冲液5ml,并在水浴环境中超声破碎菌体细胞,离心,再取上清液作为菌体破碎液。
最后,把未接种菌体的液体培养基为对照,分别测定三种上清液中胆固醇含量。
实验分析:通过测定结果可知,6号和12号菌体洗涤液中分别含有23.25%和30.20%的胆固醇,菌体破碎液中分别含有21.01%和18.23%的胆固醇。
根据分析得出菌体洗涤液中的胆固醇是由胆盐和胆固醇的共沉淀效应形成的,破碎液中的胆固醇来源于菌体吸收同化的胆固醇。
所以可以得知这两种菌体都是通过同化吸收与共沉淀作用降胆固醇的。
胆盐对菌体降胆固醇的作用。
把高胆固醇M R S液体培养基中胆盐的含量改为0.3g/100mL,其他的参数和操作保持不变,把两种菌体分别取4%接种到液体培养基中,进行37℃恒温厌氧培养24小时,进行离心,取上清液。
以未接种菌体液体培养基为对照,测量两种上清液中的胆固醇去除情况。
乳酸菌的作用与功效

乳酸菌的作用与功效乳酸菌是一类广泛存在于自然环境中的微生物,主要存在于发酵食品中,比如酸奶、酸菜、奶酪等。
乳酸菌被公认为一种益生菌,有着多种功能和作用。
这篇文章将详细介绍乳酸菌的作用与功效,希望能给读者带来一些启发和帮助。
一、乳酸菌的作用1.促进消化系统健康乳酸菌在肠道内可以产生乳酸和其他有益的代谢产物,维持肠道的酸碱平衡,并抑制有害菌的生长。
此外,乳酸菌还可以促进肠道蠕动,增加粪便水分,缓解便秘问题。
2.增强免疫系统乳酸菌可以增强人体的免疫系统,促进免疫球蛋白(IgA、IgM、IgG)的产生,提高抗体水平,增强干扰素和细胞毒素的活性,从而帮助身体更好地抵抗病菌和外来微生物的侵袭,减少感染的风险。
3.调节肠道菌群平衡肠道内有着大量的菌群,其中乳酸菌是其中重要的一类。
乳酸菌可以对抗有害菌的生长,增加肠道的酸度,从而维持肠道的健康和菌群平衡。
当肠道菌群失去平衡时,可能会导致很多问题,比如腹泻、便秘、炎症性肠病等,适量摄入乳酸菌可以帮助调节菌群平衡,缓解这些问题。
4.提高营养利用率乳酸菌可以分解食物中的复杂大分子,如蛋白质、脂肪、碳水化合物等,将其转化为更小的分子,使其更容易被消化吸收。
此外,乳酸菌还可以分泌一些消化酶,帮助人体吸收营养物质,增加营养利用率。
5.防治过敏反应乳酸菌可通过增强人体的免疫力和抑制过敏反应相关物质的产生,帮助预防和缓解过敏性疾病。
一些研究发现,乳酸菌可以减少过敏性鼻炎、过敏性皮炎等症状的发作,并通过改善肠道功能,减少食物过敏的发生。
二、乳酸菌的功效1.保护胃黏膜乳酸菌可以降低胃酸的酸度,并形成一层保护性的膜覆盖在胃黏膜上,减少对胃黏膜的刺激,帮助保护胃黏膜。
2.降低胆固醇一些乳酸菌可以通过代谢胆固醇,将其转化为胆酸和其他代谢产物,从而起到降低胆固醇的作用。
这对于预防心脑血管疾病有一定的好处。
3.抗肿瘤作用乳酸菌具有一定的抗肿瘤作用,可以提高机体的免疫力,抑制癌细胞的生长和扩散,从而降低癌症的发生和复发。
乳酸菌在生活中的应用与影响

乳酸菌在生活中的应用与影响1. 引言1.1 乳酸菌的定义乳酸菌是一类能在低氧环境中产生乳酸的革兰氏阳性细菌,通常被认为具有益生菌的功效。
这些细菌主要存在于自然界中,如土壤、水体、动植物体内等。
乳酸菌可以通过发酵作用将葡萄糖转化为乳酸,因此得名。
乳酸菌具有酸性环境下生长的特点,能够在酸性环境中生存并繁殖,这也是其在食品行业中的重要应用之一。
乳酸菌在自然界中的分布广泛,具有多样性和适应性强的特点。
乳酸菌既可以存在于泥土中,也可以寄生在动物的消化道内,还可以被用于制作食品、药品和化妆品等。
乳酸菌对人体健康有益,能够帮助调节肠道菌群、增强免疫力、促进食物消化吸收等功效。
在生活中,乳酸菌的应用越来越广泛,对人类的健康和环境保护产生了积极的影响。
1.2 乳酸菌在生活中的重要性除了对人体健康有益之外,乳酸菌在生活中还有广泛的应用。
它被广泛用于食品工业、保健品、化妆品等领域,为人们的生活带来了便利和健康。
乳酸菌的重要性不可忽视,其在各个方面的应用也在不断扩大和深化,为人们的生活带来了更多的好处。
2. 正文2.1 乳酸菌在食品工业中的应用1. 酸奶酸奶是乳酸菌最常见的食品应用之一。
乳酸菌能够发酵牛奶中的乳糖,产生乳酸和其他有益物质,使牛奶变成醇厚的酸奶。
酸奶不仅具有丰富的营养成分,还有益于肠道健康。
乳酸菌被广泛应用于酸奶的生产中。
2. 发酵食品除了酸奶,乳酸菌还被用于其他发酵食品的生产,如酸菜、酱油、泡菜等。
乳酸菌的发酵作用能够改善食品的口感、延长保存期限,并且有利于消化吸收。
3. 保质保鲜剂乳酸菌具有一定的抗菌作用,可以抑制有害菌的生长,延长食品的保质期。
在食品工业中,乳酸菌常被添加到肉类制品、面包、饼干等食品中,起到保鲜的作用。
4. 调味品乳酸菌还被用作调味品的添加剂,如酸奶酪、酸奶饮料等。
这些产品不仅口感好,而且还富含有益菌,对人体健康有益。
乳酸菌在食品工业中的应用非常广泛,不仅提高了食品的营养价值和口感,还对健康有益。
乳酸菌的作用

乳酸菌的作用
乳酸菌是一类生活在动物和人体内、乳制品、发酵食品及土壤等环境中的细菌,其又可以分为乳制品中的乳酸菌和肠道内的益生菌。
乳酸菌具有很高的健康功效,对人体有以下作用:
1. 保护胃肠道健康:乳酸菌能够抑制有害菌的生长,帮助维持胃肠道菌群的平衡。
它们可以竞争性地附着于胃肠黏膜上,形成屏障,阻止有害菌的侵害,从而减少胃肠道感染的风险。
2. 促进食物消化吸收:乳酸菌通过分解食物中的复杂碳水化合物、蛋白质和脂肪,产生有益的代谢产物,如有机酸、酶和维生素等,促进食物的消化和吸收,提高营养价值。
3. 改善免疫系统功能:乳酸菌能够刺激人体免疫系统的发挥,增强机体的抗病能力。
它们可以增加天然杀伤细胞、巨噬细胞和T细胞等免疫细胞的活性,提高免疫球蛋白的产生,从而
增强免疫反应。
4. 预防肠道感染和腹泻:乳酸菌通过排挤或抑制有害菌的生长,改善肠道环境,促进肠道蠕动,有效预防肠道感染和腹泻。
在腹泻患者中,乳酸菌的补充可以减轻腹泻的症状,缩短疾病的持续时间。
5. 减轻乳糖不耐症症状:乳酸菌能够产生乳酸酶,帮助人体分解乳糖,减轻乳糖不耐症患者的症状,提高对乳制品的耐受性。
6. 降低胆固醇水平:某些乳酸菌可以通过转化胆固醇为胆酸,
降低血液中的胆固醇浓度,减少动脉粥样硬化和心血管疾病的风险。
除了上述作用,乳酸菌还具有抗肿瘤、抗过敏、抗氧化、促进维生素合成等多种生物活性,对人体的健康保健具有广泛的应用前景。
因此,适度地摄入乳酸菌,如通过食物和保健品等途径,能够有效地提高人体免疫力,降低患病风险,维护身体的健康。
发酵食品对血脂和胆固醇的调节作用

发酵食品对血脂和胆固醇的调节作用发酵食品对血脂和胆固醇的调节作用胆固醇是一种人体必需的脂质,但其过高的摄入会导致血脂异常,增加心血管疾病的风险。
为了降低血脂和胆固醇水平,人们使用了各种方法,其中发酵食品被认为是一种有效的途径。
发酵食品可以通过其特殊的成分和微生物作用,调节血脂和胆固醇的代谢和平衡。
发酵食品是指通过微生物发酵而制成的食品,如酸奶、凝乳、豆腐、酱油等。
这些发酵食品在发酵过程中产生的有益细菌或酶可以促进人体内脂质的分解和转化,从而有助于降低血脂和胆固醇水平。
首先,发酵食品中含有丰富的乳酸菌和益生菌。
乳酸菌是一种益生菌,可以通过降低胆固醇酯合成的酶活性,减少胆固醇的合成。
此外,乳酸菌还能够通过与胆酸结合来降低胆固醇的吸收和转运。
酸奶、凝乳等发酵乳制品中常含有大量的乳酸菌,它们具有控制血脂和胆固醇的潜力。
其次,发酵食品中的酶可以降低血脂和胆固醇水平。
许多发酵食品中含有的酶可以帮助人体消化和吸收食物中的脂质。
例如,豆腐中的大豆凝集酶可以降低血清胆固醇水平,因为它可以促进胆固醇物质的外排和分解。
酱油中的酶能够分解油脂中的酯类,降低脂肪酸的合成和胆固醇的吸收。
此外,发酵食品中的一些活性成分也具有降低血脂和胆固醇的作用。
例如,红曲米中的红曲球菌能够产生一种名为红曲酶的酶,它可以降低胆固醇的合成速度和吸收率。
黑豆发酵产生的黄酸具有促进血清脂质代谢和降低血脂的作用。
这些活性成分通过影响血清胆固醇的合成、吸收和代谢过程,达到调节血脂和胆固醇的效果。
除了上述机制,发酵食品还可以通过其他途径对血脂和胆固醇产生影响。
例如,通过增加益生菌的数量和种类,改善肠道菌群的平衡,减少有害菌的增殖,提高营养物质的吸收效率,降低脂肪的合成与吸收速率。
此外,发酵食品中富含的植物纤维还能加速肠道蠕动,减缓脂质的吸收,降低胆固醇摄取。
总之,发酵食品通过其特殊的成分和微生物作用,对血脂和胆固醇产生调节作用。
乳酸菌、酶和其他活性成分可以影响胆固醇的合成、吸收和代谢过程,从而降低血脂和胆固醇水平。
乳酸菌的功能主治

乳酸菌的功能主治1. 促进消化•乳酸菌可以促进消化系统的健康。
•乳酸菌能够增加肠道内有益菌的数量,阻止有害菌的繁殖。
•乳酸菌可以帮助分解食物,并提高养分的吸收效率。
•乳酸菌能够减轻消化不良、腹泻和便秘等消化系统问题。
2. 增强免疫系统•乳酸菌可以增强人体的免疫能力。
•乳酸菌能够刺激机体产生免疫细胞,增加抗体的产生。
•乳酸菌可以减少炎症反应,提高身体对疾病的抵抗力。
•乳酸菌具有抗菌作用,可以阻止有害细菌的入侵。
3. 改善肠道功能•乳酸菌可以改善肠道功能,保持肠道的平衡状态。
•乳酸菌能够促进肠道蠕动,防止便秘和肠梗阻的发生。
•乳酸菌可以减少毒素的产生,保护肠道黏膜的健康。
•乳酸菌能够增加肠道内益生菌的数量,减少有害菌的生长。
4. 缓解过敏症状•乳酸菌可以调节免疫系统的平衡,减轻过敏反应。
•乳酸菌能够抑制过敏原对机体的反应,减少过敏症状的发生。
•乳酸菌可以降低过敏原的敏感性,提高机体对抗过敏的能力。
•乳酸菌具有抗炎作用,减少过敏引起的炎症反应。
5. 改善皮肤状况•乳酸菌可以改善皮肤的光滑度和弹性。
•乳酸菌能够调节皮脂分泌,减少痘痘和粉刺的发生。
•乳酸菌可以修复受损的皮肤组织,加速伤口愈合。
•乳酸菌具有抗氧化作用,减少皮肤老化的现象。
6. 降低胆固醇水平•乳酸菌可以降低血液中的胆固醇水平。
•乳酸菌能够通过降解胆固醇酯和促进胆固醇的排出来降低胆固醇的积累。
•乳酸菌可以减少低密度脂蛋白胆固醇的氧化,降低动脉粥样硬化的风险。
•乳酸菌对高血压和心脑血管疾病有一定的预防作用。
7. 改善口腔健康•乳酸菌可以抑制口腔中有害细菌的生长。
•乳酸菌能够降低口腔酸性,预防龋齿和牙周疾病的发生。
•乳酸菌可以增加唾液的分泌,保持口腔的湿润。
•乳酸菌对口腔异味有一定的调节作用,改善口气问题。
综上所述,乳酸菌具有促进消化、增强免疫系统、改善肠道功能、缓解过敏症状、改善皮肤状况、降低胆固醇水平和改善口腔健康的功能主治。
在日常生活中,我们可以通过摄入含有乳酸菌的食物或饮品来享受乳酸菌的益处,改善身体健康。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
APPLIED MICROBIAL AND CELL PHYSIOLOGYEffects of Lactobacillus plantarum MA2isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol dietYanping Wang &Nv Xu &Aodeng Xi &Zaheer Ahmed &Bin Zhang &Xiaojia BaiReceived:15March 2009/Revised:13April 2009/Accepted:15April 2009#Springer-Verlag 2009Abstract The objective of this study was to evaluate the effects of Lactobacillus plantarum MA2,an isolate from Chinese traditional Tibet kefir,on cholesterol-lowering and microflora of rat in vivo.Rats were fed on cholesterol-enriched experimental diet,supplemented with lyophilized L.plantarum MA2powder,with a dose of 1011cells/day per mice.The results showed that L.plantarum MA2feeding significantly lowered serum total cholesterol,low-density lipoprotein cholesterol,and triglycerides level,while there was no change in high-density lipoprotein cholesterol.In addition,liver total cholesterol and trigly-cerides was also decreased.However,fecal cholesterol and triglycerides was increased significantly (P <0.05)in comparison with the control.Also,L.plantarum MA2increased the population of lactic acid bacteria and bifidobacteria in the fecal,but it did not change the number of Escherichia coli as compared to control.Moreover,pH,moisture,and organic acids in the fecal were also measured.The present results indicate the probiotic potential of the L.plantarum MA2strain in hypocholesterolemic effect and also increasing the probiotic count in the intestine.Keywords Lactobacillus plantarum MA2.Kefir .Cholesterol-lowering effectIntroductionElevated serum cholesterol is generally a risky factor correlated with the development of coronary artery diseasesfor humans.However,the current drug therapy has the disadvantage owing to its cost and side effects,so there is an increasing interest in alternative therapies to lower cholesterol.Since Mann and Spoerry (1974)firstly ob-served a hypocholesterolemic effect of milk fermented by wild-type starters in Maasai tribesmen,the ingestion of probiotic lactic acid bacteria might be a more natural way to decrease serum cholesterol in humans (Bazzare et al.1983).There are evidences showing the effects of fermented dairy products by lactic acid bacteria on serum cholesterol levels in animal models (Rao et al.1981;Gilliland et al.1985;Nakajima et al.1992;Akalin et al.1997;Beena and Prasad 1997)and humans (Hepner et al.1979;Steinmetz et al.1994;Agerbaeck et al.1995;Richelsen et al.1996;Schaafsma et al.1998).Although contradictory results have been obtained,there is still reason to believe that probiotic lactic acid bacteria have hypocholesterolemic properties.The mechanisms of the hypocholesterolemic activity of lactic acid bacteria have been proposed to involve inhibition of exogenous cholesterol absorption from the small intestine by binding and incorporation of cholesterol with bacterial cells,assimilation of cholesterol,as well as suppressing bile acid resorption by deconjugation as a function of the bacterial bile salt hydrolase activity (Gilliland et al.1985;Danielson et al.1989;De Smet et al.1998).Kefir has been widely recommended in Soviet and European countries for consumption by healthy people in order to lower the risk of chronic diseases and has also been provided to some patients for the clinical treatment of a number of gastrointestinal and metabolic diseases,hyper-tension,and allergy (St-Onge et al.2002).Also,kefir culture was reported to possess the ability to assimilate cholesterol in milk (Vujicic et al.1992).Furthermore,Liu et al.(2006)proved the hypocholesterolemic effect of kefirAppl Microbiol BiotechnolDOI10.1007/s00253-009-2012-xY .Wang (*):N.Xu :A.Xi :Z.Ahmed :B.Zhang :X.Bai Key Laboratory of Food Nutrition and Safety,Ministry of Education,Tianjin University of Science &Technology,Tianjin 300457,Chinae-mail:ypwang40@milk in male hamsters fed with a cholesterol-enriched diet. However,St-Onge et al.(2002)obtained a contrary result and reported that kefir consumption did not result in lowering plasma lipid concentrations,even though kefir resulted in increasing fecal isobutyric,isovaleric,and propionic acids as well as the total amount of fecal short chain fatty acids.In our previous studies,we isolated a cholesterol-lowering bacteria MA2from Chinese traditional Tibet kefir grains,and it was identified as Lactobacillus plantarum based on the pattern of carbohydrate fermentation and16S ribosomal DNA(rDNA)sequencing results.The vitro experiment showed that the strain has an effective cholesterol-lowering activity.Also,the strain possesses a strong acid and bile salt tolerance(unpublished data)and could successfully pass through the artificial gastric and intestine juice.Based on the above,the present study was conducted to demonstrate the effect of L.plantarum MA2 on cholesterol-lowering and intestinal microflora in rats. Moreover pH,moisture,and organic acids in fecal was also investigated.Materials and methodsBacterial strains The strain of MA2was isolated from Chinese traditional Tibet kefir grains and showed good survival at low pH,tolerance to high bile concentration,and ability to reduce serum cholesterol in vitro in our previous studies.Strain MA2was identified as L.plantarum based on the pattern of carbohydrate fermentation and16S rDNA (GenBank accession no.FJ785723)and was deposited at China General Microbiological Culture Collection Center with accession number CGMCC3005.Preparation of lyophilized strain powder L.plantarum MA2was grown in MRS broth at37°C for18h.The cells were harvested by centrifugation at3,000×g for15min, washed twice with sterile distilled water,and resuspended in threefold volumes of freeze-drying protective solution (including10%skim milk,1.5%fucose,0.5%glycerol,2% sorbitol,1%malt dextrin,[wt/vol])to improve bacterial survival when frozen.Viable cell number of the lyophilized strain powder was2.0×1011cfu/g.Animal feeding and grouping Twenty rats(male Sprague–Dawley),CL grade(Clean animal)and4weeks of age, were obtained from the National Laboratory Animal Breeding and Research Center,Beijing,China.The rats were fed a commercial chow(Kangqiao Inc.,Beijing, China;which includes32%protein,5%fat,2%fiber,Ca 1.8%,P1.2%,and59%nitrogen-free extract)for1week. After this adaptation period,rats were divided into two groups of ten each:group A fed with high-cholesterol diet only and group B fed with high-cholesterol diet and lyophilized L.plantarum MA2powder(lyophilized powder was dissolved in physiological saline and administrated by gavage with a dose of1011cells/day per mice).A high-cholesterol diet includes1%cholesterol(Aoboxing Biotech Co.,Ltd.,Beijing,China),10%lard,5%sucrose,0.3% sodium cholate(Aoboxing Biotech Co.,Ltd.,Beijing, China),0.2%propylthiouracil(Aoboxing Biotech Co., Ltd.,Beijing,China),and78.5%chow.Rats were individ-ually housed in metal cages with controlled temperature (23±2°C)and humidity(55±5%)and in a cycle of12h of light and12h of dark.The animals were fed for5weeks, and during this period,blood was obtained at1-week interval for serum cholesterol and triglycerides analysis. Also,the fecals were collected at4-day interval for bacteria, pH,water content,and organic acid analysis.Simulta-neously,body weight and food intake were also recorded daily.After the feeding period,the rats were euthanized with ether and the viscera of the rats were collected for other tests.Assay for serum lipids Blood(1mL)was obtained from the retro-orbital sinus into a sterile tube at the end of every week following food deprivation for14h.Serum total cholesterol(TC),high-density lipoprotein cholesterol (HDL-C),low-density lipoprotein cholesterol(LDL-C), and triglycerides(TG)were measured enzymatically with a commercial kit(Biosino Biotech&Sci,Inc,Beijing, China).Assay for liver TC and TG After an animal had been killed, the viscera was opened and the liver was removed,rinsed with physiological saline solution,blotted dry with filter paper,and weighed.Liver cholesterol(TC)and triglyceride (TG)content was determined according to the method of Chiu et al.(2006).The same method was used for determination of fecal cholesterol and TG content.Assay for fecal microflora Fecal samples for microbial analyses were collected at an interval of4days in separate sterile tubes and analyzed within1h.Each sample was homogenized using sterile physiological saline diluents. Subsequent tenfold serial dilutions of each sample were plated in triplicate.EMB agar(CM105)was used for E. coli,whereas LBS agar(CM1504)was used for lactic acid bacteria and BSM agar(CM1508)for bifidobacteria.All enumeration media were obtained from Luqiao Tech,Inc, Beijing,China.Assay for fecal organic acid The concentration of organic acid was determined using gas chromatography,which was carried out on a GC-7890II(Tian Mei,Shanghai,China)Appl Microbiol Biotechnolequipped with a FID detector and GDX 401packed column.The following operating conditions were used:The carrier nitrogen gas flow was adjusted to 40mL/min,hydrogen gas to 40mL/min,and air to 400mL/min.The injector and detector temperatures were maintained at 240°C,and the column temperature was held at 200°C and the sample volume was1μL.Measurement of fecal pH and water content The moisture in fecal was determined as a difference between the wet mass and the dry mass of the samples after drying at 80°C (Tianyu Test Instrument,Co,Ltd.,Tianjin,China)until a constant weight was achieved.The pH of the samples was measured with a pH meter (Delta-320,Mettler Toledo,Switzerland).Statistical analysis Experimental data are presented as the mean and standard errors of the mean.Paired t tests were conducted using Microsoft Excel and SPSS 11.5(SPSS Inc.,Chicago,IL,USA).ResultsWeight and food intake All rats were generally healthy throughout the feeding trial period.Both groups of rats showed no significant differences (P >0.05)in body weight gain,food intake,and food efficiency.This indicates that the animals supplemented with L.plantarum MA2grew in similar patterns compared to the control (Table 1).Blood lipid analysis Changes of serum TC,TG,HDL-C,and LDL-C levels of group A and group B are depicted in Table 2.A gradient increase in TC and LDL-C in both groups was observed across the whole experiment time,and the TG level of both groups was significantly higher (P <0.05)at the end of fourth week as compared to the starting 3weeks and was kept stable in the fifth week.HDL-C,Table 1Body weight gain,total food intake,and food efficiency of rats fed on high-cholesterol dietGroup AGroup B Initial body weight (g)140.25(4.50)140.54(4.30)Final body weight (g)217.66(13.92)221.31(20.32)Body weight gain (g/40days)77.41(8.43)80.77(6.47)Food intake (g/40days)713.12(23.00)732.45(14.50)Food efficiency (%)10.86(0.50)11.03(0.45)Group A,high-cholesterol diet only;group B,high-cholesterol diet +Lactobacillus plantarum MA2;food efficiency (%)=(body weight gain/food intake)×100.Results are shown as means (standard deviations;n =10)T a b l e 2S e r u m T C ,H D L -C ,L D L -C ,a n d T G c o n t e n t s o f r a t s f e d o n h i g h -c h o l e s t e r o l d i e tG r o u p AG r o u p BT o t a l c h o l e s t e r o l (m g /d L )H D L c h o l e s t e r o l (m g /d L )L D L c h o l e s t e r o l (m g /d L )T G (m g /d L )T o t a l c h o l e s t e r o l (m g /d L )H D L c h o l e s t e r o l (m g /d L )L D L c h o l e s t e r o l (m g /d L )T G (m g /d L )W e e k 1184.66(19.45)43.74(7.88)120.55(11.52)48.76(5.69)175.62(14.23)45.37(5.72)113.19(14.38)50.13(9.84)W e e k 2264.51(16.29)60.4(15.34)177.79(15.05)41.13(8.56)239.48(19.98)*59.83(11.17)150.01(14.10)**67.06(10.97)**W e e k 3346.69(22.36)61.58(6.96)241.25(14.03)44.45(9.43)276.80(17.34)**58.89(7.74)178.88(10.47)**40.6(8.34)W e e k 4451.51(33.43)70.85(6.61)289.94(21.62)119.63(14.64)338.47(24.76)**60.85(7.34)*221.89(19.68)**99.08(11.98)*W e e k 5490.34(26.25)62.16(9.11)300.88(31.91)124.38(15.93)388.54(8.9)**58.27(4.28)240.56(14.45)**93.11(15.01)*G r o u p A ,h i g h -c h o l e s t e r o l d i e t o n l y ;g r o u p B ,h i g h -c h o l e s t e r o l d i e t +L a c t o b a c i l l u s p l a n t a r u m M A 2.R e s u l t s a r e s h o w n a s m e a n s (s t a n d a r d d e v i a t i o n s ;n =10)*P <0.05;**P <0.01Appl Microbiol Biotechnolhowever,did not show much difference in both group across the feeding trial period.Group B expressed significant lower total cholesterol levels compared with group A,with a reduction of9.46%at the end of week2, 20.16%at week3,25.03%at week4,and20.76%at week5, respectively.Also,the difference of LDL-C between the two groups was significant:group B had the biggest reduction rate of25.85%at the end of the third week,from 241.25to178.88mg/dL.In contrast,the levels of HDL-C in group B decreased slightly as compared to control,but the highest reduction rate of14.10%was in the fourth week.TG had not so much difference between the two groups during the earlier3weeks until the experiment reached up to the fourth week when the difference became greater,and finally the reduction rate reached25.14%at the end of the feeding period.Liver and fecal lipid analysis Table3shows variation in weight and lipid content of the liver and fecal.Liver weight showed a little change among the two groups.Group B had a great reduction in liver cholesterol and TG content as compared to group A.Also,the fecal weight and cholesterol level of the L.plantarum MA2-treated group increased significantly.Fecal TG of the L.plantarum MA2-treated group exhibit a higher level than that of the control group,but the difference was not significant(P<0.05). Microbial populations Figure1depicted the effect of L.plantarum MA2on fecal microflora of rats fed on a high-cholesterol diet.Total E.coli content did not show much change in both two groups and remained8–9cfu log10/g of fresh wet fecal samples across the whole experiment time.A significant increase in total lactic acid bacteria was observed in fecal samples of rats supplemented with L. plantarum MA2,averaged from9.34to11.53cfu log10/g of fresh wet fecal sample;however,the control group showed a consistent population of lactic acid bacteria during the whole feeding period.Also,bifidobacterial content of groupB showed a significant increase from the 24th day and finally contributed a higher count of9.78cfu log10as compared to the control group(8.84cfu log10). Content of fecal organic acids The content of organic acids in the fecals of rats is depicted in Table4.The concentration of acetic acid and propionic acid showed a gradient increase in group B,which averaged from5.53to 15.63mg/g and from2.80to12.15mg/g,respectively,but butyric acid did not show much change and was just from 0.55to0.75mg/g.In group A,only the content of acetic acid increased from8.70to12.85mg/g;however,propionic acid and butyric acid had not changed so much across the whole feeding period.The supplementation with L.planta-rum MA2in high-cholesterol diet caused an increase in the concentration of propionic acid as compared to the control, and the increase was significant(P<0.05).pH and moisture content of fecal The pH of fecal was not significantly different(P>0.05)between both groups (Fig.2).Fecal water content can be used as an index of fecal elimination.Both groups showed a significant decrease in fecal water content across the whole experimental span,Table3Liver and fecal lipid of rats fed on high-cholesterol dietGroup A Group BLiverLiver weight(g)7.26(0.08) 6.95(0.10) Liver cholesterol(mg/g)20.6(0.22)16.23(0.89)* Liver TG(mg/g)32.1(0.34)27.4(9.85)* FecalFecal weight(g/day) 4.07(0.02) 4.25(0.03)* Fecal cholesterol(mg/g)11.75(0.23)15.6(0.40)* Fecal TG(mg/g)8.54(0.03)10.45(0.3)Group A,high-cholesterol diet only;group B,high-cholesterol diet+ Lactobacillus plantarum MA2.Results are shown as means(standard deviations;n=10)*P<0.05Fig.1Population of Escherichia coli,lactic acid bacteria,and bifidobacteria from fecal of rats fed on high-cholesterol diet.Group A,high-cholesterol diet only(triangles);group B,high-cholesterol diet+Lactobacillus plantarum MA2(circles).a Count of Escherichia coli.b Count of lactic acid bacteria.c Count of bifidobacteria colony in fecal.Results are shown as means(n=10)Appl Microbiol Biotechnolranging from 75%to 50%in group A and 80%to 57%in group B,respectively,and L.plantarum MA2caused an increase in fecal water but was not significant,and the difference just ranged between 3%and 7%.DiscussionHigh concentrations of TC and LDL-C are highly associated with an increased risk of coronary heart disease.Reduction in TC and LDL-C in hypercholesterolemic men can reduce the incidence of cardiovascular disease (Probstfield and Rifkind 1991).Our results showed that supplementation of L.plantarum MA2to the high-cholesterol diets did not significantly affect the body weight,food intake,and feed efficiency of rats.The results obtained here correlated withthe findings of Bernardeau et al.(2002)and Liong and Shah (2006),who used Lactobacillus acidophilus and Lactobacil-lus casei ASCC 292,fructooligosaccharide,and maltodextrin (LFM)as supplementation to a high-cholesterol diet,respectively,and found a little change in body weight gain and food intake.The present study showed that L.plantarum MA2resulted in a reduction of serum TC,LDL-C,and TG levels of rats fed high-cholesterol diets.These findings were in agreement with previous reports (Danielson et al.1989;Gilliland et al.1985;Grunewald 1982;Harrison and Peat 1975;Usman 2000).In addition,the great reduction in liver cholesterol and TG content of the L.plantarum MA2-treated group proved that the cholesterol was reduced,not re-distributed between the blood and liver.However,some researchers (Grunewald and Mitchell 1983;Thompson et al.1982;St-Onge et al.2002)did not observe hypocholes-terolemic effect from lactic acid bacteria consumed by mice and humans.Akalin et al.(1997)and Taranto et al.(1998)suggested that these conflicting results may be due to the different properties of cultures used (e.g.,acid,bile tolerance,different mechanisms of lowering cholesterol in vitro).Other important factors included bacterial ingestion dosage,cholesterol content in diet,animal used,and length of the feeding period.HDL-C did not show much difference in the experiment.Similar results in rats and humans had been reported by Ibrahim et al.(2005),Fukushima and Nakano (1996),and St-Onge et al.(2002).However,Chiu et al.(2006)reported a reduction in HDL cholesterol in hamsters fed on high-cholesterol diets.Also,Keim et al.(1981)and Rossouw et al.(1981)got similar results in humans.Otherwise,in a study performed by Hashimoto et al.(1999),a diet containing L.casei TMC 0409was found to raise the concentration of HDL-C in the blood,and similar results were also shown in other findings (Akalin et al.1997;Danielson et al.1989;De Smet et al.1998).Table 4Concentration of organic acids of fecal from rats fed on high-cholesterol dietGroup A Group B Acetic acid (mg/g)Propionic acid (mg/g)Butyric acid (mg/g)Acetic acid (mg/g)Propionic acid (mg/g)Butyric acid (mg/g)Week18.70(0.26) 2.35(0.1))0.63(0.03) 5.53(0.06) 2.80(0.07)0.55(0.01)Week212.65(0.06) 4.70(0.07)0.65(0.01)10.65(0.09) 6.45(0.15)0.63(0.003)Week312.7(0.21) 3.50(0.04)0.75(0.02)11.40(0.10)7.53(0.15)**0.65(0.03)Week412.8(0.13) 3.65(0.05)0.80(0.01)13.08(0.08)8.55(0.04)**0.60(0.02)Week512.85(0.34)4.00(0.20)0.88(0.03)15.63(0.05)12.15(0.12)**0.75(0.01)Group A,high-cholesterol diet only;group B,high-cholesterol diet +Lactobacillus plantarum MA2.Results are shown as means (standard deviations;n =10)**P<0.01Fig.2pH and water content of fecal from rats fed on high-cholesterol diet,group A,high-cholesterol diet only (filled triangle );group B,high-cholesterol diet +Lactobacillus plantarum MA2(circles ).a pH value of fecal.b Water content in fecal.Results are shown as means (n =10)Appl Microbiol BiotechnolLactic acid bacteria may alter serum cholesterol by three proposed mechanisms:(a)directly binding,absorb-ing cholesterol into the cell and assimilation before cholesterol can be absorbed into the body(Gilliland et al.1985;Noh et al.1997);(b)deconjugating bile acids and produce free bile acids,which are more likely to be excreted from the body,and drain the cholesterol pool as more bile acids are synthesized(Corzo and Gilliland1999; Dietschy1966;Chikai et al.1987);and(c)inhibiting HMG-CoA reductase by some metabolites of lactic acid bacteria like propionic acid(Fukushima and Nakano 1996).In our experiment,more fecal cholesterol was detected in the L.plantarum MA2supplementation group, and this phenomenon was similar to the results of Mott et al.(1973)and Park et al.(2008).Based on our previous vitro studies,we presume that cholesterol was tightly bound,incorporated into the cell and excreted from feces, which resulted in an inhibition of cholesterol resorption in intestine(Gilliland et al.1985;Hosono and Tono-oka 1995).The exact vivo mechanism of reducing cholesterol for L.plantarum MA2should be studied further to verify this presumption.Many studies have shown that lactic acid bacteria inhibit the proliferation of pathogenic bacteria,improve intestinal probiotics,reduce the risk of diseases,and promote the health of the host(Fuller1989;Van Winsen et al.2002; Mikkelsen and Jensen1998).In our test,the number of fecal lactobacilli and Bifidobacterium increased in the L. plantarum MA2group compared with the control.This indicated that L.plantarum MA2could successfully tolerate gastric acid and bile salt and play biological effects. Moreover,Donnet-Hughes et al.(1999)suggested that survival in the feces following oral administration reflects large bowel colonization and proliferation.However,in both groups,fecal E.coli showed a constant level throughout the feeding period,and these results indicated that growth of E.coli was not inhibited by L.plantarum MA2in vivo.It must be noted that the concentration of fecal propionic acid in rats supplemented by L.plantarum MA2was significantly increased,almost three times higher than the control.An increase in propionic acid concentration may have altered the cholesterol synthesis pathways and leads the cholesterol concentration to decrease(Liong and Shah 2006).However,the acetate content was not changed too much in both groups.Acetate is a lipogenic substrate (Delzenne and Kok2001),so a decrease in the concentration of acetic acid may lead to a decreased lipogenesis(Liong and Shah2006).Also,the concentration of butyric acid showed no significant change,and it was contrary to the findings of Liong and Shah(2006),who reported that the supplemen-tation of LFM significantly decreased the concentration of butyric acid in rats fed with a cholesterol-rich diet.Our results showed that the L.plantarum MA2did not change fecal pH too much,and many reports indicate that a decreased intestinal pH can inhibit the binding of entero-pathogenic E.coli to intestinal cells(Bernet et al.1994; Swanson et al.2002).There was a higher fecal moisture in L.plantarum MA2group,but the difference was very small,just7%.However,Chiu et al.(2006)reported a20% variation in fecal water content between the L.acidophilus-treated group and control.Our results here indicated that L. plantarum MA2had laxative potential,but the effect is very minute and there is a need to combine it with prebiotics to facilitate fecal elimination.The results of this study indicate that L.plantarum MA2 is a potential probiotic to reduce serum cholesterol,low-density lipoprotein cholesterol,and triglyceride levels. Also,L.plantarum MA2can contribute to a healthier bowel microbial balance.Further studies will be required to determine the mechanism underlying the cholesterol-lowering effect in vivo.It will also be necessary to test more animals,using varying doses of bacteria over longer times,to assess the long-term cholesterol-lowering potential of L.plantarum MA2.Acknowledgment This work was supported by a grant from the Science and Technology Supporting Project of China National Eleventh Five-Year-Plan(No.2006BAD04A06).ReferencesAgerbaeck M,Gerdes LU,Richelsen B(1995)Hypocholesterolemic effect of a new fermented milk product in healthy middle-aged men.Eur J Clin Nutr49:346–352Akalin AS,Gonc S,Duzel S(1997)Influence of yogurt and acidophilus yogurt on serum cholesterol levels in mice.J Dairy Sci80:2721–2725Bazzare TL,Wu SM,Yuhas JA(1983)Total and HDL cholesterol concentrations following yogurt and calcium supplementation.Nutr Rep Int28:1225–1232Beena A,Prasad V(1997)Effect of yogurt and bifidus yogurt fortified with skim milk powder,condensed whey and lactose-hydrolyzed condensed whey on serum cholesterol and triacylgtycerol levels in rats.J Dairy Res64:453–457Bernardeau M,Vernoux JP,Gueguen M(2002)Safety and efficacy of probiotic lactobacilli in promoting growth in post-weaning Swiss mice.Int J Food Microbiol77:19–27Bernet MF,Brassart D,Neesar JR,Servin AL(1994)Lactobacillus acidophilus LA1binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria.Gut35:483–489Chikai T,Nakao H,Uchida K(1987)Deconjugation of bile acids by human intestinal bacteria implanted in germ free rats.Lipids 22:669–671Chiu CH,Lu TY,Tseng YY,Pan TM(2006)The effects of Lactobacillus-fermented milk on lipid metabolism in hamsters fed on high cholesterol diet.Appl Microbiol Biotechnol71:238–245Corzo G,Gilliland SE(1999)Bile salt hydrolase activity of three strains of Lactobacillus acidophilus.J Dairy Sci82:472–480Appl Microbiol BiotechnolDanielson AD,Peo ERJ,Shahani KM,Lewis AJ,Whalen PJ,Amer MA(1989)Anticholesterolemic property of Lactobacillus acid-ophilus yoghurt fed to mature boars.J Anim Sci67:966–974 Delzenne NM,Kok N(2001)Effects of fructans-type prebiotics on lipid metabolism.Am J Clin Nutr73:456–458De Smet I,De Boever P,Versteaete W(1998)Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity.Br J Nutr79:185–194Dietschy JM(1966)Recent developments in solute and water transport across the gallbladder epithelium.Gastroenterology 50:692–707Donnet-Hughes A,Rochat F,Serrant P,Aeschlimann JM,Schiffrin EJ (1999)Modulation of nonspecific mechanisms of defense by lactic acid bacteria:effective dose.J Dairy Sci82:863–869 Fukushima M,Nakano M(1996)Effects of mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on choles-terol metabolism in rats fed on a fat-and cholesterol-enriched diet.Br J Nutr76:857–867Fuller R(1989)Probiotics in man and animals.J Appl Bacteriol 66:365–378Gilliland SE,Nelson CR,Maxwell C(1985)Assimilation of cholesterol by Lactobacillus acidophilus.Appl Environ Microb 49:377–381Grunewald KK(1982)Serum cholesterol levels in rats fed skim milk fermented by Lactobacillus acidophilus.J Food Sci47:2078–2079 Grunewald KK,Mitchell K(1983)Serum cholesterol levels in mice fed fermented and unfermented acidophilus milk.J Food Prot 46:315–318Harrison VC,Peat G(1975)Serum cholesterol and bowel flora in the newborn.Am J Clin Nutr28:1351–1355Hashimoto H,Yamazaki K,He F,Kawase M,Hosoda M,Hosono A (1999)Hypocholesterolemic effects of Lactobacillus casei subsp.casei TMC0409strain observed in rats fed cholesterol contained diets.Anim Sci J72:90–97Hepner G,Fried R,Jeor S,Fusetti St L,Morin R(1979) Hypocholesterolemic effect of yogurt and milk.Am J Clin Nutr 32:19–24Hosono A,Tono-oka T(1995)Binding of cholesterol with lactic acid bacteria chwissenschaft50:556–560Ibrahim A,El-sayed EM,El-zeini HSA,HM SFA(2005)The hypocholesterolaemic effect of milk yoghurt and soy-yoghurt containing bifidobacteria in rats fed on a cholesterol-enriched diet.Int Dairy J15:37–44Keim NL,Marlett JA,Amundsopn CH(1981)The cholesterolemic effect of skim milk in young men consuming controlled diets.Nutr Res1:422–429Liong MT,Shah NP(2006)Effects of a Lactobacillus casei symbiotic on serum lipoprotein,intestinal microflora,and organic acids in rats.J Dairy Sci89:1390–1399Liu JR,Wang SY,Chen MJ,Chen HL,Yueh PY,Lin CW(2006) Hypocholesterolaemic effects of milk-kefir and soyamilk-kefir in cholesterol-fed hamsters.Br J Nutr95:939–946Mann GV,Spoerry A(1974)Studies of a surfactant and cholesteremia in the Maasai.Am J Clin Nutr27:464–469Mikkelsen LL,Jensen BB(1998)Performance and microbial activity in gastrointestinal tract of piglets fed fermented liquid feed at weaning.J Anim Feed Sci7:211–215Mott GE,Moore RW,Redmond HE,Reiser R(1973)Lowering of serum cholesterol by intestinal bacteria in cholesterol-fed piglets.Lipids8:428–431Nakajima H,Suzuki Y,Kaizu H,Hirota T(1992)Cholesterol-lowering activity of ropy fermented milk.J Food Sci57:1327–1329Noh DO,Kim SH,Gilliland SE(1997)Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophilus ATCC 43121.J Dairy Sci80:3107–3113Park YH,Kim JG,Shin YW,Kim HS,Kim YJ,Chun T,Kim SH, Whang KY(2008)Effects of Lactobacillus acidophilus43121 and a mixture of Lactobacillus casei and Bifidobacterium longum on the serum cholesterol level and fecal excretion in hypercholesterolemia-induced pigs.Biosci Biotechnol Biochem 72(2):595–600Probstfield JL,Rifkind BM(1991)The lipid research clinics coronary primary prevention trial:Design,results,and implications.Eur J Clin Pharmacol40:S69–S75Rao DR,Chawan CB,Pulusani SR(1981)Influence of milk and thermophilus milk on plasma cholesterol and hepatic cholestero-genesis in rats.J Food Sci46:1339–1341Richelsen B,Kristensen K,Pedersen SB(1996)Long-term(6months) effect of a new fermented milk product on the level of plasma 1ipoproteins—a placebo-controlled and double blind study.Eur J Clin Nutr50:811–815Rossouw JE,Burger E,Van der Vyver P,Ferreira JJ(1981)The effect of skim milk,yogurt and full cream on human serum lipids.Am J Clin Nutr34:351–356Schaafsma G,Meuling WJA,van Dokkum W,Bouley C(1998) Effects of a milk product,fermented by Lactobacillus acid-ophilus and with fructo-oligosaccharides added,on blood lipids in male volunteers.Eur J Clin Nutr52:436–440Steinmetz KA,Childs MT,Stimson C,Kushi LH,McGovern PG, Potter JD,Yarnanaka WK(1994)Effect of consumption of whole milk and skim milk on blood lipid profiles in healthy men.Am J Clin Nutr59:612–618St-Onge MP,Farnworth ER,Savard T,Chabot D,Mafu A,Jones PJH (2002)Kefir consumption does not alter plasma lipid levels or cholesterol fractional synthesis rates relative to milk in hyper-lipidemic men:a randomized controlled trial.BMC Complement Altern Med2:1–7Swanson KS,Grieshop CM,Flickinger EA,Bauer LL,Wolf BW, Chow JM,Garleb KA,Williams JA,Fahey GC(2002) Fructooligosaccharides and Lactobacillus acidophilus modify gut microbial populations,total tract nutrient digestibilities and fecal protein catabolite concentrations in healthy adult dogs.J Nutr132:3721–3731Taranto MP,Medici M,Perdigon G,Ruiz Horgado AP,Valdez GF (1998)Evidence for hypocholesterolemic effect of Lactoba-cillus reuteri in hypercholesterolemic mice.J Dairy Sci 81:2336–2340Thompson LU,Jenkins DJA,Amer MA,Reichert R,Jenkins A, Kamulsky J(1982)Effect of fermented and unfermented milks on serum cholesterol.Am J Clin Nutr36:1106–1111Usman HA,Hosono A(2000)Effect of Administration of Lactoba-cillus gasseri on Serum Lipids and Fecal Steroids in Hypercho-lesterolemic Rats.J Dairy Sci83:1705–1711Van Winsen RL,Keuzenkamp D,Urlings BAP,Lipman LJA,Snijders JAM,Verheijden JHM,van Knapen F(2002)Effect of fermented feed on shedding of Enterobacteriaceae by fattening pigs.Vet Microbiol87:267–276Vujicic IF,Vulic M,Konyves T(1992)Assimilation of cholesterol in milk by kefir cultures.Biotechnol Lett14:847–850Appl Microbiol Biotechnol。