第1节 随机抽样

合集下载

抽样检验和抽样分布

抽样检验和抽样分布

占总体单位数N的比例,即:
n n n n 1 2 3 K n
N1 N2 N3
NN K
各类型组应抽取的样本单位数为:
N n
in
n N i N i N
样本比率抽样样本容量:按前面指定的比
例(n/N)从每组的Ni单位中抽取ni个单位 即构成一个抽样总体,其样本容量为:
K
n= n1+ n2+ n3+…+ nk= ni i 1
数μ;
3、样本平均数 x 分布的均方差 x 等于:
当为有限总体无放回抽样时,其样本均值 标准差为:
N
N x
N
N
p
1
p
如果总体为无限总体的或抽取是有放回的
,其样本均值标准差为:
x
N
(二)非正态总体样本平均数 x 的分布及
性质?
1、中心极限定理可以解决上述问题:
一个具有任意函数形式的总体,其样
2、抽样误差:是指由于随机抽样的偶然因 素使样本各单位的结构不足以代表总体 各单位的结构,而引起抽样指标和全及 指标之间的绝对离差。不包含登记性误 差和不遵守随机原则造成的偏差。
影响抽样误差的因素有:总体各单位标 志值的差异程度;样本的单位数;抽样 的方法;抽样调查的组织形式。
第二节 随机抽样设计
样本容量足够大(n=50),据中心极限
定理,x 近似服从正态分布。
(1)
3160
x
800 113.14
x
N
50
x
P x3000 P
x
3000
3160
/ n
113.14
Pz 1.41 0.9207
同理处理(2)和(3)

随机抽样方法

随机抽样方法

随机抽样方法
随机抽样方法是一种常用的统计学方法,它通过随机抽取样本来代表整体总体,从而进行统计分析和推断。

在实际应用中,随机抽样方法被广泛运用于调查研究、市场调研、医学实验等领域。

本文将介绍随机抽样方法的定义、特点、常见类型以及应用注意事项。

首先,随机抽样方法是指在总体中,每个个体被抽取为样本的概率是相等的,
且相互独立。

这意味着每个个体都有被抽取为样本的机会,从而能够代表整体总体。

随机抽样方法的特点是能够减小抽样误差,提高样本的代表性和可靠性。

随机抽样方法有多种类型,常见的包括简单随机抽样、分层随机抽样、整群随
机抽样等。

简单随机抽样是指从总体中随机抽取样本,每个个体被抽到的概率相等,相互独立。

分层随机抽样是将总体按照某种特征分成若干层,然后在每一层中进行简单随机抽样。

整群随机抽样是将总体按照某种特征分成若干群,然后随机抽取若干群作为样本。

不同类型的随机抽样方法适用于不同的研究对象和目的,研究者需要根据实际情况选择合适的抽样方法。

在应用随机抽样方法时,需要注意一些事项。

首先,抽样前需要对总体进行充
分的了解,包括总体特征、分布规律等。

其次,抽样时需要保证样本的代表性和随机性,避免抽样偏差。

最后,对于不同类型的随机抽样方法,需要根据实际情况进行灵活运用,选择最适合的抽样方法。

总之,随机抽样方法是一种重要的统计学方法,它能够有效地代表总体,提高
统计分析的准确性和可靠性。

在实际应用中,研究者需要根据实际情况选择合适的抽样方法,并注意抽样过程中的各项细节,以确保研究结果的科学性和可信度。

2.1.1 简单随机抽样

2.1.1 简单随机抽样
【答案】①③②
配人教版 数学 必修3
简单随机抽样的概念 【例1】 下面的抽样方法是简单随机抽样吗?为什么? (1)从无数个个体中抽取50个个体作为样本; (2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进 行质量检查; (3)某连队从200名党员官兵中,挑选出50名最优秀的官兵 赶赴青海参加抗震救灾工作;
配人教版 数学 必修3
2.1 随机抽样 2.1.1 简单随机抽样
配人教版 数学 必修3
目标定位
重点难点
1.理解随机抽样的必要性和重 要性. 2.会用简单随机抽样方法从总 体中抽取样本.
重点:理解随机抽样的必要性 和重要性,用抽签法和随机数 法抽取样本. 难点:抽签法和随机数法的实 施步骤.
配人教版 数学 必修3
配人教版 数学 必修3
第二步,从“7”开始向右每次读取三位,凡在600~999中 且不与已读出的数重复的数保留,否则跳过去不读,依次得 753,724,688,770,721,763,676,630,785,916.
第三步,以上号码对应的10个零件就是要抽取的对象.
配人教版 数学 必修3
利用随机数表法抽样时应注意的问题 1.编号要求位数相同,若不相同,需先调整到一致再进 行抽样,如当总体中有100个个体时,为了操作简便可以选择 从00开始编号,那么所有个体的号码都用两位数字表示即可, 从00~99号.如果选择从1开始编号那么所有个体的号码都必 须用三位数字表示,从001~100.很明显每次读两个数字要比 读三个数字节省读取随机数的时间. 2.第一个数字的抽取是随机的. 3.当随机数选定,开始读数时,读数的方向可左,可 右,可上,可下,但应是事先定好的.
配人教版 数学 必修3
D.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000 亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量

第1节 随机抽样

第1节 随机抽样

第1节随机抽样知识梳理1.简单随机抽样(1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法.2.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.(2)应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.1.不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.2.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)简单随机抽样每个个体被抽到的机会不一样,与先后有关.()(2)抽签法中,先抽的人抽中的可能性大.()(3)简单随机抽样是一种不放回抽样.()(4)分层抽样中,每个个体被抽到的可能性与层数及分层有关.()答案 (1)× (2)× (3)√ (4)×2.在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是( )A .总体B .个体C .样本的容量D .从总体中抽取的一个样本答案 A解析 由题目条件知,5000名居民的阅读时间的全体是总体;其中每1名居民的阅读时间是个体;从5000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.3.一个公司共有N 名员工,下设一些部门,要采用等比例分层抽样的方法从全体员工中抽取样本容量为n 的样本,已知某部门有m 名员工,那么从该部门抽取的员工人数是________.答案 nm N解析 每个个体被抽到的概率是n N ,设这个部门抽取了x 个员工,则x m =n N ,∴x=nm N .4.(2020·上饶一模)总体由编号为00,01,02,…,48,49的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第3个个体的编号为( ) 附:第6行至第9行的随机数表如下:26357900337091601620388277574950321149197306491676778733997467322748619871644148708628888519162074770111163024042979799196835125A .3B .16C .38D .20答案 D解析 按随机数表法,从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,超出00~49及重复的不选,则编号依次为33,16,20,38,49,32,…,则选出的第3个个体的编号为20,故选D.5.(2020·百校大联考)在新冠肺炎疫情期间,大多数学生都进行网上上课.我校高一、高二、高三共有学生1800名,为了了解同学们对“钉钉”授课软件的意见,计划采用分层抽样的方法从这1800名学生中抽取一个容量为72的样本.若从高一、高二、高三抽取的人数恰好是从小到大排列的连续偶数,则我校高三年级的人数为()A.800 B.750 C.700 D.650答案D解析设从高三年级抽取的学生人数为2x人,则从高二、高一年级抽取的人数分别为2x-2,2x-4.由题意可得2x+(2x-2)+(2x-4)=72,∴x=13.设我校高三年级的学生人数为N,且高三抽取26人,由分层抽样,得N1800=2672,∴N=650(人).6.(2018·全国Ⅲ卷改编)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样和分层抽样,则最合适的抽样方法是________.答案分层抽样解析因为不同年龄段的客户对公司的服务评价有较大差异,所以需按年龄进行分层抽样,才能了解到不同年龄段的客户对公司服务的客观评价.考点一简单随机抽样及其应用1.下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D .用抽签方法从10件产品中选取3件进行质量检验答案 D解析 A ,B 不是简单随机抽样,因为抽取的个体间的间隔是固定的;C 不是简单随机抽样,因为总体中的个体有明显的层次;D 是简单随机抽样.故选D.2.用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,.310D.310,310答案 A解析 在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为110,故选A.3.(多选题)(2021·聊城模拟)要考察某种品牌的850颗种子的发芽率,利用随机数表法抽取50颗种子进行实验.先将850颗种子按001,002,…,850进行编号,如果从随机数表第2行第2列的数开始并向右读,下列选项中属于最先检验的4颗种子中一个的是________(下面抽取了随机数表第1行至第3行).( ) 03 47 43 73 86 36 96 47 36 61 46 98 63 71 62 33 26 16 80 45 60 11 14 10 95 97 74 94 67 74 42 81 14 57 20 42 53 32 37 32 27 07 36 07 51 24 51 79 89 73 16 76 62 27 66 56 50 26 71 07 32 90 79 78 53 13 55 38 58 59 88 97 54 14 10A .774B .946C .428D .572答案 ACD解析 依据题意可知:向右读数依次为:774,946,774,428,114,572,042,533,…所以最先检验的4颗种子符合条件的为:774,428,114,572,结合选项知选ACD.感悟升华 1.简单随机抽样需满足:(1)被抽取的样本总体的个体数有限;(2)逐个抽取;(3)是不放回抽取;(4)是等可能抽取.2.简单随机抽样常有抽签法(适用于总体中个体数较少的情况)、随机数法(适用于个体数较多的情况).考点二分层抽样及其应用角度1求某层入样的个体数【例1】某电视台在网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20000人,其中各种态度对应的人数如下表所示:人进行详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽取的人数分别为() A.25,25,25,25B.48,72,64,16C.20,40,30,10D.24,36,32,8答案D解析法一因为抽样比为10020000=1200,所以每类人中应抽取的人数分别为4800×1200=24,7200×1200=36,6400×1200=32,1600×1200=8.法二最喜爱、喜爱、一般、不喜欢的比例为4800∶7200∶6400∶1600=6∶9∶8∶2,所以每类人中应抽取的人数分别为66+9+8+2×100=24,96+9+8+2×100=36,86+9+8+2×100=32,26+9+8+2×100=8.角度2求总体或样本容量【例2】(1)(2020·东北三省四校联考)某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为n 的样本,其中高中生有24人,那么n等于()A.12B.18C.24D.36(2)(2021·重庆调研)甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.答案(1)D(2)1800解析(1)根据分层抽样方法知n960+480=24960,解得n=36.(2)由题设,抽样比为80 4800=160.设甲设备生产的产品为x件,则x60=50,∴x=3000.故乙设备生产的产品总数为4800-3000=1800.感悟升华 1.求某层应抽个体数量:按该层所占总体的比例计算.2.已知某层个体数量,求总体容量或反之求解:根据分层抽样就是按比例抽样,列比例式进行计算.3.分层抽样的计算应根据抽样比构造方程求解,其中“抽样比=样本容量总体容量=各层样本数量各层个体数量”.【训练】(1)(2020·郴州二模)已知我市某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为()A.240,18B.200,20C.240,20D.200,18(2)(2021·合肥模拟)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种,10种,30种,20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是________.答案(1)A(2)6解析(1)样本容量n=(250+150+400)×30%=240,抽取的户主对四居室满意的人数为150×30%×40%=18.(2)抽样比为2040+10+30+20=15,则抽取的植物油类种数是10×15=2,抽取的果蔬类食品种数是20×15=4,所以抽取的植物油类与果蔬类食品种数之和是2+4=6.A级基础巩固一、选择题1.(多选题)(2021·武汉调研)下列抽样方法不是简单随机抽样的是()A.从平面直角坐标系中抽取5个点作为样本B.某可乐公司从仓库中的1000箱可乐中一次性抽取20箱进行质量检查C.某连队从120名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编号)答案AC解析对于A,平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故A中的抽样方法不是简单随机抽样;对于B,一次性抽取与逐个不放回地抽取是等价的,故B中的抽样方法是简单随机抽样;对于C,挑选的50名战士是最优秀的,不符合简单随机抽样的等可能性,故C中的抽样方法不是简单随机抽样;对于D,易知D中的抽样方法是简单随机抽样.2.(多选题)(2020·泰安质检)某公司生产三种型号的轿车,产量分别为1500辆,6000辆和2000辆.为检验该公司的产品质量,公司质监部门要抽取57辆进行检验,则下列说法正确的是()A.应采用分层随机抽样抽取B.应采用抽签法抽取C.三种型号的轿车依次应抽取9辆,36辆,12辆D.这三种型号的轿车,每一辆被抽到的概率都是相等的答案ACD解析因为是三种型号的轿车,个体差异明显,所以采用分层抽样,选项A正确;因为总体量较大,故不宜采用抽签法,选项B错误;抽样比为571500+6000+2000=3500,三种型号的轿车依次应抽取9辆,36辆,12辆,选项C正确.分层抽样中,每一个个体被抽到的可能性相同.故选项D正确.故答案为ACD.3.(2020·首都师范大学附属中学月考)从某班50名同学中选出5人参加户外活动,利用随机数表法抽取样本时,先将50名同学按01,02,…,50进行编号,然后从随机数表的第1行第5列和第6列数字开始从左往右依次选取两个数字,则选出的第5个个体的编号为()(注:表为随机数表的第1行与第2行)A.24答案A解析由题知,从随机数表的第1行第5列和第6列数字开始,由表可知依次选取43,36,47,46,24.4.(多选题)(2021·襄阳联考)某中学高一年级有20个班,每班50人;高二年级有30个班,每班45人.甲就读于高一,乙就读于高二.学校计划从这两个年级中共抽取235人进行视力调查,下列说法中正确的有()A.应该采用分层随机抽样法B.高一、高二年级应分别抽取100人和135人C.乙被抽到的可能性比甲大D.该问题中的总体是高一、高二年级的全体学生的视力答案ABD解析由于各年级的年龄段不一样,因此应采用分层抽样法.由于比例为23520×50+30×45=110,因此高一年级1000人中应抽取100人,高二年级1350人中应抽取135人,甲、乙被抽到的可能性都是110,因此只有C不正确,故应选ABD.5.如图是调查某学校高三年级男女学生是否喜欢数学的等高条形图,阴影部分的高表示喜欢数学的频率.已知该年级男、女生各500名(所有学生都参加了调查),现从所有喜欢数学的学生中按分层抽样的方式抽取32人,则抽取的男生人数为()A.16 B.32 C.24 D.8答案C解析由题中等高条形图可知喜欢数学的女生和男生的人数比为1∶3,,所以抽取的男生人数为24.故选C.6.某中学400名教师的年龄分布情况如图,现要从中抽取40名教师作样本,若用分层抽样方法,则40岁以下年龄段应抽取()A.40人B.200人C.20人D.10人答案C解析由题图知,40岁以下年龄段的人数为400×50%=200,若采用分层抽样应抽取200×40400=20(人).7.(多选题)(2021·淄博模拟)港珠澳大桥是中国境内一座连接中国香港、广东珠海和中国澳门的桥隧工程,因其超大的建筑规模、空前的施工难度以及顶尖的建造技术闻名世界,为内地前往香港的游客提供了便捷的交通途径,某旅行社分年龄统计了大桥落地以后,由香港大桥实现内地前往香港的老中青旅客的比例分别为5∶2∶3,现使用分层抽样的方法从这些旅客中随机抽取n名,若青年旅客抽到60人,则()A .老年旅客抽到100人B .中年旅客抽到20人C .n =200D .被抽到的老年旅客以及中年旅客人数之和超过200人答案 AC解析 由题意,香港大桥实现内地前往香港的老中青旅客的比例分别为5∶2∶3,若青年旅客抽到60人,现使用分层抽样的方法从这些旅客中随机抽取n 名,所以60n =35+2+3,解得n =200人,则老年旅客抽到60×53=100人,中年旅客抽到60×23=40人,则老年旅客和中年旅客人数之和为160.8.(2020·北京东城区模拟)某机构对青年观众是否喜欢跨年晚会进行了调查,人数如表所示:“不喜欢”的男性青年观众中抽取了6人,则n =( )A .12B .16C .24D .32答案 C解析 由分层抽样的性质得:630=n 30+30+10+50,解得n =24.故选C.二、填空题9.假设要考察某公司生产的500克袋装牛奶的三聚氰胺是否超标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,将800袋牛奶按000,001,…,799进行编号,若从随机数表第7行第8列的数开始向右读,则得到的第4个样本个体的编号是________(下面摘取了随机数表第7行至第9行).解析由随机数表知,前4个样本的个体编号分别是331,572,455,068. 10.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=________.答案13解析依题意得360=n120+80+60,故n=13.11.(2020·海南质检)《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数多少衰出之,问各几何?”其意为:“今有甲带了560钱,乙带了350钱,丙带了180钱,三人一起出关,共需要交关税100钱,依照钱的多少按比例出钱”,则乙应出(所得结果四舍五入,保留整数)钱数为________.答案32解析因为甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱.要按照各人带钱多少的比例进行关税.则乙应付:100560+350+180×350=3212109≈32钱.12.某企业三月中旬生产A,B,C三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格.由于不小心,表格中A,C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10件,根据以上信息,可得C产品的数量是________.答案800解析设A,C产品数量分别为x件、y件,则由题意可得⎩⎪⎨⎪⎧x +y +1300=3000,(x -y )×1301300=10,解得⎩⎨⎧x =900,y =800. B 级 能力提升13.我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( )A .104人B .108人C .112人D .120人 答案 B解析 由题意知,抽样比为 3008100+7488+6912=175,所以北乡遣175×8100=108(人).14.下列抽取样本的方式属于简单随机抽样的个数为( ) ①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里. ③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛. A .0 B .1 C .2 D .3 答案 A解析 ①不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的;②不是简单随机抽样.因为它是有放回抽样;③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样.因为不是等可能抽样.故选A.15.甲、乙两所学校高三年级分别有1200人,1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:则A.12,7B.10,7C.10,8D.11,9答案B解析从甲校抽取110×12001200+1000=60(人),从乙校抽取110×12001200+1000=50(人),故x=10,y=7.16.某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从第一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为________.答案1200解析因为a,b,c成等差数列,所以2b=a+c.所以a+b+c3=b.所以第二车间抽取的产品数占抽样产品总数的13.根据分层抽样的性质,可知第二车间生产的产品数占总数的13,即为13×3600=1200.。

第一节 抽样方法、用样本估计总体

第一节  抽样方法、用样本估计总体

6.样本的数字特征
返回
(1)众数、中位数、平均数
数字特征
概念
优点与缺点
众数 中位数 平均数
众数通常用于描述变量的值出现
一组数据中重复出 次数最多的数.但显然它对其他
现次数 最多 的数 数据信息的忽视使它无法客观地
反映总体特征
把一组数据按 从小 中位数等分样本数据所占频率,
到大的 顺序排列, 它不受少数几个极端值的影响,
返回
[小题纠偏] 1.已知某商场新进 3 000 袋奶粉,为检查其三聚氰胺是否超标,
现采用系统抽样的方法从中抽取 150 袋检查,若第一组抽出 的号码是 11,则第六十一组抽出的号码为________. 解析:每组袋数:d=3105000=20, 由题意知这些号码是以 11 为首项,20 为公差的等差数列. a61=11+60×20=1 211. 答案:1 211
返回
[由题悟法] 1.茎叶图中的 3 个关注点 (1)“叶”的位置只有一个数字,而“茎”的位置的数字 位数一般不需要统一. (2)重复出现的数据要重复记录,不能遗漏. (3)给定两组数据的茎叶图,估计数字特征,茎上的数字 由小到大排列,一般“重心”下移者平均数较大,数据集中 者方差较小.
返回
2.由频率分布直方图进行相关计算时,需掌握的 2 个关 系式
答案:8
返回
2.(2018·海安质量测试)某校高一年级共有 800 名学生,根据 他们参加某项体育测试的成绩得到了如图所示的频率分 布直方图,则成绩不低于 80 分的学生人数为________.
解析:由题设中提供的频率分布直方图可以看出:不低于 80 分的学生人数为(0.02+0.01)×10×800=240. 答案:240
返回

第6章 抽样调查(1)

第6章 抽样调查(1)

33
1、由于总体单位总数未 知,因此采用重复抽样 公式。又总体标 准差未知,采用过去资 料最大标准差作为估计 值。
x

n

0.12 0.0219 (升) 30
n1 30 2 2、合格率p 93.3% n 30 S P p(1 p) 93.3% (1 93.3%) 6.25%
根据质量标 准,使用寿 命800小时及 以上者为合 格品,计算 产品平均合 格率和标准 差。
14
全及指标
X XF X N F
P N1 N
X
2
( X X )2
N

( X X )2 F F
X
(X X )
N
2

(X X ) F F
2
P 2 P(1 P)
31
例 上题中,如果寿命低于9000小时的产品是不合格品,计 算不合格率(合格率)的抽样平均误差。
不合格率:
n1 90 x p 18% n 500
Sp
p(1 p)
Sp
0.18 (1 0.18) 38.4%
重复抽样下:
p
p
Sp n
0.384 1.7% n 500
3
特 点
遵循随机原则抽取部分单位 ;
用样本推断总体;
会产生抽样误差,但误差可以计算和控制。
4
随机原则的实现
统 计 学 概 论
是将总体中每个单位的编号写在外形完全 一致的签上,将其搅拌均匀,从中任意抽 抽签法 选,签上的号码所对应的单位就是样本单 位。 将总体中每个单位编上号码,然后使 用随机数表,查出所要抽取的调查单 随机数表法 位。

高考数学一轮总复习课件:随机抽样、用样本估计总体

高考数学一轮总复习课件:随机抽样、用样本估计总体

6.(2020·天津)从一批零件中抽取 80 个,测量其直径(单位: mm),将所得数据分为 9 组:[5.31,5.33),[5.33,5.35),…,[5.45, 5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽 取的零件中,直径落在区间[5.43,5.47)内的个数为( B )
n 的样本进行调查,其中从丙车间的产品中抽取了 3 件,则 n=
(D ) A.9
B.10
C.12
D.13
【解析】 由分层抽样可得630=2n60,解得 n=13.
【讲评】 进行分层抽样的相关计算时,常利用以下关系式 巧解:
①总样体本的容个量数nN=该层该抽层取的的个个体体数数; ②总体中某两层的个体数之比等于样本中这两层抽取的个 体数之比.
5.对某商店一个月内每天的顾客人数进行了统计,得到样本 的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( A )
A.46,45,56 B.46,45,53 C.47,45,56 D.45,47,53
解析 从茎叶图中可以看出样本数据的中位数为中间两个数的 平均数,即45+2 47=46,众数是 45,极差为 68-12=56,故选择 A.
状元笔记
(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否 方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都 较小时可用抽签法.
(2)在使用随机数表时,如遇到取两位数或三位数,可从选择 的随机数表中的某行某列的数字计起,每两个或每三个作为一个 单位,自左向右选取,有超过总体号码或出现重复号码的数字舍 去.
个最高分、1 个最低分,得到 7 个有效评分.7 个有效评分与 9 个
原始评分相比,不变的数字特征是( A )

随机抽样方法

随机抽样方法

随机抽样方法
随机抽样是一种常用的统计方法,用于从总体中选择样本,以便对总体进行推断。

在实际应用中,随机抽样方法被广泛应用于市场调研、社会调查、医学研究等领域。

本文将介绍随机抽样方法的基本原理、常见的抽样技术和注意事项。

首先,随机抽样的基本原理是通过随机的方式从总体中选择样本,以保证样本的代表性和独立性。

这意味着每个个体都有被选中的机会,同时每个个体被选中的概率相等。

这样可以避免抽样偏差,使得样本能够准确地反映总体的特征。

常见的随机抽样技术包括简单随机抽样、分层抽样、整群抽样和多阶段抽样。

简单随机抽样是最基本的抽样技术,即从总体中随机地选择样本。

分层抽样是将总体按照某种特征分成若干层,然后在每一层中进行简单随机抽样。

整群抽样是将总体分成若干群,然后随机选择若干群作为样本。

多阶段抽样是将抽样过程分成若干阶段,每一阶段进行一次抽样。

这些抽样技术可以根据实际情况进行选择,以满足研究的需要。

在进行随机抽样时,需要注意一些事项。

首先,需要确定抽样的总体和样本大小。

总体的确定要准确,样本大小的确定要考虑到研究的目的、资源的限制和统计的要求。

其次,需要设计抽样框架,即确定如何进行抽样和如何获得样本。

最后,需要进行实际的抽样过程,并对样本进行统计分析。

在整个抽样过程中,需要保证随机性和代表性,以确保研究的可靠性和有效性。

总之,随机抽样是一种重要的统计方法,通过随机的方式选择样本,以保证样本的代表性和独立性。

在实际应用中,可以根据研究的需要选择合适的抽样技术,并注意抽样过程中的一些事项,以确保研究的可靠性和有效性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5
基础知识诊断
考点聚焦突破
@《创新设计》
[常用结论与微点提醒] 1.不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的. 2.系统抽样一般也称为等距抽样,入样个体的编号相差分段间隔k的整数倍. 3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.
6
基础知识诊断
考点聚焦突破
诊断自测
A.3
B.16
C.38
D.20
10
基础知识诊断
考点聚焦突破
@《创新设计》
解析 按随机数表法,从随机数表第6行的第9列和第10列数字开始从左到右依 次选取两个数字,超出00~49及重复的不选,则编号依次为33,16,20,38, 49,32,…,则选出的第3个个体的编号为20,故选D. 答案 D
11
解析 由题目条件知,5 000名居民的阅读时间的全体是总体;其中每1名居民的阅
读时间是个体;从5 000名居民某天的阅读时间中抽取的200名居民的阅读时间是从
总体中抽取的一个样本,样本容量是200.
答案 A
8
基础知识诊断
考老教材必修3P100A2(2)改编)一个公司共有N名员工,下设一些部门,要采用等比例 分层抽样的方法从全体员工中抽取样本容量为n的样本,已知某部门有m名员工,那 么从该部门抽取的员工人数是________. 解析 每个个体被抽到的概率是Nn, 设这个部门抽取了x个员工,
C.都相等,且为410
D.都相等,且为2
50 019
解析 先用简单随机抽样方法剔除 19 名学生,剩下的 2 000 名再按照系统抽样的方
法抽取,则每名学生入选的概率相等,且为 p=2 50019,故选 D. 答案 D
12
基础知识诊断
考点聚焦突破
@《创新设计》
6.(2018·全国Ⅲ卷)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异. 为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽 样、分层抽样和系统抽样,则最合适的抽样方法是________. 解析 因为不同年龄段的客户对公司的服务评价有较大差异,所以需按年龄进行分 层抽样,才能了解到不同年龄段的客户对公司服务的客观评价. 答案 分层抽样
则mx =Nn,∴x=nNm.
答案
nm N
9
基础知识诊断
考点聚焦突破
@《创新设计》
4.(2020·吉安一模)总体由编号为00,01,02,…,48,49的50个个体组成,利用下面
的随机数表选取6个个体,选取方法是从随机数表第6行的第9列和第10列数字开始
从左到右依次选取两个数字,则选出的第3个个体的编号为( )
@《创新设计》
7
基础知识诊断
考点聚焦突破
@《创新设计》
2.(老教材必修3P100 A1改编)在“世界读书日”前夕,为了了解某地5 000名居民某天
的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000
名居民的阅读时间的全体是( )
A.总体
B.个体
C.样本的容量
D.从总体中抽取的一个样本
4
基础知识诊断
考点聚焦突破
@《创新设计》
③在第1段用__简__单__随__机__抽__样___确定第一个个体编号l(l≤k); ④按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号__(_l_+__k)___, 再加k得到第3个个体编号__(l_+__2_k_)__,……,依次进行下去,直到获取整个样本. 3.分层抽样 (1)定义:在抽样时,将总体分成__互__不__交__叉______的层,然后按照一定的比例,从 各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样 方法叫做分层抽样. (2)应用范围:当总体是由____差__异__明__显_____的几个部分组成时,往往选用分层抽样.
基础知识诊断
考点聚焦突破
@《创新设计》
5.(2019·兰州二模)某学校为响应“平安出行”号召,拟从2 019名学生中选取50名学生
加入“交通志愿者”,若采用以下方法选取:先用简单随机抽样方法剔除19名学生,
剩下的2 000名再按照系统抽样的方法抽取,则每名学生入选的概率( )
A.不全相等
B.均不相等
@《创新设计》
1
基础知识诊断
考点聚焦突破
第1节 随机抽样
@《创新设计》
考试要求 1.理解随机抽样的必要性和重要性;2.会用简单随机抽样方法从总体中抽 取样本;了解分层抽样和系统抽样方法.会用随机抽样的基本方法解决一些简单的实 际问题.
2
基础知识诊断
考点聚焦突破
@《创新设计》
知识梳理 1.简单随机抽样
(1)定义:设一个总体含有N个个体,从中逐个__不__放__回__地____抽取n个个体作为样本 (n≤N),如果每次抽取时总体内的各个个体被抽到的机会都__相__等___,就把这种抽 样方法叫做简单随机抽样. (2)最常用的简单随机抽样的方法:抽签法和__随__机__数____法.
3
基础知识诊断
考点聚焦突破
1.判断下列结论正误(在括号内打“√”或“×”) (1)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( ) (2)简单随机抽样是一种不放回抽样.( ) (3)系统抽样在起始部分抽样时采用简单随机抽样.( ) (4)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( ) 答案 (1)× (2)√ (3)√ (4)×
附:第6行至第9行的随机数表如下:
2635 7900 3370 9160 1620 3882 7757 4950
3211 4919 7306 4916 7677 8733 9974 6732
2748 6198 7164 4148 7086 2888 8519 1620
7477 0111 1630 2404 2979 7991 9683 5125
@《创新设计》
2.系统抽样 (1)定义:当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照 事先定出的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做 系统抽样. (2)系统抽样的操作步骤 假设要从容量为N的总体中抽取容量为n的样本. ①先将总体的N个个体编号; ②确定____分__段__间__隔__k_______,对编号进行分段,当Nn(n 是样本容量)是整数时,取 k =Nn (否则,先剔除一些个体);
相关文档
最新文档