事件和的概率
《概率论》第1章 事件与概率

25/27
5. 试用A、B、C 表示下列事件: ① A 出现; A ② 仅 A 出现;ABC ③ 恰有一个出现;ABC ABC ABC ④ 至少有一个出现;A B C ⑤ 至多有一个出现; ABC ABC ABC ABC ⑥ 都不出现; ABC ⑦ 不都出现; ABC A B C ⑧ 至少有两个出现; AC BC AB
第一章 事件与概率
3/27
在随后的200多年里,概率论不仅在理论上获得了一定 发展,而且在人口统计、保险业、误差理论、天文学等自 然科学中得到了应用.在这一时期,对概率论在理论和应用 方 面 作 出 重 要 贡 献 的 数 学 家 有 雅 格 布 · 努 利 (Jakob 伯 Bernoullii),丹尼尔· 伯努利(Daniel Bernoullii), 棣莫弗(De Moivre), 拉 普 拉 斯 (pace), 欧 拉 (L.Euler), 贝 叶 斯 (T.Bayes), 蒲 丰 (G.Buffon), 高 斯 (F.Gauss), 泊 松 (S.Poisson),布尼亚可夫斯基 (V.Bunjakovskii),切比雪夫 (Chebyshev), 马 尔 可 夫 (A.Markov), 李 雅 普 诺 夫 (A.Lyapunov)等. 尽管18,19世纪,概率论在理论和应用方面得到了很多 成果,但与其它数学分支比较,概率论的发展是缓慢的.甚 至直到20世纪以前概率论还未进入主流数学.其基本原因 是概率论缺乏严密的逻辑基础.
4/27
凯恩斯主张把任何命题都看作事件,例如“明天将下 雨”,“土星上有生命”等等都是事件,人们对这些事件的 可信程度就是概率,而与随机试验无关,通常称为 主观概 率. 米泽斯定义事件的概率为该事件出现的频率的极限, 而作为公理就必须把这一极限的存在作为第一条公理,通 常称为客观概率.
15事件和与事件积的概率【教师版】

事件和与事件积这节课我们学什么1.掌握事件和与事件积的概率的求法;2.理解事件独立的概念,并掌握独立事件积的概率的求法.知识框图知识梳理1.和事件(1)和事件:设A、B为两个随机事件,把“事件A与事件B至少有一个出现”叫做事件A与事件B的和.(2)事件和的概率(概率加法公式):()()()()P A B P A P B P AB=+-.(3)互斥事件:在同一次试验中,不可能同时发生的两个事件叫做互斥事件,也叫做互不相容事件.(4)互斥事件和的概率:如果事件A、B互斥,那么()()()P A B P A P B=+.2.积事件(1)积事件:设A、B为两个随机事件,把“事件A与事件B同时出现”叫做事件A与事件B的积.(2)独立事件:如果事件A出现和事件B出现,互相之间没有影响,即其中一个事件的发生对另一事件发生的概率没有影响,那么就称事件A和事件B互相独立.如果A与B是独立的,则A与B、A与B、A与B也是互相独立的.(3)独立事件积的概率:如果事件A、B互相独立,那么()()()P AB P A P B=⋅.(4)推广:如果事件nAAA、、、21相互独立,则)()()(2121nnAPAPAPAAAP=)((5)“事件nAAA、、、21至少出现一个”这一事件的对立事件是“nAAA、、、21都不出现”,即12121'''n nP A A A P A A A+++=-()())'()'()'(121nAPAPAP-=)](1[)](1)][(1[121nAPAPAP----=3.总结:典型例题分析1.事件和概率例1、从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K”,事件B 为“抽得为黑桃”,则概率)(B A P U 为多少?.【答案:)(B A P =11()+()=+=524P A P B 726】 例2、某校高二(1)班45名同学都订阅了不同的报刊,其中订阅中学生报有30名同学,订阅中学生外语报有25名同学,10名同学即订了中学生报又订阅了中学生外语报。
概率的基本概念和计算

性质:概率的对称 性意味着事件A和B 是对称的,即它们 的发生概率相等。
举例:例如,抛掷一枚 硬币正面朝上的概率等 于反面朝上的概率,因 此硬币抛掷具有对称性。
应用:概率的对称性 在概率论和统计学中 有着广泛的应用,如 赌博、保险等领域。
概率的可数可加性
定义:如果事件A和B是互斥的,则P(A∪B)=P(A)+P(B)
概率的乘法原则:两个独立事件的 概率乘积等于它们各自概率的乘积。
概率的公理化定义
概率是描述随机事件发生可能性大小的数值,取值范围在0到1之间。 必然事件的概率为1,不可能事件的概率为0。 概率具有可加性,即两个独立事件的概率之和等于它们概率的直接概率。 概率具有有限可加性,即对于有限个两两互斥事件,其概率之和等于它们概率的直接概率。
概率在日常生活中的应用
天气预报:通过概率计算预测未来天气情况,帮助人们安排出行和活动。 保险业:保险公司使用概率计算风险,制定合理的保险费率。
医学研究:通过概率统计方法分析大量数据,发现疾病与基因、环境等因素的关系。 经济学:经济学家使用概率模型预测市场趋势和经济状况,帮助投资者做出决策。
概率在科学实验中的应用
完备性是概率论中 的一个基本性质, 它保证了概率空间 的完整性和一致性。
完备性也是概率论中一 个重要的数学工具,它 被广泛应用于概率论和 统计学中的各种问题。
概率的完备性是概率 论中的一个基本概念 ,它对于理解概率论 和统计学中的各种概 念和原理非常重要。
概率的对称性
定义:如果一个事 件A的概率等于其逆 事件B的概率,则称 事件A具有对称性。
概率的统计定义
概率是描述随 机事件发生的 可能性大小的
数值。
概率可以通过 长期实验中某 一事件发生的 次数与总次数 的比值来估算。
事件与概率

4) 必然事件与不可能事件
包括试验的全部样本点,每次试验每次都发生, 因此称为必然事件。 -不包括任何样本点,每次试验都不发生, 因而称为不可能事件。
12
3. 事件间的关系和运算
1) 包含关系:若事件A发生导致事件B发生,则称A 包含于B或事件B包含事件A,记为 A B 。
A 2) 和事件: B { | A, 或 B} ,称为A与B的和 事件,当且仅当A,B中至少有一个发生时,事件发 生。
27
例:(会面问题)两人约定在7点到8点之间在某处会面, 先到者等候20分钟然后离去。求两人能会面的概率。
9
2. 随机事件
1) 样本点:组成样本空间的元素,即实验的一个可能 , 故样本空间={}. 出现的结果,又称基本事件,记为
2) 3) 随机事件=的子集,即部分样本点的集合,若事件中至少 一个样本点发生时,称这一事件发生或出现。 随机事件举例
1 4={1,2,3,4,5,6}
A={1,2,3}, B {4,5,6}
p(A)= a!(b-1)! b = (a+b)! (a+b) a!b!
两种不同的解法答案相同。 注 (1)两种解法不同就在于选取的样本空间不同; (2)本例结果与k无关; (3)利用摸球阐述了“抽签与顺序无关”的道理。
21
例:口袋里有a只白球和b只黑球,我们采用取后放回和取后 不放回两种方式从袋中取n个球,问恰有k个黑球的概率各为 多少?
3
2. 随机试验(简称试验,记E) 1) 试验:对自然现象的观察+科学试验; 2) 随机试验的三个特点: 试验能在相同的条件下重复进行 每次试验的可能结果不止一个,且能明确试验 的所有可能结果; 每次试验之前不能确定哪一个结果会出现; 3) 检查一个实验是否是随机试验可查三点是否满足。
《随机事件与概率》概率(事件的关系与运算)

扑克牌是一种流行的赌博游戏,玩家通过比较手中的牌来决定胜负 。
保险业
精算科学
精算科学是保险业中非常重要的应用概率和统计学的领域。精 算师使用这些知识来估计风险并制定保险策略。
索赔处理
保险公司使用概率模型来估计潜在的索赔,并制定相应的策略来 处理这些索赔。
保费定价
保险公司使用概率和统计模型来确定保费,考虑到各种因素,例 如风险分布、过去的经验等。
通信与信息科学
数据加密
在通信和信息科学中,概率论被广泛应用于数据加密,以保护信 息的安全。
信息论
信息论是通信和信息科学的另一个重要领域,它研究信息的压缩 、存储和传输。
信号处理
在通信和信息科学中,信号处理是一个非常重要的领域,它涉及 到如何将原始信号转换为更易于传输或处理的形式。
生物统计学与遗传学
发生概率的乘积。
概率的运算
包含关系
互斥关系
当一个事件B包含另一个事件A时,A的概率 等于B的概率。
当两个事件A和B互斥时,它们同时发生的 概率为0。
独立事件
条件概率
当两个事件A和B独立时,它们同时发生的 概率等于各自发生概率的乘积。
在已知事件B发生的条件下,事件A发生的 概率称为条件概率。条件概率可以通过贝叶 斯公式进行计算。
事件关系与运算
3
研究事件的运算(交、并、补等)及其性质。
随机事件的模拟
事件关系
研究事件之间的关系,包括独立性、互斥性、包含关系 等。
运算性质
研究事件的运算性质,如结合律、分配律、互斥律等。
概率的基本性质
研究概率的基本性质,如非负性、规范性、可加性等。
随机事件的模拟
古典概型
研究古典概型的概率计 算公式及其应用。
第一章 事件与概率

事件的和(A∪B) : 事件A和事 件B中至少有一个发生的这 一事件称为事件A和事件B 的和, 记为A∪B. 事件的积(A∩B) : 事件A和事 件B同时发生这一事件称为 事件A和事件B的积, 记为 A∩B. 如果A∩B= Φ, 则称A和B不相 容, 即事件A和B不能同时发 生.
概率论与数理统计
概率论与数理统计
样本空间的分割
设B1, B2, · · · Bn是样本空间Ω中的两两不相 容的一组事件, 即BiBj = Φ, i ≠ j, 且满足 n i =1 Bi =Ω, 则称B1, B2, · · · , Bn 是样本空间Ω 的一 个分割(又称为完备事件群,英文为partition).
Ac
对立事件: A不发生这一 事件称为事件A的对立 事件(或余事件) .
事件A和事件B的差A−B: 事件A发生而事件B不发 生这一事件称为事件A 和事件B的差, 记为A−B.
概率论与数理统计
De Morgan对偶法则
De Morgan对偶法则
上面公式可以推广到n个事件:
概率论与数理统计
什么是概率
概率论与数理统计
随机现象和随机试验
随机现象:自然界中的客观现象, 当人们观测它时, 所得结果不能预先确定, 而仅仅是多种可能结果 之一.
随机试验: 随机现象的实现和对它某特征的观测.
随机试验的要求: 结果至少有两个;每次只得到其 中一种结果且之前不能预知;在相同条件下能重复 试验. 举例说明随机现象和随机试验.
概率论与数理统计
(三)主观概率
人们常谈论种种事件出现机会的大小, 如某人有80% 的可能性办成某事. 而另一人则可能认为仅有50%的 可能性. 即我们常常会拿一个数字去估计这类事件发 生的可能性, 而心目中并不把它与频率挂钩.
随机事件及其概率(知识点总结)

随机事件及其概率一、随机事件1、必然事件在一定条件下,必然会发生的事件叫作必然事件.2、不可能事件在一定条件下,一定不会发生的事件叫作不可能事件.3、随机事件在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件.4、确定事件必然事件和不可能事件统称为相对于随机事件的确定事件.5、试验为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验.【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象.(3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件.二、基本事件空间1、基本事件在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件.2、基本事件空间所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件.【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏.三、频率与概率1、频数与频率在相同条件S 下进行了n 次试验,观察某一事件A 是否出现,则称在n 次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n=为事件A 出现的频率.对于给定的随机事件A ,如果随着试验次数n 的增加,事件A 发生的频率()n f A 稳定在某个常数上,则把这个常数称为事件A 的概率,简称为A 的概率,记作()P A .3、频率与概率的关系(1)频率虽然在一定程度上可以反映事件发生的可能性的大小,但频率并不是一个完全确定的数. 随着试验次数的不同,产生的频率也可能不同,所以频率无法从根本上刻画事件发生的可能性的大小,但人们从大量的重复试验中发现:随着试验次数的无限增加,事件发生的频率会稳定在某一固定的值上,即在无限次重复试验下,频率具有某种稳定性.(2)概率是一个常数,它是频率的科学抽象. 当试验次数无限多时,所得到的频率就会近似地等于概率. 另外,概率大,并不表示事件一定会发生,只能说明事件发生的可能性大,但在一次试验中却不一定会发生.四、事件的关系与运算1、包含关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,则我们称 事件B 包含事件A (或称事件A 包含于事件B ),记作B A ⊇(或A B ⊆).2、相等关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,并且如果事件B 发生时,事件A 一定发生,即若B A ⊇且A B ⊇,则我们称事件A 与事件B 相等,记作A B =.3、并事件如果某事件发生当且仅当事件A 或事件B 发生,则我们称该事件为事件A 与事件 B 的并事件(或和事件),记作A B ⋃(或A B +).如果某事件发生当且仅当事件A发生且事件B也发生,则我们称该事件为事件A 与事件B的交事件(或积事件),记作A B⋂(或A B⋅).5、互斥事件如果事件A与事件B的交事件A B⋂=∅),则我们称事⋂为不可能事件(即A B件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中都不会同时发生.6、对立事件如果事件A与事件B的交事件A B⋂=∅),而事件A与⋂为不可能事件(即A B事件B的并事件A B⋃=Ω),则我们称事件A与事件B互⋃为必然事件(即A B为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生.【注】事件的关系与运算可以类比集合的关系与运算. 例如,事件A包含事件B 类比集合A包含集合B;事件A与事件B相等类比集合A与集合B相等;事件A 与事件B的并事件类比集合A与集合B的并集;事件A与事件B的交事件类比集合A与集合B的交集……五、互斥事件与对立事件互斥事件与对立事件是今后考察的重点,因此关于互斥事件与对立事件,我们很有必要再作进一步的说明.1、互斥事件与对立事件的关系互斥事件与对立事件都反映的是两个事件之间的关系. 互斥事件是不可能同时发生的两个事件,而对立事件除了要求这两个事件不同时发生以外,还要求这两个事件必须有一个发生. 因此,对立事件一定是互斥事件,而互斥事件不一定是对立事件. 例如,掷一枚骰子,事件:“出现的点数是1”与事件:“出现的点数是偶数”是互斥事件,但不是对立事件;而事件:“出现的点数是奇数”与事件:“出现的点数是偶数”既是互斥事件,也是对立事件.2、互斥事件的概率加法公式(1)两个互斥事件的概率之和如果事件A 与事件B 互斥,那么()()()P A B P A P B ⋃=+;(2)有限多个互斥事件的概率之和一般地,如果事件1A ,2A ,…,n A 两两互斥,那么事件“12n A A A ⋃⋃⋃发生”(指事件1A ,2A ,…,n A 中至少有一个发生)的概率等于这n 个事件分别发生的概率之和,即1212()()()()n n P A A A P A P A P A ⋃⋃⋃=+++.【注】上述这两个公式叫作互斥事件的概率加法公式. 在运用互斥事件的概率加法公式时,一定要首先确定各事件是否彼此互斥(如果这个条件不满足,则公式不适用),然后求出各事件分别发生的概率,再求和.3、对立事件的概率加法公式对于对立的两个事件A 与B 而言,由于在一次试验中,事件A 与事件B 不会同时发生,因此事件A 与事件B 互斥,并且A B ⋃=Ω,即事件A 或事件B 必有一个发生,所以对立事件A 与B 的并事件A B ⋃发生的概率等于事件A 发生的概率与事件B 发生的概率之和,且和为1,即()()()()1P P A B P A P B Ω=⋃=+=,或()1()P A P B =-.【注】上述这个公式为我们求事件A 的概率()P A 提供了一种方法,当我们直接求()P A 有困难时,可以转化为先求其对立事件B 的概率()P B ,再运用公式()1()P A P B =-即可求出所要求的事件A 的概率()P A .4、求复杂事件的概率的方法求复杂事件的概率通常有两种方法:一种是将所求事件转化为彼此互斥的事件的和,然后再运用互斥事件的概率加法公式进行求解;另一种是先求其对立事件的概率,然后再运用对立事件的概率加法公式进行求解. 如果采用方法一,一定要准确地将所求事件拆分成若干个两两互斥的事件,不能有重复和遗漏;如果采用方法二,一定要找准所求事件的对立事件,并准确求出对立事件的概率.六、概率的基本性质1、任何事件的概率都在01之间,即对于任一事件A,都有0()1≤≤.P A2、必然事件的概率为1,不可能事件的概率为0.3、若事件A与事件B互斥,则()()()⋃=+.P A B P A P B4、两个对立事件的概率之和为1,即若事件A与事件B对立,则()()1+=.P A P B。
12.1事件与概率

1.事件(1)不可能事件、必然事件、随机事件:在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果在每次试验中一定会发生,它称为必然事件;有的结果可能发生,也可能不发生,它称为随机事件. (2)基本事件、基本事件空间:试验连同它出现的每一个结果称为一个基本事件,它是试验中不能再分的最简单的随机事件;所有基本事件构成的集合称为基本事件空间,基本事件空间常用大写希腊字母Ω表示. 2.概率与频率(1)概率定义:在n 次重复进行的试验中,事件A 发生的频率mn ,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记作P (A ). (2)概率与频率的关系:概率可以通过频率来“测量”,频率是概率的一个近似. 3.事件的关系与运算名称 定义并事件 (和事件) 由事件A 和B 至少有一个发生所构成的事件C互斥事件 不可能同时发生的两个事件A 、B 互为对立 事件不能同时发生且必有一个发生的两个事件A 、B4.概率的几个基本性质(1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率:P (E )=1. (3)不可能事件的概率:P (F )=0. (4)互斥事件的概率加法公式:①P(A∪B)=P(A)+P(B)(A,B互斥).②P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n)(A1,A2,…,A n彼此互斥).(5)对立事件的概率:P(A)=1-P(A).【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)事件发生频率与概率是相同的.(×)(2)随机事件和随机试验是一回事.(×)(3)在大量重复试验中,概率是频率的稳定值.(√)(4)两个事件的和事件是指两个事件都得发生.(×)(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.(√)(6)两互斥事件的概率和为1.(×)1.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶答案 D解析射击两次的结果有:一次中靶;两次中靶;两次都不中靶,故至少一次中靶的互斥事件是两次都不中靶.2.从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm的概率为()A.0.2 B.0.3 C.0.7 D.0.8答案 B解析因为必然事件发生的概率是1,所以该同学的身高超过175 cm的概率为1-0.2-0.5=0.3,故选B. 3.(2015·湖北)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1 365石答案 B解析因为样品中米内夹谷的比为28254,所以这批米内夹谷为1 534×28254≈169(石).4.给出下列三个命题,其中正确的命题有________个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.答案 0解析 ①错,不一定是10件次品;②错,37是频率而非概率;③错,频率不等于概率,这是两个不同的概念.5.(教材改编)袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________. 答案 ②解析 ①是互斥不对立的事件,②是对立事件,③④不是互斥事件.题型一 事件关系的判断例1 某城市有甲、乙两种报纸供居民订阅,记事件A 为“只订甲报纸”,事件B 为“至少订一种报纸”,事件C 为“至多订一种报纸”,事件D 为“不订甲报纸”,事件E 为“一种报纸也不订”.判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件. (1)A 与C ;(2)B 与E ;(3)B 与C ;(4)C 与E .解 (1)由于事件C “至多订一种报纸”中有可能“只订甲报纸”,即事件A 与事件C 有可能同时发生,故A 与C 不是互斥事件.(2)事件B “至少订一种报纸”与事件E “一种报纸也不订”是不可能同时发生的,故B 与E 是互斥事件.由于事件B 不发生可导致事件E 一定发生,且事件E 不发生会导致事件B 一定发生,故B 与E 还是对立事件.(3)事件B “至少订一种报纸”中有这些可能:“只订甲报纸”、“只订乙报纸”、“订甲、乙两种报纸”,事件C “至多订一种报纸”中有这些可能:“一种报纸也不订”、“只订甲报纸”、“只订乙报纸”,由于这两个事件可能同时发生,故B 与C 不是互斥事件.(4)由(3)的分析,事件E “一种报纸也不订”是事件C 的一种可能,即事件C 与事件E 有可能同时发生,故C 与E 不是互斥事件.思维升华 对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件.这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪几个试验结果,从而判定所给事件的关系.判断下列各对事件是不是互斥事件或对立事件:某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中(1)恰有1名男生和恰有2名男生; (2)至少有1名男生和至少有1名女生; (3)至少有1名男生和全是女生. 解 (1)是互斥事件,不是对立事件.“恰有1名男生”实质选出的是“1名男生和1名女生”,与“恰有2名男生”不可能同时发生,所以是互斥事件,不是对立事件.(2)不是互斥事件,也不是对立事件.“至少有1名男生”包括“1名男生和1名女生”与“2名都是男生”两种结果,“至少有1名女生”包括“1名女生和1名男生”与“2名都是女生”两种结果,它们可能同时发生. (3)是互斥事件且是对立事件.“至少有1名男生”,即“选出的2人不全是女生”,它与“全是女生”不可能同时发生,且其并事件是必然事件,所以两个事件互斥且对立. 题型二 随机事件的频率与概率例2 (2015·北京)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙, 所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.思维升华 (1)概率与频率的关系:频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.(2)随机事件概率的求法:利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.某企业生产的乒乓球被奥运会指定为乒乓球比赛专用球,目前有关部门对某批产品进行了抽样检测,检查结果如下表所示:抽取球数n 50 100 200 500 1 000 2 000 优等品数m 45 92 194 470 954 1 902 优等品频率mn(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位) 解 (1)依据公式f =mn ,计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n 不同,计算得到的频率值不同,但随着抽取球数的增多,频率在常数0.950的附近摆动,所以质量检查为优等品的概率约为0.950. 题型三 互斥事件、对立事件的概率 命题点1 互斥事件的概率例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球和绿球的概率各是多少?解 方法一 从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A ,B ,C ,D ,则有P (A )=13,P (B ∪C )=P (B )+P (C )=512,P (C ∪D )=P (C )+P (D )=512,P (B ∪C ∪D )=P (B )+P (C )+P (D )=1-P (A )=1-13=23,解得P (B )=14,P (C )=16,P (D )=14,因此得到黑球、黄球、绿球的概率分别是14,16,14. 方法二 设红球有n 个,则n 12=13,所以n =4,即红球有4个.又得到黑球或黄球的概率是512,所以黑球和黄球共5个.又总球数是12,所以绿球有12-4-5=3(个).又得到黄球或绿球的概率也是512,所以黄球和绿球共5个,而绿球有3个,所以黄球有5-3=2(个).所以黑球有12-4-3-2=3(个).因此得到黑球、黄球、绿球的概率分别是312=14,212=16,312=14.命题点2 对立事件的概率例4 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A 、B 、C ,求: (1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. 解 (1)P (A )=11 000,P (B )=101 000=1100, P (C )=501 000=120. 故事件A ,B ,C 的概率分别为11 000,1100,120. (2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C . ∵A 、B 、C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000.故1张奖券的中奖概率为611 000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-⎝⎛⎭⎫11 000+1100=9891 000. 故1张奖券不中特等奖且不中一等奖的概率为9891 000.思维升华 求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和;二是间接法,先求该事件的对立事件的概率,再由P (A )=1-P (A )求解.当题目涉及“至多”“至少”型问题,多考虑间接法.国家射击队的队员为在射击世锦赛上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次命中7~10环的概率如下表所示:命中环数 10环 9环 8环 7环 概率0.320.280.180.12求该射击队员射击一次:(1)射中9环或10环的概率;(2)命中不足8环的概率.解记事件“射击一次,命中k环”为A k(k∈N,k≤10),则事件A k彼此互斥.(1)记“射击一次,射中9环或10环”为事件A,那么当A9,A10之一发生时,事件A发生,由互斥事件的加法公式得P(A)=P(A9)+P(A10)=0.28+0.32=0.60.(2)设“射击一次,至少命中8环”的事件为B,则B表示事件“射击一次,命中不足8环”.又B=A8∪A9∪A10,由互斥事件概率的加法公式得P(B)=P(A8)+P(A9)+P(A10)=0.18+0.28+0.32=0.78.故P(B)=1-P(B)=1-0.78=0.22.因此,射击一次,命中不足8环的概率为0.22.23.用正难则反思想求互斥事件的概率典例(12分)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x 3025y 10结算时间(分钟/人)1 1.52 2.5 3已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)思维点拨若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解.规范解答解(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.[2分]该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).[6分](2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1)=20100=15,P(A2)=10100=110.[9分]P(A)=1-P(A1)-P(A2)=1-15-110=710.[11分]故一位顾客一次购物的结算时间不超过2分钟的概率为710.[12分]温馨提醒(1)要准确理解题意,善于从图表信息中提炼数据关系,明确数字特征含义.(2)正确判定事件间的关系,善于将A转化为互斥事件的和或对立事件,切忌盲目代入概率加法公式.易错提示(1)对统计表的信息不理解,错求x,y,难以用样本平均数估计总体.(2)不能正确地把事件A转化为几个互斥事件的和或对立事件,导致计算错误.[方法与技巧]1.对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率f n(A)来估计概率P(A).2.从集合角度理解互斥事件和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此的交集为空集,事件A 的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.[失误与防范]1.正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.2.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.A组专项基础训练(时间:35分钟)1.下列命题:①将一枚硬币抛两次,设事件M:“两次出现正面”,事件N:“只有一次出现反面”,则事件M与N互为对立事件;②若事件A与B互为对立事件,则事件A与B为互斥事件;③若事件A与B为互斥事件,则事件A与B互为对立事件;④若事件A与B互为对立事件,则事件A∪B为必然事件,其中,真命题是()A.①②④B.②④C.③④D.①②答案 B解析 对①,一枚硬币抛两次,共出现{正,正},{正,反},{反,正},{反,反}四种结果,则事件M 与N 是互斥事件,但不是对立事件,故①错;对②,对立事件首先是互斥事件,故②正确;对③,互斥事件不一定是对立事件,如①中两个事件,故③错;对④,事件A 、B 为对立事件,则一次试验中A 、B 一定有一个要发生,故④正确.故B 正确.2.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235,则从中任意取出2粒恰好是同一色的概率是( ) A.17 B.1235 C.1735 D .1 答案 C解析 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735.即任意取出2粒恰好是同一色的概率为1735.3.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡答案 A解析 至多有一张移动卡包含“一张移动卡,一张联通卡”“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,故选A.4.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的卡片的频率是( ) A .0.53 B .0.5 C .0.47 D .0.37 答案 A解析 取到号码为奇数的卡片的次数为:13+5+6+18+11=53,则所求的频率为53100=0.53.故选A.5.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )A .0.09B .0.20C .0.25D .0.45 答案 D解析 设区间[25,30)对应矩形的另一边长为x ,则所有矩形面积之和为1,即(0.02+0.04+0.06+0.03+x )×5=1,解得x =0.05.产品为二等品的概率为0.04×5+0.05×5=0.45. 6.在200件产品中,有192件一级品,8件二级品,则下列事件: ①在这200件产品中任意选出9件,全部是一级品; ②在这200件产品中任意选出9件,全部是二级品; ③在这200件产品中任意选出9件,不全是二级品.其中________是必然事件;________是不可能事件;________是随机事件. 答案 ③ ② ①7.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________. 答案 0.25解析 20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为520=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.8.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是________________. 答案 (54,43]解析 由题意可知⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1⇒⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<13a -3≤1,⇒⎩⎪⎨⎪⎧1<a <2,54<a <32,a ≤43⇒54<a ≤43. 9.(2014·陕西)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)0 1 000 2 000 3 000 4 000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.10.从某学校的800名男生中随机抽取50名测量其身高,被测学生身高全部介于155 cm和195 cm之间,将测量结果按如下方式分组:第一组[155,160),第二组[160,165),…,第八组[190,195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4.(1)求第七组的频率;(2)估计该校的800名男生的身高的中位数以及身高在180 cm以上(含180 cm)的人数;(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x,y,事件E={|x -y|≤5},事件F={|x-y|>15},求P(E∪F).解(1)第六组的频率为450=0.08,所以第七组的频率为1-0.08-5×(0.008×2+0.016+0.04×2+0.06)=0.06.(2)身高在第一组[155,160)的频率为0.008×5=0.04,身高在第二组[160,165)的频率为0.016×5=0.08,身高在第三组[165,170)的频率为0.04×5=0.2,身高在第四组[170,175)的频率为0.04×5=0.2,由于0.04+0.08+0.2=0.32<0.5,0.04+0.08+0.2+0.2=0.52>0.5,估计这所学校的800名男生的身高的中位数为m,则170<m<175.由0.04+0.08+0.2+(m -170)×0.04=0.5,得m =174.5,所以可估计这所学校的800名男生的身高的中位数为174.5. 由直方图得后三组频率为0.08+0.06+0.008×5=0.18, 所以身高在180 cm 以上(含180 cm)的人数为0.18×800=144.(3)第六组[180,185)的人数为4,设为a ,b ,c ,d ,第八组[190,195]的人数为2,设为A ,B ,则从中选两名男生有ab ,ac ,ad ,bc ,bd ,cd ,aA ,bA ,cA ,dA ,aB ,bB ,cB ,dB ,AB ,共15种情况,因事件E ={|x -y |≤5}发生当且仅当随机抽取的两名男生在同一组,所以事件E 包含的基本事件为ab ,ac ,ad ,bc ,bd ,cd ,AB ,共7种情况,故P (E )=715.由于|x -y |max =195-180=15,所以事件F ={|x -y |>15}是不可能事件,P (F )=0. 由于事件E 和事件F 是互斥事件, 所以P (E ∪F )=P (E )+P (F )=715. B 组 专项能力提升 (时间:25分钟)11.在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是( )A .A +B 与C 是互斥事件,也是对立事件 B .B +C 与D 是互斥事件,也是对立事件 C .A +C 与B +D 是互斥事件,但不是对立事件 D .A 与B +C +D 是互斥事件,也是对立事件 答案 D解析 由于A ,B ,C ,D 彼此互斥,且A +B +C +D 是一个必然事件,故其事件的关系可由如图所示的Venn 图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件,故选D.12.如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为________.答案 45解析 记其中被污损的数字为x ,依题意得甲的5次综合测评的平均成绩是15×(80×2+90×3+8+9+2+1+0)=90,乙的5次综合测评的平均成绩是15×(80×3+90×2+3+3+7+x +9)=15(442+x ),令90>15(442+x ),解得x <8,所以x 的可能取值是0~7,因此甲的平均成绩超过乙的平均成绩的概率为810=45.13.若A ,B 互为对立事件,其概率分别为P (A )=4x ,P (B )=1y ,且x >0,y >0,则x +y 的最小值为________.答案 9解析 由题意可知4x +1y =1,则x +y =(x +y )(4x +1y )=5+(4y x +x y )≥9,当且仅当4y x =xy ,即x =2y 时等号成立.14.如图,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如下:所用时间/分钟 10~20 20~30 30~40 40~50 50~60 选择L 1的人数 6 12 18 12 12 选择L 2的人数416164(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解 (1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人), 故用频率估计相应的概率为0.44.(2)选择L 1的有60人,选择L 2的有40人,故由调查结果得频率为所用时间/分钟 10~20 20~30 30~40 40~50 50~60 L 1的频率 0.1 0.2 0.3 0.2 0.2 L 2的频率0.10.40.40.1(3)设A 1,A 2分别表示甲选择L 1和L 2时,在40分钟内赶到火车站;B 1,B 2分别表示乙选择L 1和L 2时,在50分钟内赶到火车站.由(2)知P (A 1)=0.1+0.2+0.3=0.6, P (A 2)=0.1+0.4=0.5,∵P (A 1)>P (A 2),∴甲应选择L 1; 同理,P (B 1)=0.1+0.2+0.3+0.2=0.8, P (B 2)=0.1+0.4+0.4=0.9, ∵P (B 1)<P (B 2),∴乙应选择L 2.15.(2015·陕西)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率. 解 (1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为P =2630=1315.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等),这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78,以频率估计概率,运动会期间不下雨的概率为78.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 概率加法公式: P(A∪B) = P(A) + P(B) - P(AB) .
4. 互不相容事件:不可能同时出现的两个事 件叫做互不相容事件或互斥事件.
U A B
【概念区分】“互斥事件”和“对立事件”
A B
对立事件一定是互斥事件,但 互斥事件不一定是对立事件
U A B
U A
A B A B U
5 4 2 7 P 10 10 10 10
【变式 1】在上例中,随机抽取一张卡片, 求卡片上出现奇数或出现小于 5 的数的概 率.
7 10
【变式 2】把 1、2、3、4、5、6、7、8、9、 10 分别写在 10 个形状大小一样的卡片上, 随机抽取一张卡片,求卡片上出现的数小 于 3 或出现大于 6 的概率.
B
若 A、B 为互斥事件,则 P(AB) = 0 , 故 P(A∪B) = P(A) + P(B) .
若 A、A 为对立事件,则 P( AA) Байду номын сангаас , P( A A) P(U ) 1 ,
P( A) + P( A) 1 .
【例 1】把 1、2、3、4、5、6、7、8、9、10 分别写在 10 个形状大小一样的卡片上,随 机抽取一张卡片,求卡片上出现偶数或出 现大于 6 的数的概率.
(3)事件 A 为“出现红色牌”,事件 B 为 “出现黑色牌”;
1
(4)事件 A 为“出现有人头的牌”,事件 B 为“出现红色牌”.
8 13
2 4 3 P 0 10 10 5
【例 2】从一副扑克牌(52 张)中随机抽取 一张,求下列事件 A 与事件 B 的和的概率:
(1)事件 A 为“出现 J”,事件 B 为“出现 K”;
2 13
(2)事件 A 为“出现 K”,事件 B 为“出 现梅花”;
4 13
【例 2】从一副扑克牌(52 张)中随机抽取 一张,求下列事件 A 与事件 B 的和的概率:
专题4
概率论初步(续)
4.1 事件和的概率
1. 事件和:设 A、B 为两个随机事件,把 “事件 A 与事件 B 至少有一个出现”叫做 事件 A 与事件 B 的和,记作 A∪B.
2. 事件积:设 A、B 为两个随机事件,把 “事件 A 与事件 B 同时出现”叫做事件 A 与事件 B 的积,记作 A∩B 或 AB .