初中《简单事件的概率》知识点

合集下载

九年级数学上人教版《概率初步》课堂笔记

九年级数学上人教版《概率初步》课堂笔记

《概率初步》课堂笔记
一、概率的定义和意义
1.定义:一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数
p附近,那么这个常数p就叫做事件A的概率,记为P(A) = p。

2.意义:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表
现。

二、等可能事件和不可能事件
1.等可能事件:当一次试验要分成若干个相等的机会,并且这些机会是可数的,
或是有确定的数量时,出现各不相同的结果并且出现每种结果的可能性都相等的随机事件。

2.不可能事件:在一定条件下不可能发生的事件。

三、简单事件的概率计算
1.公式:P(A) = m/n,其中m是事件A发生的次数,n是试验总次数。

2.注意事项:在计算概率时,需要注意以下几点:
•要注意区分频率与概率的不同。

频率是试验中某个事件出现的次数与试验总次数的比值,而概率是频率的稳定值。

•要注意在等可能事件中,不同的试验结果出现的可能性是相等的。

•要注意任何一个事件的概率都应该是0到1之间的一个实数。

四、实例应用
通过实例分析,理解概率的概念和计算方法。

例如,抛硬币、掷骰子等实例的分析,可以引出概率的定义和计算方法。

同时,通过实例分析,也可以让学生更好地理解概率的意义和应用。

五、课堂小结
本节课学习了概率初步这一节内容,主要包括了概率的定义和意义、等可能事件和不可能事件、简单事件的概率计算等方面的知识。

通过本节课的学习,学生应该能够初步掌握概率的概念和计算方法,并且能够运用这些知识解决实际问题。

同时,学生也应该能够认识到概率在生活和其他领域中的应用,激发学习兴趣。

初中简单事件概率教案

初中简单事件概率教案

初中简单事件概率教案教学目标:1. 理解概率的定义,掌握必然事件、不可能事件、随机事件的概念。

2. 学会使用频率估计概率,了解大量实验中频率与概率的关系。

3. 能够运用概率公式计算简单事件的概率。

教学重点:1. 概率的定义及各类事件的概念。

2. 频率与概率的关系。

3. 概率公式的运用。

教学难点:1. 理解并掌握必然事件、不可能事件、随机事件的概念。

2. 运用频率估计概率。

3. 运用概率公式计算简单事件的概率。

教学过程:一、导入(5分钟)1. 引入话题:讨论日常生活中的一些随机现象,如抛硬币、抽奖等。

2. 提问:这些现象中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?二、新课讲解(15分钟)1. 讲解必然事件、不可能事件、随机事件的概念。

2. 讲解概率的定义:某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率。

3. 讲解频率与概率的关系:对一个随机事件做大量实验时会发现,随机事件发生的次数(也称为频数)与试验次数的比(也就是频率)总是接近于一个常数,这个常数就是事件发生的概率。

三、实例演示与练习(15分钟)1. 通过抛硬币、抽奖等实例,让学生观察并记录实验结果,引导学生运用频率估计概率。

2. 让学生分组讨论,总结频率与概率的关系。

3. 运用概率公式计算一些简单事件的概率,如抛硬币两次正面朝上的概率等。

四、课堂小结(5分钟)1. 回顾本节课所学内容,巩固必然事件、不可能事件、随机事件的概念。

2. 强调频率与概率的关系,以及如何运用频率估计概率。

3. 提醒学生掌握概率公式的运用。

五、课后作业(课后自主完成)1. 完成教材课后练习题。

2. 运用概率公式计算生活中的一些简单事件概率。

教学反思:本节课通过讨论日常生活中的随机现象,引导学生理解必然事件、不可能事件、随机事件的概念。

通过实例演示和练习,让学生掌握频率与概率的关系,以及如何运用频率估计概率。

必备的九年级上册数学知识点:简单事件的概率

必备的九年级上册数学知识点:简单事件的概率

2019必备的九年级上册数学知识点:简单事件
的概率
学好知识就需要平时的积累。

知识积累越多,掌握越熟练,查字典数学网编辑了2019必备的九年级上册数学知识点:简单事件的概率,欢迎参考!
一、可能性:
1. 必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件;
2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;
3.确定事件:必然事件和不可能事件都是确定的;
4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。

5.一般来说,不确定事件发生的可能性是有大小的。

.
二、概率:
1.概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。

2.必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0
3.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。

两步
试验事件发生的概率的发生的概率的计算方法有两种,一种是列表法,另一种是画树状图,利用这两种方法计算两步实验时,应用树状图或列表将简单的两步试验所有可能的情况表示出来,从而计算随机事件的概率。

通过对2019必备的九年级上册数学知识点:简单事件的概率的学习,是否已经掌握了本文知识点,更多参考资料尽在查字典数学网!。

《简单事件的概率》 知识清单

《简单事件的概率》 知识清单

《简单事件的概率》知识清单一、概率的定义概率,简单来说,就是用来衡量某个事件发生可能性大小的一个数值。

它的取值范围在 0 到 1 之间。

如果一个事件发生的概率为 0,那就意味着这个事件几乎不可能发生;如果概率为 1,那就表明这个事件肯定会发生;而如果概率在 0 和 1 之间,比如说 05,那就表示这个事件有一半的可能性会发生。

例如,抛一枚均匀的硬币,正面朝上和反面朝上的概率都是 05。

因为硬币只有正反两面,而且质地均匀,所以出现正面和反面的可能性是相等的。

二、简单事件的概念简单事件是指在一次试验中,只有一个结果的事件。

比如说,从一个装有 5 个红球和 3 个白球的袋子中随机摸出一个球,摸到红球或者摸到白球,这就是两个简单事件。

与简单事件相对的是复杂事件,复杂事件是由多个简单事件组合而成的。

三、概率的计算方法1、古典概型当试验的结果有限,且每个结果出现的可能性相等时,我们可以使用古典概型来计算概率。

计算公式为:P(A) = A 包含的基本事件数/基本事件总数例如,一个盒子里有 3 个红球和 2 个白球,从中随机取出一个球是红球的概率。

基本事件总数是 5(3 个红球+ 2 个白球),A 事件(取出红球)包含的基本事件数是 3,所以取出红球的概率 P = 3/5 = 062、几何概型如果试验的结果是无限的,而且每个结果出现的可能性相等,这时就需要用到几何概型来计算概率。

例如,在一个半径为 1 的圆内随机取一点,求这点到圆心的距离小于 05 的概率。

我们可以通过计算面积的比例来得到概率。

四、概率的性质1、0 ≤ P(A) ≤ 1任何事件的概率都在 0 到 1 之间。

2、 P(必然事件) = 1必然会发生的事件,其概率为 1。

3、 P(不可能事件) = 0不可能发生的事件,其概率为 0。

4、如果 A 和 B 是互斥事件(即 A 和 B 不可能同时发生),那么P(A 或 B) = P(A) + P(B)例如,掷骰子时,出现点数为 1 或者 2 的概率,因为出现 1 和出现2 这两个事件互斥,所以概率为 P(出现 1) + P(出现 2) = 1/6 + 1/6 =1/3五、独立事件如果事件 A 的发生不影响事件 B 的概率,事件 B 的发生也不影响事件 A 的概率,那么 A 和 B 就是独立事件。

简单概率计算知识点总结

简单概率计算知识点总结

简单概率计算知识点总结首先,让我们来了解一下概率的基本概念。

概率通常用一个介于0和1之间的数字来表示,其中0表示不可能事件发生,1表示一定会发生,而0.5表示发生和不发生的可能性相等。

我们可以用以下的公式来计算一个事件的概率:P(A) = n(A)/n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的总次数,n(S)表示总的可能发生的次数。

这个公式告诉我们一个事件发生的概率等于这个事件发生的次数除以总的可能发生的次数。

接下来,让我们看一下一些常见的概率计算方法。

首先是求一个事件的概率。

我们可以通过直接统计来计算一个事件的概率,也可以通过给定的概率公式来计算。

例如,如果我们要计算掷一个骰子出现1的概率,我们可以通过计算出现1的次数除以总的出现次数来得到。

其次是条件概率的计算。

条件概率是指在某个条件下一个事件发生的概率,表示为P(A|B),读作在B条件下A的概率。

我们可以用以下的公式来计算条件概率:P(A|B) = P(A∩B)/P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。

这个公式告诉我们在给定事件B发生的条件下,事件A发生的概率等于事件A和事件B同时发生的概率除以事件B发生的概率。

此外,我们还可以用加法法则和乘法法则来计算概率。

加法法则是指对两个事件的概率求和,表示为P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A)和P(B)分别表示事件A和事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。

而乘法法则是指对两个事件的概率求积,表示为P(A∩B) = P(A) × P(B|A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率。

最后,让我们来看一些概率的应用。

概率不仅可以帮助我们计算事件发生的可能性,还可以帮助我们做出更好的决策。

初中数学知识点总结:简单事件的概率

初中数学知识点总结:简单事件的概率

初中数学知识点总结:简单事件的概率 知识点总结【一】可能性:1. 必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件;2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;3.确定事件:必然事件和不可能事件都是确定的;4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。

5.一般来说,不确定事件发生的可能性是有大小的。

.【二】概率:1.概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。

2.必然事件发生的概率为1,记作P〔必然事件〕=1;不可能事件发生的概率为0,记作P〔不可能事件〕=0;如果A为不确定事件,那么0<P〔A〕<1。

3.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。

两步试验事件发生的概率的发生的概率的计算方法有两种,一种是列表法,另一种是画树状图,利用这两种方法计算两步实验时,应用树状图或列表将简单的两步试验所有可能的情况表示出来,从而计算随机事件的概率。

常见考法〔1〕判断哪些事件是必然事件,哪些是不可能事件;〔2〕直接求某个事件的概率。

误区提醒对一个不确定事件所有等可能出现的结果数做了重复计算或漏算。

【典型例题】〔2019福建宁德〕以下事件是必然事件的是〔〕.A.随意掷两个均匀的骰子,朝上面的点数之和为6B.抛一枚硬币,正面朝上C.3个人分成两组,一定有2个人分在一组D.打开电视,正在播放动画片【解析】必然事件指的是一定发生的事件,3个人分成两组,一定有2个人分在一组这是一定的,所以此题选C。

初中数学知识点归纳简单事件的概率

初中数学知识点归纳简单事件的概率

初中数学知识点归纳简单事件的概率数学中,概率是指其中一事件发生的可能性大小,常用数字来表征。

而简单事件是指一个试验中只有一个基本结果的事件。

本文将归纳初中数学中有关简单事件概率的知识点,以及相应的计算方法。

一、基本概念1.随机事件:在一定条件下可以发生或者不发生的事件。

2.样本空间:随机试验中所有可能的基本事件组成的集合,记作S。

3.随机事件的概率:事件A在随机试验中发生的可能性大小,记作P(A)。

4.概率的性质:a.非负性:对于任意事件A,P(A)≥0。

b.确定性:对于必然事件S,P(S)=1c.可列可加性:对于两个互不相容的事件A和B,有P(A∪B)=P(A)+P(B)。

二、计算概率的方法1.等可能概型:当所有基本事件发生的可能性相等时,称为等可能概型。

a.概率计算公式:P(A)=事件A的基本结果数/样本空间S的基本结果数。

b.例子:抛一枚均匀硬币的正反面,事件A为正面朝上,样本空间S为{正面,反面}。

则P(A)=1/22.不等可能概型:当基本结果发生的可能性不相等时,称为不等可能概型。

a.概率计算公式:P(A)=事件A的基本结果数/样本空间S的基本结果数。

b.例子:从一副扑克牌中抽取一张牌,事件A为得到红心,样本空间S为{52张牌}。

则P(A)=26/52=1/2三、计算概率的性质1.对立事件:对于事件A,它的对立事件为A',表示A不发生。

a.概率计算公式:P(A')=1-P(A)。

b.例子:掷一颗骰子,事件A为得到奇数点数,对立事件A'为得到偶数点数。

则P(A')=1-P(A)=1-1/2=1/22.互斥事件:对于事件A和B,它们不能同时发生。

a.概率计算公式:P(A∪B)=P(A)+P(B)。

b.例子:掷一颗骰子,事件A为得到1点,事件B为得到2点。

则P(A∪B)=P(A)+P(B)=1/6+1/6=1/33.独立事件:对于事件A和B,它们的发生与否互不影响。

初中数学同步知识点:简单事件的概率

初中数学同步知识点:简单事件的概率

初中数学同步知识点:简单事件的概率
初中数学同步知识点简单事件的概率
一、可能性
1. 必然事件有些事情我们能确定他一定会发生,这些事情称为必然事件;
2.不可能事件有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;
3.确定事件必然事件和不可能事件都是确定的;
4.不确定事件有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。

5.一般来说,不确定事件发生的可能性是有大小的。

.
二、概率
1.概率的意义表示一个事件发生的可能性大小的这个数叫做该事件的概率。

2.必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0
3.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。

两步试验事件发生的概率的发生的概率的计算有两种,一种是列表法,另一种是画树状图,利用这两种计算两步实验时,应用树状图或列表将简单的两步试验所有可能的情况表示出来,从而计算随机事件的概率。

常见考法
(1)判断哪些事件是必然事件,哪些是不可能事件;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率的简单应用
一、可能性
1、必然事件:有些事件我们能确定它一定会发生,这些事件称为必然事件.
2、不可能事件:有些事件我们能肯定它一定不会发生,这些事件称为不可能事件.
3、确定事件:必然事件和不可能事件都是确定的。

4、不确定事件:有很多事件我们无法肯定它会不会发生,这些事件称为不确定事件。

5、一般来说,不确定事件发生的可能性是有大小的。

常见考法:判断哪些事件是必然事件,哪些是不可能事件
例1:下列说法错误..
的是( ) A .同时抛两枚普通正方体骰子,点数都是4的概率为
16 B .不可能事件发生机会为0
C .买一张彩票会中奖是可能事件
D .一件事发生机会为0.1%,这件事就有可能发生
二、简单事件的概率
1、概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。

2、必然事件发生的概率为1,记作P (必然事件)=1,不可能事件发生的概率为0,记作P(不可能事件)=0,如果A 为不确定事件,那么0<P(A)<1。

3、一步试验事件发生的概率的计算公式:n
k p (n 为该事件所有等可能出现的结果数,k 为事件包含的结果数。

两步试验事件发生的概率的计算有两种方法(列表法和画树状图)常见考法:直接求某个事件的概率
例2:如图5,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,闭合开关①或同时闭合开关②,③或同时闭合开关④⑤⑥都可使一个小灯泡发光,问任意闭合电路上其中的两个开关,小灯泡发光的概率为
______.
三、求复杂事件的概率:
1.对于作何一个随机事件都有一个固定的概率客观存在。

2.有些随机事件不可能用树状图和列表法求其发生的概率,只能通过试验、统计的方法估计其发生的概率。

3.对随机事件做大量试验时,根据重复试验的特征,我们确定概率时应当注意几点:
(1)做实验时应当在相同条件下进行;
(2)实验的次数要足够多,不能太少;
(3)把每一次实验的结果准确,实时的做好记录;
(4)分阶段分别从第一次起计算,事件发生的频率,并把这些频率用折线统计图直观的表示出来;观察分析统计图,找出频率变化的逐渐稳定值,并用这个稳定值估计事件发生的概率,这种估计概率的方法的优点是直观,缺点是估计值必须在实验后才能得到,无法事件预测。

四、概率综合运用:
概率可以和很多知识综合命题,主要涉及平面图形、统计图、平均数、中位数、众数、函数等。

常见考法
(1)判断游戏公平:游戏对双方公平是指双方获胜的可能性相同。

这类问题有两类一类是计算游戏双方的获胜理论概率,另一类是计算游戏双方的理论得分;
(2)命题者经常以摸球、抛硬币、转转盘、抽扑克这些既熟悉又感兴趣的事为载体,设计问题。

进行摸球、抽卡片等实验时,没有注意“有序”还是“无序”、“有放回”还是“无放回”故造成求解错误。

例3:分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示).欢欢、乐乐两人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.
(1)试用列表或画树状图的方法,求欢欢获胜的概率;
(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.
例4:苏州市区某居民小区共有800户家庭,有关部门准备对该小区的自来水管网系统进行改造,为此,需了解该小区的自来水用水的情况。

该部门通过随机抽样,调查了其中的30户家庭,已知这30户家庭共有87人。

(1)这30户家庭平均每户__________人;(精确到1.0人)
(2)这30户家庭的月用水量见下表:
.0m)求这30户家庭的人均日用水量;(一个月按30天计算,精确到001
1m)
(3)根据上述数据,试估计该小区的日用水量?(精确到3。

相关文档
最新文档