高中数学古典概型精品教学设计
古典概型教学设计

从两个试验可以得出概括总结出,古典概型计算任何事件的概率计算公式为:
在使用古典概型的概率公式时,应该注意:
(1)要判断所用概率模型是不是古典概型(前提)
(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
【典型例题】
[例2]单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
教学
重点
理解古典概型的概念及利用古典概型求解随机事件的概率。
教学
难点
如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件个数和试验中基本事件的总数。
教、学法
指导
教法:引导启发
学法:自主学习
手段
多媒体
教学
过程
教学内容
设计意图
新课导入
甲乙两个赌徒打赌:同时掷两颗骰子,以两颗骰子的点数和打赌,甲压3点,乙压7点,谁赢的机会比较大?
3. 用三种不同的颜色给如图所示的3个矩形随机 涂色,每个矩形只涂一种颜色.
(1)求3个矩形颜色都相同的概率;
(2)求3个矩形颜色都不相同的概率;
(3)求3个矩形颜色不都相同的概率.
4. 有A,B,C,D四位贵宾,应分别坐在a,b,c,d四个席位上,现在这四人均未留意,在四个席位上随便就坐时.
(1)求这四人恰好都坐在自己席位上的概率;
(2)求这四人恰好都没坐在自己席位上的概率;
(3)求这四人恰好有1位坐在自己席位上的概率.
巩固知识,
加深理解
板书
设计
3.2.1古典概型
.2.1古典概型(教学设计)

3.2.1古典概型(教学设计)3.2.1古典概型(教学设计)宁夏彭阳县第一中学 张有花一、 教材分析(一) 教材地位、作用《古典概型》是高中数学人教A 版必修3第三章概率3.2的内容,教学安排是2课时,本节是第一课时。
是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型也是后面学习条件概率的基础,它有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题,起到承前启后的作用,所以在概率论中占有相当重要的地位。
(二)教材处理:学情分析:学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。
他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。
教学内容组织和安排:根据上面的学情分析,学生思维不严密,意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。
通过对问题情境的分析,引出基本事件的概念,古典概型中基本事件的特点,以及古典概型的计算公式。
对典型例题进行分析,以巩固概念,掌握解题方法。
二、三维目标知识与技能目标:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)理解古典概型的概率计算公式 :P (A )=总的基本事件个数包含的基本事件个数A (3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
过程与方法目标:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用分类讨论的思想解决概率的计算问题。
古典概型教学设计(汇总5篇)

古典概型教学设计(汇总5篇)篇1:古典概型教学设计古典概型教学设计一、教材分析本节课的内容选自《一般高中课程标准试验教科书数学必修3(A)版》第三章中的3.2.1节古典概型。
它支配在随机大事之后,几何概型之前,同学还未学习排列组合的状况下教学的。
古典概型是一种特不的数学模型,也是一种最基本的概率模型,在概率论中占有重要的地位,是学习概率必不行少的内容,同时有利于理解概率的概念及利用古典概型求随机大事的概率。
二、教学目标依据本节教材在本章中的地位和大纲要求以及同学实际,本节课的教学目标制定如下:①结合一些具体实例,让同学理解并把握古典概型的两个特征及其概率计算公式,培育同学猜想、化归、观看比较、归纳询问题的力气。
②会用列举法计算一些随机大事所含的基本领件数及大事发生的概率, 渗透数形结合、分类争辩的思想方法。
③使同学初步学会把一些实际询问题转化为古典概型,关键是要使该询问题是否中意古典概型的两个条件,培育同学对各种不同的实际状况的分析、推断、探究,培育同学的应用力气。
三、教学的重点和难点重点:理解古典概型的含义及其概率的计算公式。
难点:如何推断一个试验是否为古典概型,分清在一个古典概型中某随机大事包含的基本领件的个数和试验中基本领件的总数。
四、学情分析高一(x)班是一个xx班,同学数学基础比较薄弱,对数学的了解比较浅显,课堂同意容量较低。
本课的学习是建立在同学基本了解了概率的意义,把握了概率的基本性质,明白了互斥大事和对立大事的概率加法公式。
同学基本具备了确信的归纳、猜想力气,但在数学的应用意识与应用力气方面尚需进一步培育。
多数同学能够乐观参与争论,但在合作沟通意识方面,进展不够均衡,有待加强。
五、教法学法分析本节课属于概念教学,依据这节课的.特点和同学的认知水平,本节课的教法与学法定为:为了培育同学的自主学习力气,激发学习爱好,借鉴布鲁纳的发觉学习理论,在教学中实行以询问题式引导发觉法教学,利用多媒体等手段,引导同学进行观看争辩、归纳总结。
数学 古典概型教案

数学古典概型教案教案标题:数学-古典概型教案教案目标:1. 了解古典概型的基本概念和原理。
2. 能够应用古典概型解决简单的概率问题。
3. 培养学生的逻辑思维和解决问题的能力。
教学资源:1. 教科书:包含古典概型的相关知识点和例题。
2. 白板/黑板和彩色粉笔/白板笔。
3. 学生练习册或作业本。
教学步骤:引入活动:1. 引导学生回顾概率的基本概念,并提出一个问题:如果有一枚硬币,抛掷一次,正面朝上的概率是多少?2. 让学生进行讨论,并记录他们的答案和理由。
知识讲解:1. 介绍古典概型的概念和原理,即指出在一次试验中,所有可能的结果都是等可能发生的。
2. 通过例子解释古典概型的应用,如抛硬币、掷骰子等。
3. 强调古典概型只适用于有限样本空间的情况。
示范演练:1. 给出一个例题:一个袋子里有3个红球和2个蓝球,从中随机抽取一个球,求抽到红球的概率。
2. 引导学生思考解决问题的步骤,并进行解答。
3. 让学生自主尝试解决类似的例题,然后进行讨论和纠正。
巩固练习:1. 分发练习册或作业本,让学生完成相关练习题。
2. 监督学生的学习进度,及时解答他们的问题。
拓展活动:1. 提供更复杂的问题,让学生应用古典概型解决。
2. 鼓励学生思考概率问题在现实生活中的应用,并分享他们的观点和例子。
总结:1. 总结古典概型的基本概念和应用方法。
2. 强调学生在解决概率问题时需要准确地定义样本空间和事件。
3. 鼓励学生继续探索概率和统计的相关知识。
评估方式:1. 教师观察学生在课堂上的参与程度和问题解决能力。
2. 批改学生完成的练习册或作业本,给予及时的反馈和评价。
教学延伸:1. 将古典概型与其他概率模型进行比较,如条件概率、贝叶斯概率等。
2. 引导学生进行实际探究,设计自己的概率实验,并分析结果。
注意事项:1. 确保教学过程中注重学生的参与和思考,避免单纯的讲解。
2. 鼓励学生提问和讨论,促进他们的思维发展和合作能力。
3. 根据学生的实际情况和学习进度,适当调整教学内容和难度。
《古典概型》教学设计

《古典概型》教学设计教学设计:古典概型一、教学目标1.认识古典概型的概念和基本特点;2.了解古典概型的计算方法和应用;3.培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1.古典概型的概念和基本特点;2.古典概型的计算方法和应用;3.古典概型的实际案例分析。
三、教学过程1.导入(5分钟)介绍古典概型的概念和基本特点,如何用数学的方法计算概率,引发学生对古典概型的兴趣。
2.知识讲解(20分钟)分析古典概型的计算方法和应用,以及相关的案例分析,深入理解古典概型的具体计算步骤和实际应用场景。
3.小组讨论(15分钟)分成小组,每组选择一个具体的实际问题案例,讨论如何应用古典概型解决问题,并给出解决方案。
4.小组汇报(10分钟)各小组代表向全班汇报讨论结果,分享各组的解决方案和思路。
5.练习与拓展(25分钟)提供一些练习题和拓展题,巩固学生对古典概型的理解和应用,同时培养学生的逻辑思维和解决问题的能力。
6.课堂总结(5分钟)对本节课的内容进行总结,并布置课后作业。
四、教学资源1.课件:包含古典概型的概念、基本特点、实际案例分析等内容;2.练习题集:包括古典概型的计算方法和应用的相关练习题。
五、教学评估1.学生的表现和参与度;2.学生对案例的讨论和解决方案的质量。
六、教学反思通过设计这节课的教学过程,学生可以更加深入地了解古典概型,并掌握其计算方法和应用。
通过小组讨论和汇报,学生可以加强思维能力和团队合作能力。
此外,通过练习和拓展,可以帮助学生巩固和拓展所学知识,培养解决问题的能力。
授课过程中,教师需要及时纠正错误,引导学生思考,提高课堂的互动性和学生的主动性。
在评估方面,不仅要注重学生的答题正确性,还要关注学生的思考过程和解决问题的方法。
在课后反思中,教师可以总结教学中的不足,并制定相应的改进措施,以不断提高教学效果。
古典概型公开课教案

古典概型公开课教案一、教学目标1. 让学生了解古典概型的定义和特点。
2. 让学生掌握古典概型的计算方法。
3. 培养学生运用古典概型解决实际问题的能力。
二、教学内容1. 古典概型的定义与特点2. 古典概型的计算方法3. 实际问题中的应用案例三、教学重点与难点1. 教学重点:古典概型的定义、特点和计算方法。
2. 教学难点:古典概型的计算方法和实际问题中的应用。
四、教学方法1. 讲授法:讲解古典概型的定义、特点和计算方法。
2. 案例分析法:分析实际问题中的应用案例。
3. 互动教学法:引导学生参与课堂讨论,提高学生的思考能力。
五、教学过程1. 导入新课:通过引入古代骰子游戏,引发学生对古典概型的兴趣。
2. 讲解古典概型的定义与特点:引导学生了解古典概型的基本概念,分析其特点。
3. 讲解古典概型的计算方法:引导学生掌握古典概型的计算方法,并进行课堂练习。
4. 分析实际问题中的应用案例:通过案例分析,让学生学会将古典概型应用于实际问题。
5. 课堂小结:总结本节课所学内容,强调重点和难点。
6. 课后作业:布置相关练习题,巩固所学知识。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。
2. 课后作业评价:检查学生完成的练习题,评估学生对古典概型的理解和应用能力。
3. 小组讨论评价:在小组讨论环节,评估学生的合作意识和问题解决能力。
七、教学拓展1. 引导学生思考:如何将古典概型应用于现实生活中的概率问题?2. 推荐阅读材料:让学生了解古典概型在数学发展史上的应用和重要性。
八、教学资源1. 教学PPT:展示古典概型的定义、特点、计算方法和应用案例。
2. 练习题:提供相关的练习题,帮助学生巩固所学知识。
3. 案例分析资料:提供实际问题案例,供学生分析讨论。
九、教学建议1. 注重学生基础知识的培养,确保学生掌握古典概型的基本概念和计算方法。
2. 鼓励学生积极参与课堂讨论,提高学生的思考和问题解决能力。
高中高三数学古典概型教案

高中高三数学古典概型教案教学目标:
1. 理解古典概型的基本概念和应用。
2. 解决实际问题中的概率计算。
3. 提高学生的数学思维和应用能力。
教学重点:
1. 古典概型的定义和特点。
2. 古典概型在实际问题中的应用。
3. 概率计算和概率分布。
教学难点:
1. 复杂问题的古典概型解题方法。
2. 概率计算过程中的逻辑性。
教学准备:
1. 教师准备课件和教学素材。
2. 学生准备相关教材和笔记。
教学过程:
一、导入(5分钟)
教师简要介绍古典概型的概念和应用,并提出学习目标。
二、知识讲解(20分钟)
1. 古典概型的定义和特点。
2. 古典概型的应用举例。
3. 概率计算公式和概率分布。
三、示范演练(15分钟)
教师通过几个案例演示古典概型的解题方法和计算过程。
四、分组讨论(15分钟)
学生分组讨论并解决几个古典概型的实际问题。
五、小结(5分钟)
教师复习本节课的重点内容,并总结学习收获。
六、作业布置(5分钟)
布置相关练习和作业,巩固学生对古典概型的理解和运用能力。
教学反思:
本节课通过理论讲解、示范演练和实际问题解决的方式,帮助学生深入理解古典概型的概念和应用,提高了他们的数学思维和实际问题解决能力。
在教学中要注重培养学生的逻辑推理能力和分析问题的能力,引导他们灵活运用数学知识解决实际问题。
高中数学古典概型教案大全

高中数学古典概型教案大全在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的。
古典概型是概率论中最直观和最简单的模型,概率的许多运算规则,也首先是在这种模型下得到的。
接下来是小编为大家整理的高中数学古典概型教案大全,希望大家喜欢!高中数学古典概型教案大全一古典概型一、目标引领1.理解随机事件和古典概率的概念?.2.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.重点及难点重点是求随机事件的概率,难点是如何判断一个随机事件是否是古典概型,搞清随机事件所包含的基本事件的个数及其总数.二、自学探究在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验,试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成30次(最好是整十数),最后由课代表汇总.试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成30次,最后由课代表汇总.三、合作交流在我们所做的每个实验中,有几个结果,每个结果出现的概率是多少?学生回答:在试验一中结果只有两个,即“正面朝上”和“反面朝上”,并且他们都是相互独立的,由于硬币质地是均匀的,因此出现两种结果的可能性相等,即它们的概率都是 .在试验二中结果有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且他们都是相互独立的,由于骰子质地是均匀的,因此出现六种结果可能性相等,即它们的概率都是 .引入新的概念:基本事件:我们把试验可能出现的结果叫做基本事件.古典概率:把具有以下两个特点的概率模型叫做古典概率.(1)一次试验所有的基本事件只有有限个.例如试验一中只有“正面朝上”和“反面朝上”两种结果,即有两个基本事件.试验二中结果有六个,即有六个基本事件.(2)每个基本事件出现的可能性相等.试验一和试验二其基本事件出现的可能性均相同.随机现象:对于在一定条件下可能出现也可能不能出现,且有统计规律性的现象叫做随机现象.试验一抛掷硬币的游戏中,可能出现“正面朝上”也可能出现“反面朝上”,这就是随机现象.随机事件:在概率论中,掷骰子、转硬币……都叫做试验,试验的结果叫做随机事件.例如掷骰子的结果中“是偶数”、“是奇数”、“大于2”等等都是随机事件.随机事件“是偶数”就是由基本事件“2点”、“4点”、“6点”构成.随机事件一般用大写英文字母A、B等来表示.必然事件:试验后必定出现的事件叫做必然事件,记作 .例如掷骰子的结果中“都是整数”、“都大于0”等都是必然事件.不可能事件:实验中不可能出现的事件叫做不可能事件,基本事件有如下的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.四、精讲点拨例1:从字母a、b、c、d任意取出两个不同字母的试验中,有哪些基本事件?解:有ab,ac,ad,bc,bd,cd.例2:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概率吗?为什么?答:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概率的第一个条件.高中数学古典概型教案大全二课题古典概型课型高一新授课教学目标理解古典概型及其概率计算公式,并能计算有关随机事件的概率教学重点理解古典概型的概念及利用古典概型求解随机事件的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
古典概型
一、教学内容解析
1.本节课时高中数学(必修3)第三章概率的第二节古典概型的第一课时,是在学习了随机事件的概率、概率的加法公式之后,学习几何概型之前,尚未学习排列组合的情况下进行教学的.这节课的学习任务所包括的知识类型主要有:
事实性知识:基本事件及古典概型的特点;
概念性知识:基本事件及古典概型的概念,古典概型概率计算公式;
元认知知识:根据古典概型的研究分析,解释和预测生活中的古典概率模型问题.2.古典概型在概率的学习中承上启下,不仅有利于进一步理解概率的有关概念,而且有助于几何概型的学习,也可以为以后概率的学习奠定基础.
3.古典概型是一种特殊的数学模型,能培养学生建模的思想,同时其与生活联系密切,便于解释生活中的一些问题,增加学生学习数学的兴趣.
二、教学目标设置
1.知识与技能
理解基本事件、等可能事件等概念;正确理解古典概型的特点;会用列举法求解简单的古典概型问题;掌握古典概型的概率计算公式.
2.过程与方法
通过对现实生活中具体的概率问题的探究,感受应用数学解决问题的方式,体会数学知识与现实世界的联系,培养学生的逻辑推理能力;通过模拟试验,感知应用数学解决问题的方法,自觉养成多动手、勤动脑的良好习惯.
3.情感、态度与价值观
在教师指导、学生参与的过程中培养学生的自主学习能力;同时,使其获得数学源于生活服务于生活的体验,培养学生应用数学的意识.
三、学生学情分析
我校是湖南省著名的示范性中学,学生学习基础较好.从课前的微视频自学反馈中,了解到学生在以下3个方面仍需加强.
1.学生已经学习了概率的加法,能够比较熟练的应用互斥事件的概率运算法则进行计算.
2.通过预习,学生能够初步了解基本事件及古典概型的概念,但对其深入的理解和
应用还需加强.
3.学生对古典概型及其概率计算公式含义的认识上并不能直击本质,因此在教学过程中,将采用自主探究、小组讨论等环节强调其本质含义,突破难点.
四、教学策略分析
1.有效开发、合理利用教材资源.以教材中两个试验的其中之一作为实验探究,将第二个试验进行适当改编,引导学生认识基本事件及其两大特点和古典概型的定义及特征.让学生自己动手体会在试验、合作中得到的新知,同时通过归纳总结对知识有更为深刻的理解和认识.
2.学生已经学习了概率的相关基础知识,通过试验后,对古典概型也有了较初步的印象.为加深学生对古典概型两个特征的认识和理解,在例题中加强对有限性和等可能性的区分和辨别,使学生深刻领会”有限”和”等可能”的含义.
五、教学过程
(一)复习回顾引入课题
分析掷硬币试验和抛掷骰子试验的试验结果,引出基本事件的定义及特点:一次试验中可能出现的每一个结果称为基本事件.
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
引导学生进一步分析以上两个试验中基本事件的共同点,发现两个试验中的基本事件只有有限个,并得到关于“古典概型中每个基本事件出现的可能性相等”的猜想.【设计意图】课堂开始阶段,引导学生由之前课堂中曾完成过的掷硬币试验进行分析,让学生在熟悉的情景下、了解的知识中温故知新,得到基本事件的定义和特点.同时鼓励学生大胆猜想古典概型中基本事件的等可能性,培养学生的发散思维和研究精神.
(二)试验探究概念形成
实验目的:验证古典概型中基本事件的等可能性.
实验内容:抛掷一颗骰子,统计实验中向上点数出现的次数.
实验用具:质地均匀的骰子1个、空量杯一个、数据统计表1份.
实验步骤:
(1)3位同学为1个小组,3个小组为1个大组进行实验.
(2)每小组中,第一位同学负责抛掷骰子,每次实验将骰子置于同一高度在(量杯口处)向下掷,待骰子静止后,观察实验结果;第二位同学负责记录实验结果;第三位
同学负责监督实验过程,并检验统计数据.
(3)小组实验结束后,将数据汇总至所在大组的实验数据统计表中.
由学生展示每小组的统计结果,进行比较分析,然后师生合作将每小组的实验数据累
加,并综合继续分析.
最后运用EXCEL软件模拟掷骰子试验,得到1000次、10000次及100000次的试验结
果,说明在大量的试验下,掷骰子试验中的六个基本事件出现的频率基本相等,也就验证
了对于“古典概型中每个基本事件出现的可能性相等”的猜想.
从而,通过掷一颗骰子的试验得到古典概型的概念:
(1)试验中所有可能出现的基本事件的个数只有有限个;
(2)每个基本事件出现的可能性相等.
我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.
【设计意图】以抛掷骰子的数学实验作为切入点,在学生动手实践、动脑思考、数据分析的学习活动中,验证”每个基本事件出现的可能性相等”的猜想,并抽象出古典概型的概念.在实验过程中,突出了本节课的重点,培养了学生合作探究的能力,并进一步加深了学生对古典概型中基本事件的认识.
1.下列概型是否为古典概型?
(1)在长度为3厘米的线段AB上随机取一点C,求点A到点C的距离小于1的概率.你
认为这是古典概型吗?为什么?
分析:不是.具有等可能性,不具有有限性.
(2)一颗质地均匀的骰子,在其一个面上标记1点,两个面上标记2点,三个面上标记3点,现掷这颗骰子,试验结果有:”出现1点”、”出现2点”、”出现3点”.你认为这是古典概型吗?为什么?
分析:不是.具有有限性,不具有等可能性.
2.你能举出生活中的古典概型例子吗?
学生例举生活实例.
【设计意图】通过2个问题,加深学生对有限性及等可能性的认识.让学生自己举例,
即可加深学生对古典概型特征的理解,又可以将数学练习生活,提升学生的学习兴趣.通过学生对生活中实例的分析,进一步提出问题:既然生活中有如此多的古典概型,
那么我们能否找到其概率计算的通法呢?再次回到刚刚的试验中,你能否求出“出现偶数
点”这个随机事件的概率呢?
学生以小组为单位进行讨论,引导学生应用古典概型特点及互斥事件概率加法公式得
到问题答案,并归纳总结出古典概型的概率计算公式:
()A
P A 包含的基本事件个数基本事件总数
【设计意图】由学生小组讨论,得到事件“出现偶数点”的概率,进而归纳出古典概型的概率计算公式.在学习新知识的同时培养学生的沟通交流能力,也加深了学生对概率公式的理解.
(三)例题精讲感悟本质
例1 从一个装有4颗巧克力(形状大小均相同)的布袋中随机取出2颗巧克力.(1)若4颗巧克力中,红色、黄色、蓝色、绿色各1颗,写出所有的基本事件.(2)若4颗巧克力中,红色、黄色各2颗,写出所有的基本事件.
(3)在(2)的条件下,计算取出的2颗均为黄色的概率.
在第(1)问的解题过程中引入树状图法进行列举,使学生熟悉掌握列举的重要方法之一——树状图法.
学生在对比(1)完成(2)时,往往容易忽视古典概型的两个特点,预计学生在求解时可能会有以下两种情况:
①将黄色巧克力标号为1、2,红色巧克力标号为3、4,试验结果共6种:
②不对巧克力进行编号,试验结果包含(黄,黄)(红,红)(红,黄)3种.
针对学生出现的典型错误,引导学生独立思考、合作交流,并提出问题:上述两种计数方法是否符合古典概型的特点?你能解释其中的原因吗?
待学生充分讨论后,由学生代表发言,引导学生认识到在第二种情况下得到的事件不是等可能发生,不具备古典概型的特点,故不能用古典概型的概率计算公式进行计算.
,,,【设计意图】例1是基于教科书中第125页例1创新改编而成,将原例题中的a b c d 四个字母换为不同颜色的巧克力,以“抽取巧克力”试验作为背景,让学生在轻松的氛围中通过观察分析掌握古典概型的两个特点.这样既培养了学生观察、分析问题和解决问题的能力,又有效地突破了本节课的教学难点.
练习题:同时掷两枚硬币,出现”1个正面朝上、1个反面朝上”的概率是多少?
由学生独立完成练习
【设计意图】例题1中的(2)(3)问是本节课的难点,这里设计一道与之类似的习题,使学生在多次练习的过程中,突破这一难点.
例2 同时掷两个骰子,求:
(1)向上的点数均为3的概率.
(2)向上的点数和为5的概率.
(3)向上的点数和为偶数的概率.
由学生自主解答,小组交流,学生代表向全班进行展示,同时在学生展示中,进一步强调古典概型的两个重要特点,并针对学生解答过程中可能出现的问题适当加以引导,【设计意图】为了固化古典概型的概念及其概率计算公式,我将教科书中例3的设问作了变式与创新,使学生能够熟练地运用列表法列出所有的基本事件,掌握古典概型的概率计算公式,加深对古典概型概念的理解.进一步突出本节课的教学重点.
(四)回顾总结提炼要点
这节课我们学习了哪些知识和方法?
【设计意图】学生总结反思,进一步强调本节课内容的重点和难点和方法,培养学生提炼、总结、概括的能力.
(五)课后拓展探究提升
1、课后练习
教科书130页,第2题、第 3题.
2、思考提升
下面有三个游戏规则,袋子中分别装有球,从袋中无放回的取球,分别计算甲获胜的概率,则游戏是公平的是()
A.游戏1 B.游戏1和3 C.游戏2 D.游戏2和3 3、实践应用
近年来,国家越来越重视商品的质量问题,经常组织质检部门对其进行抽样检测.请
你收集相关的新闻材料、数据或进行实际的市场调查,从古典概型角度针对检测产品的数
量和检测出不合格产品的概率进行分析研究,说明质量抽检的科学性或提出你的建议.【设计意图】在作业的布置中,注意将双基训练与能力发展相结合.创新性地设计探
究问题,有意识地将数学与生活结合,使学生能够学以致用,既巩固了基本知识,同时又
提升了学生运用知识分析问题和解决问题的能力.。